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Let C’Sf’) denote the 3-uniform tight cycle, that is the hypergraph with vertices
V1,...,Un and edges v1V2V3, VU3V, . . ., Up—1UnV1, Unv1v2. We prove that the small-
est integer N = N(n) for which every red-blue coloring of the edges of the complete
3-uniform hypergraph with N vertices contains a monochromatic copy of CT(?) is
asymptotically equal to 4n/3 if n is divisible by 3, and 2n otherwise. The proof uses
the regularity lemma for hypergraphs of Frankl and Rédl.

1. Introduction

Given a k-uniform hypergraph H, k > 2, the Ramsey number r(H) is the smallest integer
N such that every red-blue coloring of the edges of the complete k-uniform hypergraph

T Correspondence to: A. Rucinski
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KI(\;C) with NV vertices yields a monochromatic copy of H. A classical result in graph
Ramsey theory ([1, 5, 18]) states that for K = 2 and n > 5 the Ramsey number of the
graph cycle C,, with n vertices is

Q _ . .
H(Cy) = sn—1 ifnis even,
2n —1 if nis odd.

Thus, the Ramsey numbers for graph cycles depend strongly on the parity of n.

In this paper we continue our study of Ramsey numbers for 3-uniform hypercycles,
initiated in [11]. There are various definitions of a cycle in a 3-uniform hypergraph.
Given a suitably labeled set of vertices {v1,...,v,}, a loose cycle has the edge set
{v1V203, V30405, UsVEUT, . . ., Un_10,01 }, While the tight cycle, denoted henceforth by C’,(f),
has the edge set

{v1V2V3, VaU3V4, V3V4VE, - ., Up— 1V U1, Up U1V }.
In [11] we proved that the Ramsey number for the n-vertex loose cycle, n even, is asymp-
totic to 5n/4. (Note that loose cycles do not exist for n odd.) Subsequently, Gyérfds,
Sérkozy and Szemerédi [8] extended this result to the k-uniform loose cycles.

Here an analogous problem is investigated for the tight cycles. So far, the only known
value of the Ramsey number for a tight cycle is r(C’f’)) = 13 (see [16]). Asymptotically,
it turns out that the Ramsey number for the tight cycle is larger than that for the loose
cycle, and depends on whether n is divisible by 3. Thus in this respect, tight cycles behave
more like graph cycles than loose cycles do. Our aim is to prove the following theorem.

Theorem 1.1.

(a) For every integer n > 1 and i =0,1,2,

)>{M—1 ifi =0,

r(C(g)
6n+2—1  ifi#0.

3n+1

(b) Let n > 0 be given. Then for all sufficiently large n and i =0,1,2,

- 4 fi=20
r<c§i>+z—>s{( T #i=0,

(6+mn  ifi#0.

We should mention that one more natural definition of cycle for hypergraphs is the so-
called Berge cycle. The Ramsey number for Berge cycles was investigated by Gyarfas,
Sérkozy and Szemerédi [9, 10].

The proof of part (a) and Theorem 1.1(b) also yield the asymptotic value of the Ramsey
number of tight paths. A (tight) path P7(L3) is a hypergraph with vertices v1, ..., v, and
edges v1V2V3, VaU3V4, .., Vp—2Un—_1Un.

Corollary 1.2. r(P7§3)) = (4/3 + o(1))n, where o(1) — 0 as n — oo.

The loose and tight cycles are examples of hypergraphs with bounded maximum degree.
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For this class of hypergraphs, it was conjectured that their Ramsey number is linear in
their number of vertices. This conjecture was confirmed in [14, 3, 4] using the regularity
method for hypergraphs. Recently, Conlon, Fox, and Sudakov [2] managed to prove the
same result without the regularity method.

In the next section we prove the lower bounds and outline the proofs of the upper
bounds. Their complete proofs are deferred to Section 5.

2. Lower bounds and the outline of the main proof

Most of the work in proving Theorem 1.1 lies in the upper bounds. In this section, we
begin by establishing the lower bounds (Theorem 1.1(a)), and then we sketch the main
ideas needed for Theorem 1.1(b), which include a notion of connectedness for 3-uniform
hypergraphs. Since all hypergraphs considered in this paper are 3-uniform, we will more
concisely call them hypergraphs.

2.1. Proof of lower bounds

The first lower bound is based on relation between cycles and matchings. Let MS’) be
a 3-uniform 3n-vertex matching, that is, a hypergraph consisting of n disjoint edges.
Observe that Céi) contains M”, and so r(C?Ei)) > T(M»,(Lg)).

Proof of Theorem 1.1(a) To prove that r(C?()i)) > 4n — 1, partition the vertex set of
Ki7)
inside X red and all other edges blue. It is easily seen that this coloring contains no
monochromatic M{¥, and thus no monochromatic copy of C’éi). (Unlike in the case of
graphs, the above extremal coloring is not unique. For another one, see Example 1 in
Subsection 2.2.)

To prove that T(C’éilﬂ) > 6n+2i — 1, 1 = 1,2, partition the vertex set of Kéi)Jr%fz
into two parts, X and Y, where |X| = |Y| = 3n + i — 1, and color red [blue] all edges
with an odd [even] number of elements in X. An edge containing a vertex of X and a
vertex of Y is called crossing.

Suppose that there is a red copy C of Céi)-m in such a coloring. Since | X| < 3n + i, at
least one edge of C' is crossing. But then, by the definition of a tight cycle, every edge
of C' is crossing, that is, every edge of C' contains one vertex of X and two of Y. This

means that every third vertex of C' belongs to X, which is impossible when i # 0. ]

into two parts, X and Y, where |X| = 3n — 1, |Y| = n — 1, and color all edges

Note that the first construction in the above proof implies that r(M,(L?’)) >4n — 1, and
so, in view of Theorem 1.1, r(M,(Lg)) and r(C:gi)) are asymptotically equal. In fact, it is
easy to prove that r(M,(LS)) =4n — 1.

Clearly, every path Péili, i = 0,1, 2, contains the matching MT(LS) and it is contained
in Cg(i)+3- Hence we have 4n — 1 = T(Mr(f)) < r(P?fi)_H) < r(CéfL)Jrg) and Corollary 1.2
follows from Theorem 1.1(b).
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A common extension of the above constructions yields that for all n > k£ > 2 we have
’I"(CT(,,’C)) > (d+ 1)n/d, where C is the k-uniform tight cycle! of length n = i(mod k)
and d = (i,k), the greatest common divisor of i and k. We conjecture that the actual
value of T(Cy(Lk)) is asymptotically equal to (d + 1)n/d.

2.2. Paths, pseudo-paths and connectedness

Consider a tight path with vertices vy, . .., vpy2 and edges v1v2v3, V2U3V4, . . ., UpUp41Vpt2-
The pairs (v1,v2) and (vpy2,vp11) are called the endpairs of the path. (Note the reverse
order of the latter pair which emphasizes the symmetry of the path.) The length of a
path on p + 2 vertices is equal to p, the number of edges.

A pseudo-path in a hypergraph H is a sequence (eq, ..., ep) of not necessarily distinct
edges of H such that |e; Ne;41] = 2 for each ¢ = 1,...,p — 1. In particular, the edges
of every path can be ordered (in two ways) to form a pseudo-path. If (e,...,ep) is a

pseudo-path in H then we say that e; and e, are connected in H by a pseudo-path.
Unlike for paths, this defines an equivalence relation and we call the equivalence classes
the components of H.

A hypergraph H is connected if every two edges e, f € H are connected by a pseudo-
path. Note that there are several ways to define connectedness in hypergraphs (cf. [11]),
but in this paper we will always mean the one defined above. A sub-hypergraph H' of H
is externally connected (in H) if every two edges e, f € H' are connected in H by a
pseudo-path. In other words, there is a component C of H that contains H’.

Example 1. Consider a 3-uniform hypergraph with vertex set V=X UY, X,Y # 0,
and a red-blue coloring where every edge with an odd intersection with X is colored red
and all other edges are colored blue. Then, the red sub-hypergraph has two components,
one consisting of all edges contained in X, the other formed by all edges with one vertex
in X and two in Y.

Clearly, every red tight cycle must be entirely contained in one of these two components,
a fact utilized already in the proof of Theorem 1.1(a), 4 # 0. Moreover, with | X| = |Y| =
2n—1 this yields an alternative “extremal coloring” in the proof of Theorem 1.1(a), i = 0.
Indeed, neither of the two red components contains a cycle of length 3n. As a matter of
fact, none of them contains an externally connected matching of size n.

2.3. Monochromatic matchings in colorings of almost complete hypergraphs
The basic idea of our proof, similar to that given by Luczak [13] and Figaj and Luczak
[6] (see also [11]), is to apply to the colored complete (hyper)graph the regularity lemma,
find in the cluster (hyper)graph a large structure of a certain type, and use this structure
to obtain a long, monochromatic cycle.

Thus, a crucial role in the proof of Theorem 1.1(b) is played by the two following
Ramsey-type results on externally connected matchings. We state them now, but their
proofs are deferred to the end of the paper.

1 The k-uniform tight cycle Cflk) is the k-uniform hypergraph with vertices v, ..., v, and the edge set
{v144v24i .. Vk—14iVk4i © ©=0,1,...,n — 1}, where, for i > 0, we set v,4; := v;.
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Lemma 2.1. For every n > 0 there exist 6 > 0 and sg such that the following holds.

