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Abstract. We give a polynomial time randomized algorithm that, on
receiving as input a pair (H,G) of n-vertex graphs, searches for an em-
bedding of H into G. If H has bounded maximum degree and G is suit-
ably dense and pseudorandom, then the algorithm succeeds with high
probability. Our algorithm proves that, for every integer d ≥ 3 and suit-
able constant C = Cd, as n → ∞, asymptotically almost all graphs
with n vertices and �Cn2−1/d log1/d n� edges contain as subgraphs all
graphs with n vertices and maximum degree at most d.

1 Introduction

Given graphs H and G, an embedding of H into G is an injective edge-preserving
map f : V (H) → V (G), that is, such that, for every e = {u, v} ∈ E(H), we
have f(e) = {f(u), f(v)} ∈ E(G). We shall say that a graph H is contained in G
as a subgraph if there is an embedding of H into G. Given a family of graphs H,
we say that G is universal with respect to H, or H-universal, if every H ∈ H is
contained in G as a subgraph.

The construction of sparse universal graphs for various graph families has
received a considerable amount of attention; see, e.g., [1,3,4,5,6,7,8,10] and the
references therein. One is particularly interested in (almost) tight H-universal
graphs, i.e., graphs whose number of vertices is (almost) equal to maxH∈H |V (H)|.
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Let d ∈ N be a fixed constant and let H(n, d) = {H ⊂ Kn : Δ(H) ≤ d} denote
the class of (pairwise non-isomorphic) n-vertex graphs with maximum degree
bounded by d and H(n, n; d) = {H ⊂ Kn,n : Δ(H) ≤ d} be the corresponding
class for balanced bipartite graphs.

By counting all unlabeled d-regular graphs on n vertices one can easily show
that every H(n, d)-universal graph must have

Ω(n2−2/d) (1)

edges (see [3] for details). This lower bound was almost matched by a construc-
tion from [4], which was subsequently improved in [1] and [2]. Those construc-
tions were designed to achieve a nearly optimal bound and as such they did not
resemble a “typical” graph with the same number of edges. To pursue this direc-
tion, in [3], the H(n, d)-universality of the random graphs Gn,p was investigated.

For random graphs a slightly better lower bound than (1) is known. Indeed,
any H(n, d)-universal graph must contain as a subgraph the union of �n/(d+1)�
vertex-disjoint copies of Kd+1, and, in particular, all but at most d vertices must
each belong to a copy of Kd+1. Therefore, recalling the threshold for the latter
property (see, e.g., [14, Theorem 3.22(i)]), we conclude that the expected number
of edges needed for the H(n, d)-universality of Gn,p must be

Ω
(
n2−2/(d+1)(log n)1/(

d+1
2 )

)
, (2)

a quantity bigger than (1).
We say that Gn,p possesses a property P asymptotically almost surely (a.a.s.)

if P[Gn,p ∈ P ] = 1 − o(1). We write Gn,n,p for the random balanced bipartite
graph on 2n vertices and edge probability p. In [3], it was proved that for a
sufficiently large constant C:

A (almost tight universality) The random graph G(1+ε)n,p is a.a.s. H(n, d)-

universal if p = Cn−1/d log1/d n;
B (tight bipartite universality) The random bipartite graph Gn,n,p is a.a.s.

H(n, n, d)-universal if p = Cn−1/2d log1/2d n.

Note that (A) above deals with embeddings of n-vertex graphs into random
graphs with slightly larger vertex sets, which makes the embedding somewhat
easier. On the other hand, (B) above deals with tight universality at the cost of
requiring the graphs to be bipartite and with a less satisfactory bound.

Those results were improved and extended by the authors in [9,11], where

it was shown that Gn,n,p is a.a.s. H(n, n, d)-universal if p = Cn−1/d log1/d n,

and Gn,p is a.a.s. H(n, d)-universal if p = Cn−1/2d log1/2d n. In this paper,
making use of an additional randomization step in the embedding algorithm
involved, we improve the latter result, establishing a density threshold for the
H(n, d)-universality of Gn,p that matches the best previous bounds for both the
bipartite tight universality and the almost tight universality in the general case.
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Theorem 1. Let d ≥ 3 be fixed and suppose p = p(n) = Cn−1/d log1/d n
for some sufficiently large constant C. Then the random graph Gn,p is a.a.s.
H(n, d)-universal.

Standard methods let us derive from Theorem 1 the H(n, d)-universality of al-

most all n-vertex graphs with M = �Cn2−1/d log1/d n� edges. Observe that there
is still a gap between the lower bound (2) and the upper bound given by Theo-

rem 1. We remark that n−1/d log1/d n is a natural barrier for the problem con-
sidered here, as this is roughly the point where every d-tuple of vertices of Gn,p

shares a common neighbor.

Remark 1. In Theorem 1 we assume that d ≥ 3 since for d = 2 our proof would
require a few modifications. On the other hand, we feel that the true bound
for d = 2 is much lower. Possibly as low as (2), which, as proved by Johansson,
Kahn, and Vu [16], is also the threshold for triangle-factors in Gn,p. The case
d = 2 will be dealt with elsewhere. We assume that d ≥ 3 throughout.

This paper is organized as follows. In the next section we describe a randomized
algorithm that seeks, for any H ∈ H(n, d) and any n-vertex graph G, an embed-
ding f : V (H) → V (G). Crucially, at the beginning of our algorithm, a collection
of pairwise vertex-disjoint d-cliques is sampled from a certain subset of vertices
of G, uniformly at random. This randomization allows us to verify a Hall-type
condition that we use to embed the final group of vertices in the algorithm. This
is formally stated in Lemma 4.

In Section 4, we prove that our algorithm succeeds with high probability for
everyH ∈ H(n, d) when run on Gn,p, as long as p = Cn−1/d log1/d n and C = Cd

is a large enough constant. Several relevant properties of Gn,p for such a p are
singled out in Section 3.

We shall use the following notation throughout. For v ∈ V = V (G), let G(v)
denote the neighborhood of the vertex v in G. For T ⊂ V , let

G(T ) = {v ∈ V \ T : G(v) ∩ T 
= ∅} =
⋃

u∈T
G(u) \ T

denote the neighborhood of the set T in G in V \T . For T ⊂ V , let G[T ] denote
the subgraph of G induced by T . If J is a graph, when there is no danger of
confusion, we write J for its edge set as well. For tidiness, we omit floor and
ceiling signs whenever they are not important.

2 The Embedding

Let

ε = ε(d) =
1

100d4
. (3)

In what follows, when necessary, we tacitly assume that n is larger than a suitably
large constant n0 = n0(d). Given an n-vertex graph G, set V := V (G) and let

V = V0 ∪R1 ∪ · · · ∪Rd2+2, where |Ri| = εn for all i, (4)

be a fixed partition of V .
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Without loss of generality, we shall assume that H is a maximal graph from
H(n, d) in the sense that adding any edge to H increases its maximum degree
beyond d. Since in such a graph the vertices with degrees smaller than d must
form a clique, there are at most d of them.

We set X := V (H), and fix an integer t = τn = τ |V |, where

τ = 2ε =
1

50d4
. (5)

In the embedding algorithm, we shall use the following preprocessing procedure
of H .

The preprocessing of H: Select vertices x1, . . . , xt ∈ X in such a way that
they all have degree d and form a 3-independent set in H , that is, every pair
of distinct vertices xi, xj is at distance at least four. (Owing to our choice of t,
we may find these t vertices by a simple greedy algorithm.) Let Si = H(xi) for
all i = 1, . . . , t, and set

X0 :=
⋃t

j=1
Sj .

Note that, by the 3-independence of the xi (1 ≤ i ≤ t), for all i 
= j not only
Si ∩ Sj = ∅, but also there is no edge between Si and Sj in H .