Let K be a hypergraph with t = (4 + n)s vertices, s > so, and at least (1 — 0) (g) edges.

Then, for every red-blue coloring K = Kieq U Kpye, €ither Kieq 0or Kpue contains an
; (3)

externally connected matching Ms™ .

The proof, given in Section 8, is so technically involved that, for the sake of the reader,
it is preceded in Section 6 by its “idealized” version with n = § = 0. There we will
prove that the Ramsey number r(Ms(3)) = 45 — 1 does not increase when the matching
is requested to be externally connected in one of the colors (cf. Theorem 6.1).

To deal with the case i # 0, we will need the following modification of Lemma 2.1.

Lemma 2.2. For every n > 0 there exist 6 > 0 and sg such that the following holds.
Let K be a hypergraph with t = (6 + n)s vertices, s > so, and at least (1 — 6) (g) edges.
Then, for every red-blue coloring K = Kieq U Kpye, €ither Kieq or Kpue contains an
externally connected union of a matching Ms(g) and a cycle Cf) or Cé?’).

Why does the size of the largest monochromatic, externally connected matching found
in a red-blue colored K go down from t/4 to t/6, if it has to be accompanied by a copy
of Cf’) or 05(3)? The answer can be provided by the second construction in the proof of
Theorem 1.1(a) (see Section 2.1). Indeed, that construction yields a coloring of Kgs42;—2
without any externally connected, monochromatic copy of a vertex-disjoint union of M, qf

and 03()2 i

of Cig) or Cég) has to be disjoint from the matching, it can be reduced to the disjoint
case by disregarding at most five edges of the matching. This small loss does not affect
the asymptotics of Lemma 2.2.

The proof of Lemma 2.2 is based on Lemma 2.1 and quite similar to its proof, but

s = 81 + 82, 1 = 1,2. Although in Lemma 2.2 we do not assume that a copy

even more technical. Therefore, we decided to include only a proof of an idealized version
of Lemma 2.2 (cf. Theorem 7.1). The full version can be be found in [12].

2.4. Outline of the proof of upper bounds
We first consider the case of C’éi). Let K](\?) = Hicq U Hylue, where N ~ 4n, be a red-blue
coloring of the edges of the complete 3-uniform hypergraph K ](\?).

We apply simultaneously, to both Hyeq and Hyye, the hypergraph regularity lemma
(Theorem 3.2) with suitably chosen parameters, and obtain a vertex partition V =
ViU...UW, |Vi| ~ N/t, such that for almost all triples {i,7,k} one of the induced
sub-hypergraphs, Hyeq[Vi U V; U Vi] or Hpe[V; U V; U Vi), is “well structured”, that is,
enjoys high regularity and large density (see Section 5 for details).

It will be proved in Section 4 that a “well structured” hypergraph contains a long path
(Lemma 4.6), in our case of length almost 3N/t. We will build a monochromatic copy of
C’éi) mostly out of such paths, coming from about t/4 vertex disjoint “well-structured”
hypergraphs. Thus, it is crucial to find about ¢/4 disjoint, but mutually connected, “well-
structured” sub-hypergraphs in one color.

To this end, let K,.q and Ky be two auxiliary hypergraphs on the vertex set
{1,2,...,t}, whose edges are those triples {¢, j, k} for which, respectively, Hyeq[V;UV;UV4]
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or Hylue[V; U V;u Vi] contains a “well structured” sub-hypergraph. Set K = Kyoq U Kplue
and note that | K| ~ (g) We call K the cluster hypergraph and the edges of K the cluster
edges.

By Lemma 2.1 either Keq or Kplue (S8y, Kred) contains an externally connected match-
ing M = M of size s ~ t/4. Next, using Lemma 4.6, we will find a long path in each
sub-hypergraph Hyeq[V;, V;, Vi], where {3, j, k} € M. These paths are disjoint and have
total length of about (¢t/4) x (3N/t) = 3N/4 ~ 3n (in fact, 3n — O(1)).

To connect the long paths together into a red cycle of length 3n, we will construct
in H,eq short paths (length O(1)) between the endpairs of long paths, being guided by
the pseudo-paths linking in K,eq the cluster edges of M, 5(3) (in reality, we build the short
paths first).

The case of C’?()ili, i = 1,2, requires just one modification: in addition to an externally
connected, monochromatic matching in K, we will need a copy of a cycle of length not
divisible by three in the same color. This is provided by Lemma 2.2, which guarantees
in either Kioq or Kpe the existence of an externally connected sub-hypergraph which
is a union of M§3), s ~ t/6, and a copy of either C’f) or C’és). Due to the presence of a
cluster cycle of length not divisible by three we will be able to adjust the length of the
final cycle to be equal one or two modulo three (by running once or twice around the
cluster cycle — see Section 5 for more details).

In the next section we introduce the regularity of hypergraphs and present a corre-
sponding regularity lemma. In Section 4 we prove the existence of paths of prescribed
length in quasi-random hypergraphs (Lemma 4.6), one of the two main ingredients of
the proof of Theorem 1.1(b). In Section 5 we put together the main proof, and, finally, in
Sections 6-8 we provide the proofs of the second crucial ingredient, Lemmas 2.1 and 2.2.

3. Regularity of hypergraphs

In this section we describe the regularity lemma for hypergraphs established in [7], in
a modified version presented in [17]. To do this we will need to refer to the notion of
e-regularity for graphs, the key idea in Szemerédi’s Regularity Lemma [19].

3.1. Graph regularity

For a graph G and two disjoint sest of vertices X,Y C V(G), we write Eg(X,Y) for the
set of edges of G that have one end in X and the other in Y. The density dg(X,Y) of G
over the pair (X,Y) is defined by

Ea(X,Y

We denote by G[X,Y] the bipartite subgraph of G induced by vertex classes X and Y.
Note that Eg(X,Y) is the edge set of G[X,Y].

Let G be a bipartite graph with vertex classes X and Y and let 0 < d <1 and e >0
be given. We say that G is (d, €)-regular, if for all X’ C X and Y’ C Y with |X'| > €| X]|
and |Y'| > €|Y|, we have

da(X',Y') —d| <.



The Ramsey number for 3-uniform tight hypergraph cycles 7

We say that G is e-regular if it is (d, €)-regular with d = dg(X,Y).

3.2. Hypergraph regularity

We now turn to hypergraph regularity. A triple (P12, P'3, P?3) of bipartite graphs with
vertex sets V3 U Va, V3 U V3 and Vo U Vi, or equivalently, the 3-partite graph P =
P2y P13 U P23 itself, will be referred to as a triad.

In what follows we often need to focus on the set of edges of a hypergraph H that are
also vertex sets of triangles in a fixed triad P with V(P) C V(H). We denote by Tr(P)
the family of the vertex sets of the triangles in the graph P, and set tr(P) = | Tr(P)|.
Thus for any P, Tr(P) is a 3-uniform hypergraph on the same vertex set as P. Moreover,
Tr(P) is 3-partite in the sense that every edge intersects each set V;, V5 and V.

Further, we define the notion of the density of H with respect to P as

| HATY(P)]
1(P) = TPy

Similarly, for every r-tuple of triads O = (Q(1), 9(2),..., O(r)), let

|H AUy, T(Q()

dH(é) =
|Upoy Tx(Q()

Note that in the definition above, the sets of triangles Tr(Q(p)) need not be pairwise
disjoint.

Next, we define the notion of regularity for 3-uniform hypergraphs. Given a triad
P = P2 U P13 U P?3, by a sub-triad we mean a triad Q = Q'? U Q' U Q3 where

Q12 g P127 Q13 g P137 Q23 g P23.

Definition 3.1. Let § > 0 and a > 0, and let r be a positive integer. Further, let H
be a 3-uniform hypergraph with V(H) 2 V(P).

e We say that H is («,d,7)-reqular with respect to a triad P if for every r-tuple of
sub-triads @ = (Q(1),Q(2),...,Q(r)) satisfying } U Tr(Q(p))‘ > 6| Tr(P)|, we have
p=1

ldi(Q) — al < 6.

e We say that H is (0, r)-regular with respect to P if it is (v, 0, r)-regular with a = dy (P).

e A triad P with respect to which H is (4, r)-regular will be called (9, )-regular. Other-
wise, it will be called (4, r)-irregular.

e Moreover, if each graph P2, P'3 P23 of an (a, 6, 7)-regular triad P = P2uU P13 U P23
is (1/¢,¢)-regular, then we call the pair (H, P) an («, d, ¢, r, €)-reqular complex.

— —

Observe that if H¢ is the complement of H then dy(Q) = 1 — dy-(Q). Consequently,
if H is (o, 9, r)-regular, then H¢ is (1 — «, §, r)-regular with respect to the same triad P.
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3.3. Regularity Lemma for Hypergraphs

We now state the regularity lemma for 3-uniform hypergraphs from [7] in a simplified
form presented in [17] (see Lemma 4.1 and Remark 4.1 there). We write K (U, W) for the
complete bipartite graph with vertex sets U and W.