Next, consider the square H2 of the graph H obtained from H by adding
edges between all pairs of vertices at distance two. Since the maximum degree of
H2 is at most d2, by the Hajnal–Szemerédi Theorem [12] applied to H2, there is
a partition X = X ′

1 ∪X ′
2 ∪ · · · ∪X ′

d2+1, such that all the sets X ′
i, 1 ≤ i ≤ d2 +1,

are independent in H2, and thus 2-independent in H , and have roughly the
same size, that is,

∣∣|X ′
i| − |X ′

j |
∣∣ ≤ 1 for all i and j. (In fact, we apply here

an algorithmic version from [17] (see also [18]), which yields a polynomial time
algorithm.) Finally, set

Xi = X ′
i \ {x1, . . . , xt} \X0, i = 1, . . . , d2 + 1,

and Xd2+2 = {x1, . . . , xt}. Hence, we obtain the partition

X = X0 ∪X1 ∪ · · · ∪Xd2+2, (6)

where, for i = 1, . . . , d2 + 1, the sets Xi are 2-independent and

|Xi| ≥ n

d2 + 1
− 1− t(d+ 1) ≥ n

2d2
> t, (7)

while Xd2+2 is 3-independent, |Xd2+2| = t, and X0 is the (disjoint) union of the
d-element neighborhoods of the vertices inXd2+2. (See Figure 1 for an illustration
of this partition.) The numbering of the sets X0, . . . , Xd2+2 corresponds to the
order in which these sets will be embedded into G by the embedding algorithm.

Another building block of our embedding algorithm is a procedure that, given
a partial embedding fi−1 of H [X0 ∪ · · · ∪Xi−1] into G, constructs an auxiliary
graph Ai making explicit which vertices of G are candidates for becoming images
of the vertices in Xi.
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Fig. 1. The partition of V (H)

The auxiliary graph Ai: For i = 1, . . . , d2 + 2 and a partial embedding
fi−1 : X0 ∪ · · · ∪Xi−1 → V , let Ai be the bipartite graph with vertex classes Xi

and
Wi := V \ im(fi−1) \

⋃
i<j≤d2+2

Rj

(the Rj are as in (4)) and the edge set

{
(x, v) ∈ Xi ×Wi : fi−1

(
H(x)

) ⊂ G(v)
}
. (8)

Observe that Ai(x) is the set of all the vertices v ∈ Wi for which x 
→ v is a valid
extension of the embedding fi−1, while Ai(v) is the set of all the vertices x ∈ Xi

for which v is a valid image.
Since the set Xi is independent, Xi can be embedded ‘at once’; that is, it

suffices to specify a matching in Ai saturating Xi. (The 2-independence of the
Xis will only be used in the analysis of the algorithm.) Note that |Wd2+2| =
|Xd2+2|, while for 1 ≤ i ≤ d2+1 the set Wi is noticeably bigger than the set Xi.
Indeed,

|Wi| = n−
∑

0≤j<i

|Xj | −
∑

i<j≤d2+2

|Rj |

= |Xi|+
∑

i<j≤d2+2

(|Xj | − |Rj |) ≥ |Xi|+ εn. (9)

The embedding will proceed in d2 + 2 rounds, split into three phases:

Phase 1:The sets S1, . . . , St are mapped randomly onto disjoint cliques ofG[V0].
Phase 2: The sets Xi (1 ≤ i ≤ d2 +1) are embedded, one by one, into the Wi.
Phase 3: The set Xd2+2 is mapped one-to-one onto Wd2+2 (the set of t remain-

ing vertices of G).

A potential problem for our proposed embedding scheme is that the candidate
set for a given vertex x ∈ X = V (H) may be depleted before we have a chance to
embed x. If that happens, there is no hope to complete the embedding. Similarly,
a vertex v ∈ V = V (G) may lose all of its neighbors in the auxiliary graphs Ai

as a result of an unfortunate sequence of extensions. In other words, v can be
excluded from all candidate sets and thus cannot be used in the embedding.
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Since we have to use all vertices of V in the embedding, we must avoid this
event as well. Our algorithm incorporates two devices that help us address these
problems.

Buffer vertices in G (used in Phases 2 and 3). We shall make sure that,
for each i = 1, . . . , d2 + 2, im(fi−1) ∩ Ri = ∅ (see Line 5 of Algorithm 1). This
way, Ri will be reserved as a buffer to help us embed the set Xi, provided the
sets Ri will satisfy certain properties in G; see Section 3.