Theorem 3.2 (Regularity Lemma for Hypergraphs). For every 6 > 0, every

integer to, all integer-valued functions r = r(t,£), and all decreasing sequences £(¢) > 0,

there exist constants Ty, Lo and Ng such that every 3-uniform hypergraph H with at

least Ng wvertices admits a partition 11 consisting of an auziliary vertex set partition

V(H) =VoUViU--- UV, where tg < t < Tp, |Vo| < t and |Vi| = [Va| = -+ = |V,
¢

where 1 < £ < Ly,

a ’

and, for each pairi,j, 1 <i < j<t, a partition K(V;,V;) = |J P¥
a=1
satisfying the following conditions:

(i) all graphs P are (1/¢,(f))-regular, ‘
(i) H is (8,7)-regular with respect to all but at most 603t> triads (P, Plf”, PU).

Note that the conclusions of Theorem 3.2 hold for the complement H¢ of H as well.
Since the outcome of the regularity lemma may be overwhelming, we simplify the
picture a little bit by selecting only one graph P from each K (V;,V;).

Claim 3.3. Given the partition produced by Theorem 3.2, there exists a family P of
bipartite graphs PY = Pj{j, one between each pair (V;,V;), where 1 < i < j <t, such

that H is (6,r)-reqular with respect to all but at most 26t> triads (P, P" | PY).

Proof. We apply the probabilistic method. For all 1 <14 < j <t, choose an index a;; €
{1,2,...,¢} independently and uniformly at random. The selected indices determine a
(random) family P of (;) bipartite graphs. By condition (ii) of Theorem 3.2, the expected
number of (4, r)-irregular triads of P is at most 6¢3¢3(1/¢)® = §t3, and hence, by Markov’s
inequality, the probability that there are more than 26t such triads is less than 1/2. Thus,
there exists a selection P with fewer than 2§t% (6, r)-irregular triads. Ul

4. A long, long path

Our goal in this section is to find tight hyperpaths of given lengths connecting two
designated edges of P in an («, 4, ¢, r,e)-complex (H, P), as defined in Definition 3.1. To
distinguish the hypergraph edges from the graph edges, in this section the former will
be called hyperedges. On the other hand, as in the whole paper, we will use the name
“path” instead of “hyperpath”.

4.1. Short paths

Recall that a tight path of length m was defined as a hypergraph with vertices vy,
V2, .. ., Um42 and the m hyperedges vivavs, . . ., U Um+1Um+2. We call the (ordered) pairs
(v1,v2) and (U 42, Vm+1) the endpairs of the path, while the vertices vs, . .., vy, are called
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internal vertices. Two paths are said to be internally disjoint if they do not share any
internal vertex.

Note that the endpairs of a 3-uniform path are ordered pairs of vertices. However, in
a 3-partite 3-uniform hypergraph H on vertex set V3 U V5 U V3, we may designate one
cyclic orientation, say V; — Vo — V3 — Vi, as canonical, and view the endpairs of paths
as unordered pairs of vertices, or simply the edges of the underlying graph P. Then
saying that a path goes from e to f is not ambiguous and means that the endpairs of the
paths are the edges e and f directed by the canonical ordering. For example, let e = ab
and f = cd be two edges, where a,d € V;, b,c € V5. Then, under the above canonical
orientation, a path going from edge e to edge f is a path with the endpairs (a,b) and
(¢, d).

Definition 4.1. With the convention that ijk is the canonical cyclic orientation, we
say that an ordered pair of edges (e, f), where e € P, is of type 1 if f € P7¥  of type 2
if f € P* and of type 3 if f € P¥. We denote the type of (e, f) by type(e, f).

Thus, every path from e to f has some length m such that
m = type(e, f) (mod 3).

Set
ol

70 = 500007

Definition 4.2. Let eq, es be two edges of P and x be a positive integer. We say that
e1 Yo-reaches eq within H if there exist at least vo|V (H)| internally disjoint paths in H
of length 4 from e; to es.

For an edge e € P we denote by Four™ (e, H) the set of those edges of P which are
~o-reached from e within H and by Four™ (e, H) the set of all edges of P which ~g-reach
e within H (see Fig.1). Owing to the canonical orientation in which all paths proceed,
the sets Four™ (e, H) and Four™ (e, H) are contained in different subgraphs P%, and thus
are disjoint.

In [15] the following result is proved. For a subset S C V(H) a path Q C H is called
S-avoiding if V(Q) NS = 0. Given a graph G with V(G) = V(H), we denote by H — G
the sub-hypergraph of H obtained by removing from H all hyperedges containing at least
one edge of G.

Theorem 4.3 ([15]). For each o € (0,1) there exists 6 > 0 and sequences r(£),
e(0), and no(€) such that for all integers £ > 1 the following holds: if (H,P) is an
(0, 0,€,7r(0),e(l))-complex with |V1| = |Va| = |V3| =n > ne(£) and

4 2
— Cmi + - o n
Ry = {eGP : min {|Four™ (e, H)|, [Four™ (e, H)|} < 5000 < 7 },

then there is a subgraph Py of at most 27ﬂn2/€ edges of P such that
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* *— V.

. ® e ® Vi

Figure 1. The fourth neighborhoods of e (g € Four™ (e, H), h € Fourt (e, H))

(i) for alle € P\ Py

at \ n?
min (|[Four™ (e, H — Py)|, [Four™ (e, H — P)|) > <2000> A

and

(ii) for every ordered pair of disjoint edges (e, f) € (P \ Ro) x (P \ Ry) and for every set
S CV(H)\ (eUf) of size |S| < n/logn, there is in H an S-avoiding path from e
to f of length 9 + type(e, f).

Part (i) above is Lemma 4.2 in [15], while part (ii) is Theorem 3.4(ii) in [15] (see also
Remark 4.3 there). Now we formulate a useful corollary of Theorem 4.3.

Corollary 4.4. For each o € (0,1) there exists 6 > 0 and sequences r({), (¢), and
no(€) such that for all integers £ > 1 the following holds: if (H, P) is an («, 0, ¢, r({),e(0))-
complex with |Vi| = |Va| = |V5| = n > ng(¢), then there is a subgraph Py of at most
27V/on?/l edges of P such that

(i) for alle € P\ Py

O[4 n2
Four™t (e, H)| > -
[Four™ (e, H)| = <2000> 0

and

(ii) for every ordered pair of disjoint edges (e, f) € (P \ Py) x (P \ Py)and for every set
S CcV(H)\ (eUf) of size |S| < n/logn, there is in H an S-avoiding path from e
to f of length 9 + type(e, f).

Proof. Part (i) follows from Theorem 4.3(i) because Four™ (e, H) 2 Four™ (e, H — F).
To prove part (ii), observe that, by definition of Ry and Theorem 4.3(i), we have Ry C Py,
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and thus (P \ Py) x (P\ Py) C (P \ Roy) x (P \ Ro). Hence, part (ii) follows from
Theorem 4.3(ii). Ul

Let us conclude this subsection with an observation that, for a small decrease in
the size of S, the path length in Corollary 4.4(ii) may be specified to be any integer
from {10,...,17}.

Claim 4.5. Under the assumptions of Corollary 4.4, for every ordered pair of disjoint
edges (e, f) € (P\Po)x(P\Fy), for every set S C V(H)\(eUf) of size |S| < n/logn—12,
and for each m € {10,...,17}, m = type(e, f)(mod 3), there is in H an S-avoiding path
from e to f of length m.

Proof. In view of Corollary 4.4(ii), we may assume that m > 13. In this case will apply
Corollary 4.4(ii) twice. First we find in H an S-avoiding path Qi from e to f of length
mo = 10,11, or 12, depending on the type of (e, f). Note that mo = m(mod 3), and thus
m — myg is divisible by three.

Consider the initial segment @} of @1 of length m — my, and call its other endpair €’
(note that type(e/, f) = type(e, f)). Now, find in H an (SUV(Q}) \ €')-avoiding path Q2
from €’ to f of length mg. Then, the concatenation @} + Q2 forms in H an S-avoiding
path from e to f of length m. ]

4.2. Long paths

It was shown in [15] that (a, d, ¢, r, €)-complexes contain long paths. Here we strengthen
that result by showing that, in fact, most pairs of edges of the underlying graph P are
connected in H by paths of any given, feasible length m, for a wide range of m.

Lemma 4.6. For each a € (0,1) there exists § > 0 and sequences r(£), €(€), and ni(0)
with the following property: for all integers £ > 1, if (H, P) is a (dg(P),d,£,7(€),c({))-
complex with dg(P) > a and |V1| = |Va| = |V3| = n > n1({), then there is a subgraph
Py of at most 27\/5712/6 edges of P such that for all ordered pairs of disjoint edges
(e, f) € (P\ Py) x (P\ Py), for every set S C V(H)\ (eU f), |S| < n/(logn)?, and for
all integers m from the range

10 <m < (1 —6Y%)(3n),

with m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of length m.

Proof. Note that unlike in Claim 4.5, here we need to construct a possibly very long
path from e to f. This will be achieved by a repeated application of Corollary 4.4(i).
There is a minor, but irritating difference, however, in the set-ups of Corollary 4.4 and
Lemma 4.6: in the former, the hypergraph density was roughly equal to «, while now
we have a hypergraph H satisfying dy(P) > «. To circumvent this technical obstacle,
we consider a random sub-hypergraph Hr C H, where each hyperedge of H is present
independently with probability «/dg(P). By Chernoff’s bound, the pair (Hg, P) is an
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(e, 20,4,r(0),e(€))-complex. Clearly, if Hr contains the desired path then so does H. By
resetting H := Hg and § := §/2, we thus reduce Lemma 4.6 to the instance when (H, P)
is an (a, 6,4, 7(¢),e(¢))-complex.

Given a, let § > 0 and the sequences r(£), 1(£), and ng(¢) be such that Corollary 4.4
holds with &' = 487 in place of &, r(€), e (£) in place of £(£), and no(£). Set (¢) = e (¢).
Assume also that

ot

2000
We will prove Lemma 4.6 with the above choice of 6, 7(¢) and £(¢), and with a choice
of n1(€) > no(f) such that for all £ > 1 and n > n;(¢) all inequalities encountered in
the proof below hold true. Let (H, P) be an («, d,¢,7(¢),(¢))-complex and Py = Py(H)
be given by Corollary 4.4, where |Vi| = |Va| = [V3] = n > n; = n1(¢). Let us fix an
ordered pair of disjoint edges (e, f) € (P\ Py) x (P\ Py), and aset S C V(H)\ (eU f),
|S| < n/(logn)?. Finally, fix an integer m from the range 10 < m < (1 — 6*/4)(3n), with
m = type(e, f)(mod 3).

Our goal is to show that there exists an S-avoiding path from e to f of length m.
Without loss of generality, let us assume that type(e, f) =3, e =ab € P2 and f = cd €
P2 where a,d € V; and b,c € Vs.

The plan is to first grow, by recursive application of Corollary 4.4(i), two disjoint S-
avoiding paths Q. and @y of equal length m’, one from e, the other from f, until their
total length 2m’ reaches roughly m. Then, making sure that 10 < m — 2m/ < 17, we
will use Claim 4.5 to connect the other endpairs of these two paths to form in H an
S-avoiding path from e to f of length precisely m.

The two “parallel” paths will be grown recursively, in increments of four, using the
property of the sets Four™(e/, H) and Four™ (f’, H), where ¢/ and f’ will denote the
current endpairs. Thus, we must take care to always choose the extending paths so that
the new endpairs are outside the exceptional set Py of the current sub-hypergraph. To this
end, at any given step of this procedure, we will have to consider two sub-hypergraphs

27V 46% < (4.1)

defined as follows.

Given two disjoint paths, Q. from e and @y from f, of equal length m/, let H' =
H'(Q.,Qy) be the sub-hypergraph obtained from H by deleting all vertices of Q. and
Q. except for the last four from each path (if m’ < 4, we set H' = H). Further, let the
sub-hypergraph H” = H"(Q., Q) be obtained from H by deleting all vertices of Q. and
Qy (no exceptions). Set also P’ = P[V(H')] and P"” = P[V(H")]. As long as

V(Qe) UV(Qy)| =2m’ < (1—6"*)(3n),

the hypergraphs H’ and H” have at least §'/4n vertices in each set V;, i = 1,2, 3, and so,
the pairs (H’, P') and (H”, P") are (a, 467, {,r,£ /87 )-complexes (see, e.g., [17], Fact 4.2).
Let Pj and Pj be the subgraphs of P’ and P”, respectively, guaranteed by Corollary 4.4.

As a next step in the proof of Lemma 4.6, we show that two long paths can be grown
from e and f. Their length m’, due to the chosen method of construction, will be a
multiple of four.

Fact 4.7. For every 0 < m/ < %(1 — 6Y%)(3n), m' divisible by four, there exists in H
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a pair of disjoint S-avoiding paths Q. and Qy of length m’, originating from e and f,
respectively, and such that their other endpairs are not in P} .

Proof. We proceed by induction on m’. There is nothing to prove for m’ = 0. Let Q.
and Qs be a pair of disjoint S-avoiding paths, one from e and the other from f, of the
same length m’ > 0, m’ divisible by four, and such that their other endpairs, ¢ and f’,
are not in PJ. (If m’ =0, we set ¢/ = e and f’ = f.) We will now show how to extend Q.
and @y to a new pair of paths @ and Q' of length m’ +4, thus completing the inductive
step. (The reader may be guided throughout by Fig. 2.)

Noticing that |V (H")| < |V(H')| and £/63 = £,(£), by Corollary 4.4 applied to H”

we have
Y| < 27\/155413152gﬂl§13<:27\/ZS§LU£9§%MZ§ii . (4.2)

On the other hand, by Corollary 4.4(i) applied to H’ and by the fact that ¢’ € P’ \ Py,
we infer that the edge €’ yg-reaches at least

ot [[V(H")|/3]?
2000 ¢

other edges of P’ within H'. Therefore, since n > nq, by (4.2) and (4.1), €’ yp-reaches at
least |PY| + 2|V (H')| other edges of P’ within H’', where the term 2|V (H’)| takes care
of all edges adjacent to the two vertices of the set

T.=V(H)NV(Q.)\ €.

Consequently, there exists at least one edge ¢” € P\ P} which is yp-reached from e’
within H’, that is, there are at least 9|V (H")| internally disjoint paths from e’ to e’ of
length four in H’. Thus, since n > nq, at least one of them avoids S UT,, and we may
extend Q. by four vertices, so that the new path Q/, ends in ¢’ ¢ Pj.

We now similarly extend @ by four vertices, so that the new path Q’f is disjoint
from Q¢, avoids S, and ends in f” ¢ Pj. Since H” = H'(Q.,Q}), and so Py =
Py(H'(Qr,Q%)), the pair of paths (Qf, Q%) satisfies all conditions required in Fact 4.7.[]

Now comes the final, gluing part of the proof of Lemma 4.6. First, we have to choose
the right length m’ of the paths Q. and @Q; guaranteed by Fact 4.7. Since their total
length 2m/ is divisible by eight, it is convenient to represent m in the form

m = 8k + h,

where 0 < h < 7. Note that in view of Claim 4.5, there is nothing to prove when
k=1,ork=2and h <1.If k > 2 and h > 2, we need m’ = 4(k — 1) because then
m—2m' =8+h € {10,...,15}. Similarly, when k > 3 and h < 1, we need m’ = 4(k —2)
(this time m — 2m’ = 16 or 17).

Let

Ty =V(H)NV(@Qs)\ £
We connect €’ and f’ by a path Qe in H' of length precisely m — 2m’ € {10,...,17},
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QE QIC
b Ve
d Qs Qlf
; o / . . o .
H = H/(Qth) o’ = 1¥//(C‘?(37 Qf)

Figure 2. Growing hyperpaths from e and f (illustration to the proof of Lemma 4.6).

which avoids the set .S U T, UT). This follows from Claim 4.5 above. The concatenation
Qe + Q¢ + Qe p forms in H an S-avoiding path from e to f of length m, as required. [

5. Proof of Theorem 1.1(b)

In Sections 5.1-5.4 we prove Theorem 1.1(b) for ngi) and then, in Section 5.5, we explain
how to adjust the proof to obtain Theorem 1.1(b) in the remaining cases of C’é‘fl)ﬂ and
e,

5.1. The choice of constants and the use of the regularity lemma

Let n > 0 be given. Set a = 1/2 and let &', r(£), €(£), n1(£) be as guaranteed by
Lemma 4.6. Let ¢” = §(n/2) and sy = so(n/2) be given by Lemma 2.1. Envisioning an
application of Theorem 3.2, we set

! 1"
5mm{2,40}, (5.1a)
tp = max {5_100, 550} , (5.1b)
and
r(t,0) =r(0). (5.1c)

Theorem 3.2 yields integers Lo, Ty, Ny from which we derive
Ny = 271 Ny ¢ .
1 maX{ o max n1(f), 0}

Now, for an arbitrary n > iNl, consider a red-blue coloring K () _ Hcq U Hplye, where
N = (4+7))7’L > N; > Ny.
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We apply the hypergraph regularity lemma (Theorem 3.2) with parameters given by
(5.1a)-(5.1¢) to Hyea (and Hpye), yielding a partition IT satisfying conditions (i) and (ii)
of Theorem 3.2. In particular, this determines the values of ¢ and ¢. Note that V3| =
Va| = - = [Vi| > (N = To)/To > na (£).

By Claim 3.3, setting ¢ = ¢(¢), there exists a family P of (1/¢,¢)-regular, bipartite
graphs PY = P;J7 between pairs (V;,V;), where 1 < 4 < j < ¢, such that H,eq (and,
by complement, Hpye) is (0, 7(t,£))-regular with respect to all but at most 20t® triads
Pk = piy pik U P*. Setting r = r(t,¢), we will more concisely call these triads
(0, r)-regular.

Note that if PY* is a (4, r)-regular triad then

(Hyea, PU%) is a (dg., (PY%), 6, 0,7, €)-complex
and
(Hplue, PU%) is a (dg,,.. (PY%),6,¢,7, €)-complex.
Moreover, since
dp,.a(P%) + gy, (P%) = 1, (5.2)

either dg,  (PY*) > 1/2 or dg,,,.(P¥*) > 1/2. (This is what we meant in Section 2.4
by a “well structured” sub-hypergraph.)

5.2. Finding a monochromatic pseudo-path in K
We construct the cluster hypergraph K with the vertex set {1,...,t}, and the edge set
consisting of all triples {4,7,k} such that the triad P¥* is (4, r)-regular. Note that K

contains at least
t t
— 26t > (1 —¢"

edges, where the inequality follows by (5.1a).