Buffer vertices in H (used in Phase 3). Since the neighborhoods Sj of
the vertices xj from Xd2+2 are embedded during Phase 1, for any given v ∈ V ,
the vertices in Xd2+2 that can be mapped onto v remain the same throughout
Phase 2 (up until v is in fact used by the embedding). This will help us ensure
the existence of a perfect matching in Ad2+2 in Phase 3, provided the random
choices of f(Sj) satisfy certain properties; see Lemma 4.

Now we present our embedding algorithm (see Algorithm 1).

Algorithm 1. The embedding algorithm

Input : A graph H with n vertices and Δ(H) ≤ d and a graph G
together with a vertex partition (4).

Output: An embedding f : V (H) → V (G) (or the algorithm fails).
// Phase 1

Preprocess H , obtaining a partition X = X0 ∪ · · · ∪Xd2+2 as in (6), where1

X0 = S1 ∪ · · · ∪ St, Xd2+2 = {x1, . . . , xt}, and H(xj) = Sj , j = 1, . . . , t.
Randomly select from V0 a sequence of pairwise disjoint d-element sets2

T1, . . . , Tt such that, for each i = 1, . . . , t, G[Ti] is a clique, with all such
sequences equiprobable.
Define a map f0 : X0 → ⋃t

i=1 Ti in such a way that f0(Si) = Ti for each3

i = 1, . . . t.
// Phase 2

for i = 1, 2, . . . , d2 + 1 do4

Set Wi = V \ im(fi−1) \
⋃

i<j≤d2+2
Rj ;

5

Construct the auxiliary bipartite graph Ai between the sets Xi6

and Wi, and find therein a matching Mi of size |Mi| = |Xi|.
Define the extension fi of fi−1 by setting fi(x) = v for all x ∈ Xi,7

where (x, v) ∈ Mi, and fi(x) = fi−1(x) for all x ∈ X0 ∪ · · · ∪Xi−1.

// Phase 3

Set Wd2+2 = V \ im(fd2+1). Note that Rd2+2 ⊂ Wd2+2.8

Construct the auxiliary bipartite graph Ad2+2 between sets Xd2+29

and Wd2+2, and find therein a perfect matching Md2+2.
Define the output embedding f by setting f(x) = v for all x ∈ Xd2+2,10

where (x, v) ∈ Md2+2, and f(x) = fd2+1(x) for all x ∈ X \Xd2+2.
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Algorithm 1 finds an embedding of H into G as long as it is successful on
Lines 2, 6 and 9. The sets Si are embedded into V0 by uniformly sampling a
sequence of pairwise disjoint d-subsets T1, . . . , Tt ⊂ V0 with every Ti inducing
a clique in G. Thus, one (trivial) necessary condition for the success of the
algorithm is that G should contain at least t disjoint cliques Kd. Notice that the
map f0 is an embedding, since the edges within Si are clearly preserved (G[Ti]
is a clique), while eH(Si, Sj) = 0 holds for all j 
= i by construction.

Two more demanding conditions are that the auxiliary bipartite graphs Ai

from Lines 6 and 9 should possess the required matchings. Superficially, we
could have combined the last two phases by including round d2+2 into the loop,
however we chose not to do so, because of the much more involved analysis of
Phase 3. Indeed, it is a great deal harder to prove the existence of a perfect
matching in the balanced bipartite graph Ad2+2 than to prove the existence of
a matching saturating the Xi side of Ai (1 ≤ i < d2 + 2), because its Wi side is
noticeably bigger (see (9)).

It is worth pointing out that the success of Phase 3 relies entirely on the
(random) outcome of Phase 1. The algorithm’s goal in Phase 3 is to find a
perfect matching in the auxiliary bipartite graph Ad2+2 (which has vertex classes
Xd2+2 and Wd2+2). Recall that the neighborhoods Sj = H(xj) of the vertices
xj ∈ Xd2+2 are completely embedded in Phase 1. Since fd2+1 is an extension
of f0, for each xj ∈ Xd2+2 we have fd2+1(Sj) = f0(Sj) = Tj . This implies that,
for every v ∈ Wd2+2, by definition, (xj , v) ∈ Ad2+2 if and only if Tj ⊂ G(v).