With the ultimate goal of finding a monochromatic cycle C,(f), we first design a “big
picture” route (as a pseudo-path in K') that the monochromatic cycle will eventually
follow.

To this end, define a red-blue coloring K = K,eq U Kpye of the cluster hypergraph K,
by including {i, j, k} € Kyeq if

dHrcd (Pijk) > 1/2
and {i,7,k} € Kpjye otherwise. By (5.2), this coloring is well defined.

By Lemma 2.1 with 7/2 in place of 7, there exists in K4, say, a connected matching
M ={hy,...,hs} of size s =¢/(44+n/2). Let Q;, i =1,...,5— 1, be a shortest pseudo-
path in K,oq from h; to h;y1. Note that the edges of each @; are all distinct, and thus
the length ¢; of Q; satisfies the bound /¢; < (;), which is independent of n.

Given two pseudo-paths P and @, where the last edge of P coincides with the first
edge of ), P + @ stands for the concatenation of P and (). The pseudo-path

Q=1+ - +Qs—1=1(e1,...,¢€p)

will serve as “a frame” for the long red cycle in H,eq.
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5.3. Creating a short monochromatic cycle in H
Foreveryi =1, ..., p,let P* = P% be the triad corresponding to a cluster edge e;. Recall
that all these triads are (6, r)-regular. Let P; C P’ be the subgraph of P’ (of prohibited
edges) given by Lemma 4.6 applied to the complex (Hyeq, P?), and, fori =1,..., p—1,
set

B' = (P"\ Fg) N (P \ Py,

Choose mutually distinct edges f;, g; € B for 1 <i < p — 1. The bound on |P¢| from
Lemma 4.6 ensures that for sufficiently large n this is possible.

In the next step of our construction, applying repeatedly Claim 4.5, we create a short
cycle C'in H,eq of length divisible by 3. To this end, we connect by disjoint paths of length
10, 11, or 12, f; to fo to f3...to fp—1 to gp—1 and then, “backward”, g,—1 to gp—2 ...
to g1 to fi.

For the passages from f,_; to g,—1 and from g; to f1, we choose the triads PP and
P!, respectively, while for all i = 1,..., p — 2, the paths from f; to f;;1 and from g;
to g; use the triad P!,

We have a choice of the direction around P? in which we connect f; to fo, but then
all other directions are determined. For the types to be well defined (cf. Definition 4.1),
we need to designate one orientation around each triad as canonical. For convenience,
we declare canonical the orientation consistent with the direction in which our paths
proceed.

Note that for each i = 1,...,p— 2, the paths from f; to f;+1 and from g;41 to g; go in
the same, canonical by now, direction around P**!. Hence,

type(fi, fi+1) + type(gi+1,9i) = 1 +2 = 0(mod 3). (5.3)
Since also

type(g1, f1) = type(fp—1, gp—1) = 0(mod 3),
the obtained short cycle C has length divisible by 3.

To keep the paths disjoint, we apply Claim 4.5 with the set S collecting the vertices of
the so far constructed paths. Since |S| < 12(2p) < n/logn, the assumptions on the size
of § in Claim 4.5 are satisfied. For future reference, we denote by R; the just created
short path from g, to fi, by Ri41,%=1,...,p—2, the paths from f; to f;11, and by R,
the path from f,_1 to gp—1.

5.4. Creating a monochromatic cycle of length 3n
Preparing for the final step, let

I = {1,(1,[1 +£2—1,...7p}.

Observe that |I| = s and that M = {hy,...,hs} = {e; : i € I'}.

To complete the proof, we replace the short paths R;, ¢ € I, in C by disjoint, long
paths with the same endpairs as the R;’s, which lie in the same triads (and thus, have the
same length modulo 3 as the R;’s), in such a way that the total length of the obtained
cycle is 3n.

Specifically, let m’ be the length of C, minus the sum of the lengths of all paths R;
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with j € I. Furthermore, for each i € I, i # p, let

3n—m’
m; = s + x4,

where x; = 0,1, or 2, so that

m; — type(fi, fix1) = 0(mod 3).

For each i € I, i # 1,p, we apply Lemma 4.6 to the complex (Hyeq, P**1), with e = f;,
f=fit1, S=V(C)\ (eU f) (note that |S| = O(1)), and with m = m;. As a result, we
obtain paths T; from f; to f;+1 of length m;, i € I, i # 1,p, and, similarly, a path T}
from fi1 to g1 of length my. To achieve precisely the length 3n for the final cycle, we take
a path T}, from f,_; to gp—1 of length

my,=3n— | m' + Z m;
icI\{p}

This is possible, because for large n

N
10 <m, < 3?" +0(1) < (1—6Y%3 LJ ,

and Lemma 4.6 can again be applied. Since the edges of M are vertex-disjoint, the paths
T; do not interfere with each other.

5.5. Adjustment to lengths 3n + 1 and 3n + 2

In order to prove the second part of Theorem 1.1(b), we first choose the constants in the
same way as in Section 5.1, then apply the hypergraph regularity lemma (Theorem 3.2) to
the red-blue colored K (6+n)n = HreaUHplue, from which we obtain the cluster hypergraph
K.

Next, we color the edges of K with red and blue as in Section 5.2 and then use
Lemma 2.2 to find, say, in K.q a connected union of a matching M = {hq,...,hs} of
size s = t/(6+n/2) and a copy D of Cf’) or C’é?’). Below we consider only the case when
D= Cf), leaving the other case to the reader.

We use the approach from Section 5.3 to obtain a red copy of C:gi)Jrl [or Cg()ilz] Let,
as before, Q;, i = 1,...,s — 1, be a shortest red pseudo-path from h; to h;;1, and, in
addition, let Qs be the shortest red pseudo-path from hg to an edge of D. The pseudo-
path

Q=01+ +Qs=(e1,...,¢p)
will now serve as a frame for the desired red cycle in Hyeq.

We define P?, P}, B* and mutually distinct edges f;,g; € B* for 1 <i < p—1 as before.
Relying on Claim 4.5, we construct first the short paths as before, except that now the
path R, from f,_1 to g,—1 has to be of length equal to 1 [or 2] modulo 3. To ensure this,
we build R, out of 4 pieces, one in each triad constituting D, each piece connecting a
pair of edges of type 1 [or 2].

More specifically, let V(D) = {a,b, ¢, d}, where e, = {a,b, c} and {a,b} C e,_1. Let us
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choose disjoint, typical (that is, not belonging to respective prohibited subgraphs Pj¥?)
edges from the intersections of consecutive triads: fy. € P®¢n Pbd f., € pbed n pedae
and fy, € Pcden pdab,

By Claim 4.5, going around each triad alphabetically, there are internally disjoint paths
of length 10, connecting f,—1 to fic to feq to faq to gp—1. This settles the case i = 1. For
i = 2, we build paths of length 11, connecting f,—1 to fqq to feq to foc to gp—1.

Finally, using Lemma 4.6, some s paths R;, corresponding to the edges of M, are
replaced by long paths T;, in exactly the same way as in Section 5.4. Of course, we now
adjust the length of the last path, so that the length of the resulting cycle is exactly
3n+1 Jor 3n +2].

6. Matchings in components (idealized)

In this section we prove a version of Lemma 2.1 with 7 = § = 0. There are two reasons
for doing this. Firstly, we exhibit here all essential ingredients of the real proof given
in Section 8, not hidden under the burden of tedious estimations. Secondly, the result
we present here is interesting in its own right, as dealing with a “connected” version
of the classical Ramsey number (M, g(d)) = 4s — 1. It turns out that this Ramsey num-
ber is not affected by the additional restriction that the matching must be contained
in a monochromatic component. Interestingly, besides the extremal coloring of K gf)_Q
described in the proof of Theorem 1.1(a), which prevents any monochromatic matching
of size s, there is another one which contains monochromatic matchings of size s, but
not externally connected (see Example 1 in Section 2.2).

Theorem 6.1. In every red-blue coloring of the complete 3-uniform hypergraph Kﬁ)_l =

Kieq U Kplue, either Kieq or Kpue contains an externally connected matching Mg(d)

The connectedness and components of a hypergraph H were defined in Section 2.2.
Denote by OH the set of all pairs xy for which there exists z such that zyz € H (0H
is usually referred to as the shadow of H). We find it convenient to view 0H as both a
graph and a set of pairs of the vertices of H. Observe that

OH' NOH" = () for any two distinct components H', H” of H. (6.1)

In particular, any two edges of the same color (say red), sharing two vertices must be in
the same red component.

Sett =4s -1, K = Kt(g), V = V(K), and consider an arbitrary red-blue coloring
K = Kieq U Kpjye. Our goal is to find MS(S) in some component of K.oq or Kpue. We
start our proof with two observations.

Observation 6.2. For every x € V there exists a monochromatic component C such

that {zy: y € V\ {z}} CIC.

Proof. Let Kieq(z) := {yz: zyz € Kieq} and Kppe(z) := {yz: zyz € Kplue}. Since
every edge of K is colored by only one color, Kpue(z) is the complement of Kyeq(z),
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and consequently, one of these two graphs must be connected. Suppose that Kyeq(z) is
connected. Then, for every two vertices y, z € V'\ {«} there is a path y = z1, 22, ...,z =
z in Keq(x) which corresponds to a red pseudo-path ey, eq, ..., ex_1, where e; = z2;2;41,
i =1,...,k—1. This pseudo-path connects zy with zz in K,eq, and hence, there is a red
component C such that xy,zz € 9C. ]

For each x € V let us choose arbitrarily one component satisfying the condition in
Observation 6.2 and denote it by C,. Let Vieq = {x € V: C, is red} and Vi = {2 €
V. C, is blue}. Note that V' = Vieq U Vhiue and these two sets are disjoint.

Observation 6.3. If Vieq # 0 (Ve # 0, respectively), then there is a red component S
(a blue component A) such that C, = S for every x € Vieq (Cr = A for every x € Viue).

Proof. This observation is trivial if |Vieqa| = 1. Suppose |Vied| > 2 and let 2,2’ € Vieq.
Then z2' € 9C, N IC,/, and, by (6.1), we have C, = Cy. ]

Components A and S will play a special role, and we will refer to them as azure (A) and
scarlet (S).

The next two claims form a mechanism to build an externally connected matching in
one color given an externally connected matching of the same size in the other color (see
Lemma 6.7). Clearly, the colors in their statements can be interchanged.

Claim 6.4. Let X ={x,y,2,a,b,c,d} CV be a set of seven vertices. Suppose that xyz
is an edge of some red component Cieq and ya,zb € ICyue for some blue component
Colue- Then at least one of the following holds.

(1) X contains two disjoint edges of Creq,
(2) there is an edge e C X in Cpye such that e N{a,b,c} =1 and leN{z,y,z}| =2,
(8) X contains two disjoint edges of Chpye-

Proof. Suppose that neither (1) nor (2) holds. Then both xya € Cieq and xzb € Cieq,
and, consequently, ya, zb € 0Ceq. Thus, if zbc or yad were red, they would belong to
Creq- Since xya € Cleq, this implies that the edge zbc has to be blue, and thus zbc € Chue
(because zb € OCh e ). Similarly, since xzb € Ceq, the edge yad has to be blue, and thus
yad € Chlye (because ya € OCh1ye), yielding (3). O

Claim 6.5. Let X = {u,v,w,2,y,2,a,b,c} CV be a set of nine vertices. Suppose that
uvw and xyz are edges of some red component Creq and ya, zb, vb, we € OCp1ye for some
blue component Cyplye. Then at least one of the following holds.

(1) X contains three disjoint edges of Cyeq,

(2) there is an edge e in Chle such that |e N {a,b,c}| = 1 and either |e N {z,y, 2z} = 2,
or leN{u,v,w}| =2,

(8) there are two disjoint edges in Ciue Such that both of them intersect each of {x,y, z},
{u,v,w}, and {a,b,c} in one vertes.
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Proof. If (2) does not hold, then the edges z:zb, vwe, uwe and yza are all red (because
ya, zb,we € IChlye), and thus in Creq (because xyz, uvw € Creq). Consider the edges
yua and zvb. If either of them is red, then it has to be in Cieq (because ya, xb € Ceq),
yielding (1), as xzb, vwe, and yua are disjoint and in Cyeq, and so are uwe, yza and xvb.
If both yua and zvb are blue, then they belong to Cpye (because ya, vb € OCh e ). Hence
(3) holds. ]

Remark 6.6. Note that for the proofs of Claims 6.4 and 6.5 it is not essential that
K is a complete hypergraph. In the case of Claim 6.4, we just need to assume that all
triples of vertices within X, intersecting simultaneously {x,y, z} and {a, b, ¢, d}, are edges
of K. In the case of Claim 6.5, all triples of vertices within X, having two vertices in
{u,v,w,x,y, 2z} and one in {a,b,c}, must be edges of K. This observation will be used
in the full proof of Lemma 2.1 in Section 8.

Our last preliminary result relies heavily on the two previous claims. Essentially, it
says that given a maximal matching in a red component, one can construct a matching
in a blue component of roughly the same size.

Lemma 6.7 (The Mirror Lemma). Let M be a largest matching in a red component
Creq and let P be a set of at least | M|+3 vertices outside M. Assume further that for some
blue component Cyiue and for every e € M, the bipartite induced subgraph OCyiuele, P] of
OChe contains Ky p|—1. Moreover, setting G = 0Cp1ue[V (M), P], let J be an arbitrary,
non-empty subset of P such that

J 2 {veP:degg(v) < |V(M)|}.
Then there exists a matching M’ C Cyue such that either
(i) [M'| = |M],
(ii) IV(M')\ P| < |M], and
fiii) (P\ V(M) 1T £0,
or
(iv) |M'| = |M|+1, and
(v) [V(M')NP| < |M]+3.

Proof. Let M" C Cypue be a largest matching such that
o [V(M")NP|<|M"|,
o V(M") intersects at most |M"| edges of M, (6.2)
o (P\V(M")NJ#0.
We claim that |[M”| > |M| — 1. Indeed, suppose |M"| < |M| — 2. It follows that there
exist e1, ea € M so that (e; Uea) NV (M”) = 0. Set P = P\ V(M"). Since
[P =|P| = [PNV(M")| = [M|+3 - (IM]-2) =5,

one can choose a,b,c € P" so that 0Cpiuelei; {a,b,c}] D Ky3 for i = 1,2, and (P \
{a,b,c})NJ # (. This is always possible because, for each e; and es, at most one vertex
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of P can be excluded from the copy of K |p_; guaranteed by the assumptions, and
these excluded vertices must belong to J. (If no vertex is excluded, then we can simply
choose a, b, and ¢ so that a vertex of J remains in P” \ {a,b,c}.)

Claim 6.5, applied to X = e; U ea U {a,b, c}, implies that we can either enlarge M
in Creq (if (1) of Claim 6.5 occurs) or M” in Chye with conditions (6.2) preserved (if
(2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of M or M",
respectively.

Hence |M"| > |M| — 1. If |M"| > |M]|, we are done. Otherwise, let zyz € M be such
that {z,y,2} NV (M") = (. Since

[P"| = [M|+3— (M| -1) =4,

one can choose a, b, c € P” so that OChyele, {a,b,c}] D Ko 3 and (P \ {a,b,c})NJ # 0.
We apply Claim 6.4 to the set X = {z,v, 2, a,b, ¢,d}, where d € P\ {a,b, ¢} is arbitrary.
By the maximality of M in Cleq, (1) cannot hold. If (2) holds, we enlarge M" by adding
the edge e, obtaining a matching M’ satisfying conditions (i), (ii), and (iii). If conclusion
(3) holds, we enlarge M" by adding two disjoint edges, obtaining a matching M’ satisfying
conditions (iv) and (v). Ll

Proof of Theorem 6.1 Let M be a largest matching among all matchings contained
in S or A. Without loss of generality we assume that §) # M C S. This implies that
Vied # 0, but Ve might be empty. Suppose that

1<m=|M|<s-1 (6.3)
and set
R =Viea \ V(M) and B = Viue \ V(M). (6.4)
Note that RN B = 0,
t=4s—1=3m+|RUB|, (6.5)

and consequently, using also (6.3),

[RUB|=4s—1—-3m>s+2>m+3>4. (6.6)

Observation 6.8. All edges in R U B with at least one vertex in R are blue, and
therefore in the same blue component Cyue. Furthermore, if B # 0, then Cpe = A.

Proof. Note that any red edge with at least one vertex in R is in the scarlet component
S and, if disjoint from V(M), could be used to enlarge M. Hence, all edges from the set
T ={eC RUB:eNR # 0} must be blue. Moreover, every pair of edges from T is
connected by a pseudo-path in 7', and thus, they all belong to the same blue component.
The second part follows because any blue edge containing a vertex from Vi, also contains
a pair from A (see Observation 6.3). Ul

For the rest of the proof we distinguish three cases. In each of them, the Mirror Lemma
plays a central role. However, we need its technical conclusion (iii) only in the third case.
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Case 1: B=10
In this case, RUV (M) =V and thus |R| =t — 3m > m + 3 > 4. Denote by Chye the
blue component guaranteed by Observation 6.8.

Observation 6.9. For every edge e € M, the bipartite induced subgraph OChyele, R)
of Cylue contains Ky g—1 as a subgraph.

Proof. Suppose there is an edge zyz € M and two vertices a,b € R such that xa and
yb & OChiyue. Let ¢,d € R\ {a,b} (recall that |R| > 4). Note that, by Observation 6.8,
ac,bd € OCyye, and thus edges xzac and ybd must be red.

Since ax,by € 0S5, we have that zac, ybd € S. Consequently, (M \ {zyz}) U {zac, ybd}
is a red matching in S larger than M — a contradiction. L]

Now we apply Lemma 6.7 with P = R (recall that |R| > m + 3), obtaining a matching
M' C Che either of size m and with [V(M’) N R| < m, or of size m + 1 and with
|[V(M') N R| < m+ 3. Note that by (6.3)

4s —1—3m —m > 3(s —m) in the former case,
4s —1—3m — (m+3) > 3(s —m — 1) in the latter case.

[R\V(M')| = {

This allows us in either case to enlarge M’ to size s. Indeed, since all edges contained in R
are in Chpye (cf. Observation 6.8), we can greedily find s —m or s — m — 1, respectively,
disjoint edges from Cl,,e and add them to M’.