Let Ã1 be the bipartite graph with vertex classes V (H) \X0 and V (G) \ im(f0)

with (x, v) an edge in Ã1 if and only if f0(H(x)) ⊂ G(v). Then A1 = Ã1[X1∪W1]
and, crucially,

Ad2+2 = Ã1[Xd2+2 ∪Wd2+2]. (10)

This observation will be utilized in the analysis of Algorithm 1 in Section 4.

3 Random Graphs

In this section we show that the random graph Gn,p with p = p(n) as in Theo-
rem 1 a.a.s. satisfies several properties with respect to the distribution of edges
and cliques. These properties are singled out in order to guarantee jointly the
tight H(n, d)-universality of Gn,p. More specifically, in Section 4 we shall show
that Algorithm 1, which is a randomized algorithm, is successful with high prob-
ability on all pairs of input graphs (H,G), where H ∈ H(n, d) and G satisfies all
these properties. But first we need some more notation.

– Given a graph G and a subset of vertices U ⊂ V = V (G), denote by

(
U

Kd

)

the family of all d-element sets T ⊂ V such that the subgraph of G induced
by T is complete, that is, G[T ] ∼= Kd.
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– Given a family X = {J1, . . . , Jr} of pairwise disjoint subsets of V and a set
U ⊂ V , let B = B(X , U) be the bipartite graph with vertex classes X and
UX := U \⋃r

i=1 Ji, with the edge (Ji, v) included in B whenever G(v) ⊃ Ji.
Furthermore, let

α(X , U) =
∣∣{v ∈ UX : degB(v) ≥ 1}∣∣.

If all the sets Ji are singletons, then we write B(Y, U) instead of B(X , U)
and α(Y, U) instead of α(X , U), where Y =

⋃
Ji. Note that in this special

case α(Y, U) = |G(Y ) ∩ U |.
– We write a = (1± δ)b whenever (1 − δ)b ≤ a ≤ (1 + δ)b.
– Set

ω = C logn. (11)

Let ε = ε(d) > 0 be as in (3). Set V = [n] and fix a partition

V = V0 ∪R1 ∪ · · · ∪Rd2+2

satisfying (4). By (3),

|V0| = n− (d2 + 2)εn ≥ 3n

4
. (12)

Lemma 1 below summarizes several properties of Gn,p that are important for
us. Besides the use of standard Chernoff bounds, the proof of Lemma 1 involves
the application of certain large deviation bounds for subgraph counts (see [13]
and [15]); we omit the details.

Lemma 1. For every δ > 0, there exists C > 0 such that the random graph
G = Gn,p with p ≥ Cn−1/d log1/d n a.a.s. satisfies Properties (I)–(V) below.

(I) (a) For all y ∈ V ,
|G(y) ∩ V0| = (1 + o(1))p|V0|.

(b) For all y 
= y′ ∈ V ,

|G(y) ∩G(y′) ∩ V0| = (1 + o(1))p2|V0|.
(II) (a) For all Y ⊂ V with |Y | ≤ δp−1,

|G(Y ) ∩ V0| = (1 ± 2δ)p |Y | |V0|. (13)

(b) For all Y ⊂ V with |Y | ≥ ωp−1 and U ⊂ V \ Y with |U | ≥ ωp−1,

|B(Y, U)| = (1± δ)p |Y | |U |. (14)

(III) (a) For all r ≤ δp−d, every family X = {J1, . . . , Jr} of pairwise disjoint
d-subsets of V , and for every set
U ∈ {V0, R1, . . . , Rd2+2, V }, we have

α(X , U) = (1± δ)pdr |U |. (15)
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(b) For all r ≥ ωp−d, every family X = {J1, . . . , Jr} of pairwise disjoint
d-subsets of V , and U ⊂ V \⋃r

i=1 Ji with |U | ≥ ωp−d,

|B(X , U)| = (1± δ)pdr |U |. (16)

(IV) We have ∣∣∣∣
(
U

Kd

)∣∣∣∣ = (1± δ)p(
d
2)
(|U |

d

)
(17)

for all U ⊂ V such that
(a) U ⊂ G(v) for some v ∈ V and |U | ≥ pn/3, or
(b) U = G(u) ∩G(v) for some distinct u and v ∈ V , or
(c) |U | ≥ n/4.