Case 2: R=1)

In this case, BUV (M) = V and thus |[B| =t —3m > m + 3 > 4. Since B # 0,
the azure component component A exists. Furthermore, by the definition of Vi, and
(6.4), we know that for every e € M the bipartite subgraph dA[e, B] of A is complete.
Thus, by the Mirror Lemma applied with P = B, we obtain a matching M’ C A of
size |M'| = m and such that |V (M) N B| < m. (A matching of size m + 1 in the azure
component A is impossible by our choice of M.)

Note that |[B\V(M')| > 45 —1—3m —m > 3. We claim that R’ := Vieq \ V(M') = 0.
Indeed, suppose that R’ # (). Take any three vertices a,b,c € B\ V(M’) and d € R’
(observe that d ¢ B\ V(M') because R’ C Vieq in this case). Since ab € 0A (because
a € Volue), both abc and abd are red (otherwise we could enlarge M’ to size m + 1).
But ad € 0S5 (because d € Vieq), therefore abd € S and, consequently, abc € S. Since
{a,b,c} NV (M) =, we can enlarge M, which is a contradiction.

Thus R’ = () and we are back in Case 1 with the colors red and blue interchanged and
M replaced by M'.

Case 3: |B|,|R| > 1

Set P = RU B and note that, by (6.6), we have |P| > m + 3. Since B # (), the blue
component guaranteed by Observation 6.8 is Cple = A. In particular, for all pairs of
vertices a,b € P we have ab € 0A.

Observation 6.10. For every e € M, the bipartite induced subgraph 0Ale, P] of 0A
contains Ky |p|_1 as a subgraph.
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Proof. The proof follows the lines of the proof of Observation 6.9. Suppose there is
an edge xyz € M and two vertices a,b € P such that za,yb &€ 0A. Note that, in fact,
a,b € R because 0Ale, B] is the complete bipartite graph. Recall that |P| > 4 by (6.6),
and choose arbitrarily ¢,d € P\ {a,b}. Since ac,bd € JA, edges xac and ybd must be

red.
On the other hand, by the definition of Vieq, we also have ax, by € 05, so xac,ybd € S.
Hence, (M \ {zyz}) U{xac, ybd} is a red matching in S larger than M — a contradiction.
]

We apply the Mirror Lemma with Cieq = S, Chiue = A, P = RUB, and J = R. Let M’
be a matching in A satisfying conclusions (i)-(iii) (again, option (iv)-(v) is excluded by
the choice of M). We have

|[P\V(M')| >4s—1—3m—m > 3.

By conclusion (iii), we can choose a,b,c € P\ V(M') so that ¢ € R. Hence, the pair
ac € 0S. Also, recall that ac € 0A. So abc € S if it is red and abc € A if it is blue.
Since {a,b,c} is disjoint from both V(M) and V(M'), we obtain either a matching of
size |[M|+1in S or a matching of size [M’'| +1 = |M|+ 1 in A. Either case contradicts
the maximality of M among all matchings contained in S or A. ]

7. Matchings and short cycles in components (idealized)

In this section we prove a version of Lemma 2.2 with 6 = 0, and with the term ns
replaced by Q(y/s). The main reason for doing this is, similarly to the previous section,
to show the ideas of the proof clearly and without tiring calculations. A complete proof
of Lemma 2.2 is not included in this paper, but can be found in [12].

Theorem 7.1. There exists ¢y such that the following holds. Let s > ¢ and let K be
the complete 3-uniform hypergraph with t > 6s + co\/s vertices. Then, for every red-blue
coloring K = Kyeq U Kplue, €ither Kieq or Kpne contains an externally connected union

of a matching Mbgg) and a cycle Cf’) or C’ég).

Please note that the above theorem determines only the asymptotic value of the Ramsey
number for a connected union of a matching M, f’) of size s and a copy of Cf’) or C’ég)

(we do not require them to be disjoint). At this point we do not know whether the lower
bound of 6s + 2¢ — 1 given in Sections 2.1 and 2.3 is optimal.

Proof. Let cg = 25V7, s > ¢2, and let K be the complete 3-uniform hypergraph with
t = 65 + co+/s vertices. For simplicity, we assume that 6s + cg+/s is an integer and note
that t < 7s. Suppose that for an arbitrary red-blue coloring K = K, eq U Kpjue

no monochromatic component contains M and Cf) or 05(3). (7.1)

Recall that the sets Vieq and Viue, and the scarlet component S and the azure compo-
nent A were defined in Section 6. We distinguish two complementary cases, and in each
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of them we obtain a contradiction to (7.1) or its consequence, (7.2) below. In each case
we use the fact that r(C’f')) = 13 (see [16]).

Case 1: |[Vied|, [Vilue| > s-

In this case we are able to prove Theorem 7.1 even with t = 6s — 1 and s > 37. We
first prove that each of S and A contains a matching M.

Observation 7.2. MS(3) C A and MS(3) CS.

Proof. Partition the set of vertices V(K) := V into sets V', V., V{,. such that
Vied € Vieds [Vieal = 8, Vilue € Votues [Viuel = 8, and V=V (Vi U Vo).

Since |V'| > 6s — 1 — 2s > 4s — 1, Theorem 6.1 applied to the induced red-blue
coloring Kreq[V'] U Kpiue[V'] of K[V'] implies that there exists a matching M = Mf’)
in a component (say red) Cieq 0of Kyeq. (This is true because each component of any
sub-hypergraph of K,qq is contained in some component of K,eq.)

By (7.1) we know that Ci‘g) ¢ Cleq- Consequently, for each edge xyz € M and any
vertex a € VY| ,., at least one of the edges zya, rza, yza must be blue and also in A,
since a € V{},.- Thus, using all s vertices of V} . and s edges of M, we greedily find a
matching of size s in A. Using (7.1) again, we have Cf’) ¢ A. Replacing Cieq with A,
Vblue wWith V/ .. A with S, and interchanging colors red and blue in the argument above,

red?
we obtain a matching of size s in S. ]

In view of Observation 7.2, it follows from (7.1) that
c® ¢ Aand C?) ¢ 8. (7.2)

Observation 7.3. For every pair of vertices xy € (V'Qe“‘) there exist at most twelve
vertices z € Vilue such that xyz is blue (and therefore in A).

Proof. Suppose there is a pair zy € (Vf;d) and 13 vertices z1,..., 213 € Vplue S0 that

xyz; € A for i = 1,2,...,13. Since T(Cf’)) = 13, the sub-hypergraph induced in K by
. : (3)

Z1,..., %13 contains a monochromatic copy C of C;™.

On the one hand, all pairs z;z; are in 0A, because z;,z; € Vilue. Therefore, if C was
blue then C C A — a contradiction to (7.2). On the other hand, all edges xyz, where
z € V(C), are in A by our assumption. In order to avoid a copy of C’f’) in A, one of the
edges zz2', yz2', where z,2' € V(C), must be red. Since z,y € Vieq, such an edge is in S,
and we have 2z’ € 3S. Hence, if C was red, then C C S — again a contradiction to (7.2).

U

Observation 7.4. FEwvery triple of vertices in Vieq is blue and, consequently, (Vr?jd) C
C1ue for some blue component Cy,,,..

Proof. By Observation 7.3, for all z,y,z € Vieq, there are at most 3 x 12 vertices
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a € Viue s0 that one of the edges zya,xza,yza is blue. Since |Viue| > s > 37, we can
select a vertex a € Viye so that xya, xza,yza € S. We must have zyz blue to avoid Cf’)

in S. ]

We can clearly interchange colors red and blue in Observations 7.3 and 7.4 and obtain
that (Vb:;“e) C (.4 for some red component C/ ;. Since one of Viedq, Viiue must contain
at least [t/2] > 3s vertices, we find greedily both a copy of MS(3) and a copy of C£3)7 in
either C/ 4 or CY,., contradicting (7.1).

Case 2: |Vied| < s or |Vigue| < 8.

By symmetry, we may assume that |Vieqa| < s and |Viue| > 5s + co/s. We first prove
that the azure component A contains a matching M, 33 whose vertex set is in Vpue. Again,
this is true even for t = 6s — 2.

Observation 7.5. There exists a matching My = Ms(3) C A with V(M) C Vilye-

Proof. Let Ve = VUV be a partition of Vyye such that [V'| = s. Since [V”| > 65—
2—(s—1)—s > 4s—1, Theorem 6.1 applied to the induced 2-coloring Kyed[V"]UKpue[V"]
of K[V"] implies that there exists a matching M = M in a monochromatic component
of K[V"] (which is contained in some monochromatic component C' in K).

If C is blue, then it must be A, because V" is a subset of Vi, and we are done.
Hence assume C' = Cleq is red. By (7.1), we have C’f’) ¢ Cieq- To avoid C’f’) in Cieq, for
each edge xyz € M and any vertex a € V', at least one of the edges xya, xza, yza must
be a blue edge, and, consequently, also in A, because a € V' C Vjue. Thus, using all s
vertices a € V' and s edges of M, we greedily find a matching M4 of size s in A. Clearly,
V(MA) CcV'UV" = Vylpe. ]

In view of Observation 7.5 and the assumption (7.1), we know that
c® ¢ A (7.3)

We distinguish two subcases. In the first one we assume that almost all pairs of vertices
from Vpue are contained in the shadows of at most two red components.