(V) For all v ∈ V0, the number of d-cliques in G[V0] containing v is

(1± δ)
d

|V0|
∣∣∣∣
(
V0

Kd

)∣∣∣∣.

4 The Analysis of Algorithm 1

In this section we derive Lemma 2 below, which together with Lemma 1, implies
Theorem 1.

Lemma 2. Let d ≥ 3 be fixed. Let ε and τ be as in (3) and (5), set δ = 0.01
and suppose C ≥ C(d) is large enough. Then, for any η > 0, there is n0 such
that the following holds for all n ≥ n0. Let a graph G on the vertex set V = [n]
and a partition V = V0 ∪ R1 ∪ · · · ∪ Rd2+2 as in (4) satisfy Properties (I)–(V)
from Lemma 1 with δ and C as above. Furthermore, let H ∈ H(n, d) be given.
Then, with probability at least 1− η, Algorithm 1 is successful on input (H,G),
that is, it outputs an embedding of H into G.

We stress that the probability specified in Lemma 2 refers solely to the random
choice of T1, . . . , Tt on Line 2 in Algorithm 1. Note that, in particular, it follows
that any graph G satisfying the hypotheses in Lemma 2 is H(n, d)-universal.

As mentioned before, Algorithm 1 is successful if it does not terminate at
Lines 2, 6, or 9. To execute Line 2 we need to have at least t disjoint d-cliques
in G[V0]. This follows from Property (IV)(c), since t ≤ 1

2dn. Lines 6 and 9 rely on
the existence of saturating matchings in the auxiliary graphs Ai. The existence
of such matchings will follow from the next two lemmas. In both, we implicitly
assume the hypotheses specified in Lemma 2.

Lemma 3. For i = 1, . . . , d2 + 2 and for every Q ⊂ Xi, we have

|Ai(Q)| ≥ min{|Q|, |Wi| − ωp−d}. (18)

In particular, if |Wi| ≥ |Xi|+ ωp−d, then |Ai(Q)| ≥ |Q| for all sets Q ⊂ Xi.
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The graphs Ai depend on the random choice of the Tj and on f0. Therefore,
strictly speaking, the conclusions of Lemma 3 should be claimed ‘with probabil-
ity 1’. Our second lemma will be the key to show that, with high probability, the
balanced bipartite graph Ad2+2 has a perfect matching; it basically asserts that

small sets Y ⊂ Wd2+2 ⊂ V expand in Ad2+2 = Ã1[Xd2+2 ∪Wd2+2] (recall (10)).

Lemma 4. The random choice of the Ti (1 ≤ i ≤ t) and the embedding f0 of
the sets Si (1 ≤ i ≤ t) is such that, with probability 1−o(1), for every set Y ⊂ V
with |Y | ≤ δ(4p)−d, we have

|Ã1(Y ) ∩Xd2+2| ≥ 1

2

(p
5

)d

t |Y |. (19)

The proof of Lemma 3 is at the end of this section, while, because of length
restrictions, the proof of Lemma 4, which is in fact much more involved, is
omitted. The following corollary of the above two lemmas completes the proof
of Lemma 2.

Corollary 1. (i) For each i = 1, . . . , d2 + 1, the graph Ai has a matching satu-
rating Xi. (ii) The graph Ad2+2 has a perfect matching with probability 1− o(1).

Proof. (i) Fix 1 ≤ i ≤ d2 + 1 and recall that

Wi = V \ im(fi−1) \
⋃

i<j≤d2+2
Rj

and, by (9), that |Wi| ≥ |Xi| + εn. For C sufficiently large, we have εn ≥
C−d+1n = ωp−d. Thus, |Wi| ≥ |Xi| + ωp−d, which, by Lemma 3, implies that
|Ai(Q)| ≥ |Q| for all Q ⊂ Xi. Consequently, by Hall’s theorem, there is a match-
ing in Ai covering Xi.

(ii) For convenience, set h = d2 +2. To prove that Ah has a perfect matching

with high probability, recall that Ah = Ã1[Xh ∪ Wh] (see (10)). By Lemma 4,
with high probability, for every Y ⊂ Wh with |Y | ≤ δ(4p)−d, we have (see (19)),

|Ah(Y )| = |Ã1(Y ) ∩Xh| ≥ 1

2

(p
5

)d

t |Y | ≥ δ−14dω |Y |, (20)

provided C is large enough. We claim that the conditions above ensure the
existence of a perfect matching in Ah. Recall that |Xh| = |Wh| = t. Let Q ⊂ Xh.
If |Q| ≤ t− ωp−d then Lemma 3 implies that |Ah(Q)| ≥ |Q|. Assume then that
|Q| ≥ t − ωp−d + 1 (for simplicity, we assume that ωp−d is an integer), and
suppose, for the sake of contradiction, that |Ah(Q)| ≤ |Q|− 1, equivalently, that
|Wh \ Ah(Q)| ≥ t − |Q|+ 1. If |Wh \ Ah(Q)| ≤ δ(4p)−d, take Y = Wh \ Ah(Q).
Otherwise, take any Y ⊂ Wh \Ah(Q) with |Y | = δ(4p)−d. By (20),

|Ah(Y )| ≥ δ−14dω |Y | ≥ t− |Q|+ 1, (21)

where the last inequality is clear if Y = Wh \Ah(Q), while, otherwise, we argue,
using the definition of Y and our assumption on |Q|, that δ−14dω |Y | = ωp−d ≥
t− |Q|+ 1. Inequality (21) contradicts the fact that Ah(Y ) ∩Q = ∅. Therefore,
|Ah(Q)| ≥ |Q| for all Q ⊂ Xh and Hall’s theorem guarantees the existence of a
perfect matching in Ah. ��
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We close this section with the proof of Lemma 3.

Proof (of Lemma 3). Fix i with 1 ≤ i ≤ d2 + 2. Since Xi is 2-independent, the
neighborhoods H(x) are disjoint for all x ∈ Xi. For every x, we find a d-element
set Dx ⊂ V such that fi−1(H(x)) ⊂ Dx with all the Dx pairwise disjoint. Define
a subgraph A∗

i ⊂ Ai by replacing fi−1(H(x)) with Dx in (8), that is

A∗
i =

{
(x, v) ∈ Xi ×Wi : Dx ⊂ G(v)

}
. (22)

Clearly, for every Q ⊂ Xi we have |Ai(Q)| ≥ |A∗
i (Q)|, and, hence, it suffices to

prove (18) for A∗
i . For ease of notation, we shall write Ai instead of A∗

i .
The proof is split into two cases according to whether Q is small (|Q| ≤ ωp−d)

or large (|Q| > ωp−d). First consider the case when Q is small, and let Q′ ⊂ Q
be an arbitrary subset with

|Q′| = min
{
δp−d, |Q|} ≥ δ|Q|

ω
. (23)

Notice that

|Ai(Q
′)| ≥ |Ai(Q

′) ∩Ri| =
∣∣{w ∈ Ri : G(w) ⊃ Dx for some x ∈ Q′}∣∣. (24)

Recalling that |Q′| ≤ δp−d (see (23)), we apply Property (III)(a) to X =
{Dx : x ∈ Q′} and U = Ri, to obtain that the cardinality of the last set in (24)
is at least (1− 2δ)pd|Ri||Q′|. In particular, for C large enough, we have

|Ai(Q)| ≥ |Ai(Q
′)|

(4)

≥ (1− 2δ)εpdn |Q′| ≥ δ−1ω |Q′| ≥ |Q|.
Consequently, (18) holds when Q is small.

When Q is large, that is, |Q| > ωp−d, set U = Wi \ Ai(Q) and suppose that
|U | ≥ ωp−d. Then, by Property (III)(b), there is an edge in Ai between Q and U ,
which is a contradiction. Thus |U | < ωp−d, which establishes (18). ��

References

1. Alon, N., Capalbo, M.: Sparse universal graphs for bounded-degree graphs.
Random Structures Algorithms 31(2), 123–133 (2007)

2. Alon, N., Capalbo, M.: Optimal universal graphs with deterministic embedding.
In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 373–378. ACM, New York (2008)

3. Alon, N., Capalbo, M., Kohayakawa, Y., Rödl, V., Ruciński, A., Szemerédi, E.:
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