Subcase 2a. There exist two red components Cl , and C’fed such that

(") vectavaczy

We now prove a series of observations. Recall that by Observation 6.3 the scarlet com-

< 6t. (7.4)

ponent S exists whenever V;eq # (). We now show that in that case one of CL ; and C2
equals S or can be replaced by S.

Observation 7.6. If Vieq # 0, then there exists a red component Creq such that

‘ (Vb;e) \ (0Crea U 55)‘ = ‘ (Z) \ (0C1eq U DS)| < 24t. (7.5)
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Proof. Note that (%) \ (**) C 9S. If |9CL 4| < 18t holds, then with Creq = C2,; we

I
have

%
‘ < 2) \ (0C,eq U DS) 6t + [0CL,| < 24t.

Hence, suppose that [0CL | > 18t and |0C2 ;| > 18t. We claim that there exist vertices
U, U, w € Vpue such that uv € 8Crled, uw € 8Cr2€d, and vw € 8Crled U acfed.

This follows from a simple graph-theoretic fact.

(7.4)
<

Fact 7.7. Let the edges of the complete graph K,, be partitioned into three sets F, Es,
E5 so that, with e; = |E;|, i = 1,2,3, we have min{e,ea} > 3es. Then there exists a
triangle with at least one edge in E1, at least one edge in Fy and no edge in E3.

Proof. Since the average degree in E3 is 2e3/n, there is a vertex u such that degp, (u) <
2e3/n. If degp, (u), degg, (u) > \/es, then there is a non-E3 edge between the neighbor-
hoods Ng, (u) and Ng,(u), completing a desired triangle.

Suppose now that, say, degp (u) < \/e3. If there is an edge xy € Ey with 2 € Ng, (u)
and y € Ng,(u), then u, z,y is the desired triangle. Otherwise, the number of edges of E;
not contained in Ng, (u) is at most

d 1
degp, (u) + < eggl (U)) + degp, (u) x n < 5(\/%4—63) + 2e3 < 3e3 < e3.

Hence, there is an edge of E; with both endpoints in Ng,(u), yielding again a desired
triangle. 0

We apply Fact 7.7 to Ey := 9CLy, Bz := 0C2 and E3 == (i) \ (OCL, U C2 )
(note that the assumptions hold).

Take any x € Vioq and vertices u, v, w € Vyue such that uv € BC}ed, uw € 8Cr2ed, and
vw € OCL,
shadow of the same red component, uvw must be a blue edge and hence in A. To avoid a

UAC2,,. Since all three pairs of vertices contained in any red edge are in the

copy of Cf’) in A, at least one of the edges uvx, uwz, vwx must be a red edge, say uvzr.
Since uv € OCL ; and zu € 85, we have Cl ; = S and the proof is completed by setting

Crea = C2 4 and recalling (7.4). ]

From now on we assume that

\(V‘;“) \(@CL U aC2y)| < 2at, (7.6)

and that C*

red

=S5, if S exists.

Observation 7.8. Fuvery set X C Vie with | X| > 25\t contains a copy ofo’) m Crled
or C2 ;.
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Proof. Let X C Wy with |X| > 251/t be given. Note that by (7.6)

X X 11
octavacton (3)] = () -2 g

Thus, by the Turdn Theorem, there is a complete graph K3 in 9CL ;UIC? ;. Let X, be

the vertex set of one such Kj3. Since r(C’f)) = 13, the set ()go) contains a monochromatic
copy C of C’f). It cannot be blue because all pairs of vertices of X are in A and so C would
be in A. Hence, C must be red and, thus, in CL; or C2, because ()go) C OCL,UaC2,.

Now, we are ready to finish the proof of Theorem 7.1 in Subcase 2a. Recall that
co = 25V/7 and t < 7s. Suppose first that Vieq = 0. By Observation 7.8, every set of 251/t
vertices in Ve = V contains a copy of C’f’) in C ; or C2 ;. Hence, we can find greedily,

by taking one edge from a copy of C’f) and reusing the remaining vertex, a matching of
size

(t—25v/t)/3 > (65 + cov/s — 25V/Ts) /3 > 2s

in C1 ;UC? . Thus, there is an index i € {1, 2} such that C?_, contains M as well as
a copy of Cf’).

Assume now that Vieq # 0 and, thus, S exists and Crled = S. We know (see Ob-
servation 7.5) that A contains a matching My, V(M) C Vilue, of size s but no C’ig).
As in the proof of Observation 7.2, for every vertex z € Vieq and each edge e € My,
there exists a edge f € S so that x € f and |eN f| = 2. Hence, we can find a match-
ing of size |Viea| < s in S that uses exactly 2|Vieq| vertices of Vpjue. After this, we
use the greedy procedure from the previous paragraph and find a matching in S UC2
of size (|Vilue| — 2|Vied| — 25v/1)/3. Combining these two matchings and the fact that
[Votue| + [Vied| = |V| = t yields a matching in S U C2 of size

|V;"ed| + (|Vblue| - 2|V;"ed| - 25\/£)/3 Z (t — 25\/%)/3 Z 287

as before. Consequently, either S or C2; contains M, 8(3). Note that at least one edge of

this matching comes from a copy of C’ig) in S or C2 . Thus, in either case, we have MS(B)
and C’f’) in the same red component.
Subcase 2b. Inequality (7.4) does not hold for any two red components C'L ; and C2 ;.

r

We will first show that in this case the red components can be grouped into three large
sets. To this end, we need the following simple fact. (We will only need part (b) now;
part (a) will be used twice in Section 8.)

Fact 7.9. For given numbers a; > as > --->ax >0, let N =a; + -+ a.
(a) Let d > 2N/3 and k > 2. If ay < d, then there exists 1 < £y < k — 1 such that

V4
N-d<S a<d

i=1
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(b) Let N > 5r and k > 3. If a; + a2 < N —2r, then there exist 1 < € < {ly < k—1 such

£y 2 k
that Y- a; >r, Y. a;>r,and >, a;>7.
i=1 i=01+1 i=la+1

¢
Proof. (a) Define o = min {¢: >~ a; > N —d}. If {, = 1 then we are done. Otherwise,
i=1

ag, < a3 < N —d, and so
N-d<» a; < (N—d)+ay <2(N-d) <d

(b)If a; > ag > r, take {1 =1 and €5 = 2. If a; > r but ay < r, take £; = 1 and define

¢
oy =min{l: > a; > r}. Then,
i=2

Y28 lo—1
Zai =a + Z a; +ap, <ay+r-+ay <N -—r,
i=1 i=2
k ¢
and so, Y. a; >r as well. Finally, if as < a3 < r, define ¢; = min {E Y ap > 7“} and
i=fo+1 i=1
¢
{5 = min {é DY ap > 7’}. Then
i=01+1
0 01
Zai < Zai+a1 <2r
i=1 i=1
Lo
and, similarly, > a; < 2r. Hence,
1=01+1
k
Z a; > N —4r >r.
i=la+1

Now we can prove the following consequence of negating (7.4).

Observation 7.10. There exists a partition (‘2/) = FLUF2UF?3 such that
(i) FY,F?,F3 are pairwise disjoint,

(ii) |F[Vire]| = 3t fori=1,2,3,

(iii) for every red component Cioq there exists i € {1,2,3} such that OCreq C F.

Proof. The shadows of all red components, intersected by (V‘g“e), form a partition

of (Vbzl“e) into disjoint sets of pairs. (Each pair that is not in any red edge is in a partition
class by itself.) Let a1 > ag > ... be the sizes of these partition classes. If (7.4) does not

hold for any two red components then a; + ag < ('Vbzl“el) — 6t and, by Fact 7.9(b) with
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N = (lvbzlue‘) and r = 3t, the a;’s can be grouped into three sums, each at least 3t. Let
the corresponding three sets of pairs, forming a partition of (VbQ“""), be denoted by F?,
i =1,2,3. Then the conclusion follows with F"*’s being arbitrary extensions of F**’s such
that for each red component Cieq if 0Creq N (V‘g“e) C F', then 8Cyeq C F". ]

For convenience, set F' = F'[Vi,e] and deg;(v) = degzi(v),1=1,2,3, v € Vhlpe-

Observation 7.11. For every vertex v € Viye there is an index i € {1,2,3} so that
deg,;(v) = 0.

Proof. Suppose that there is a vertex v € Vyue such that deg,(v) > 0 for all ¢ =1, 2, 3,
and denote by U; the neighborhood of v in Fi i=1,2,3. Notice that F*UF2 U F3 is a
partition of (Vbzl“e) (cf. Observation 7.10) and, therefore, Uy UUs UU;z U {v} is a partition
of Vhlue-

Take any three vertices u; € U;, ¢ = 1,2, 3. Since the pairs vuy, vug, vug belong to the
shadows of distinct red components, all edges vu;u;, 1 <1i < j < 3, are blue and thus in
the azure component A (because v € Viue)-

Consequently, since there is no C’f’) in A, the edge ujuousz must be red. Thus, all pairs
of vertices u; € U; and u; € Uj, i # j, are in the shadow of the same red component.
Without loss of generality we may assume that

Vu; € Us,u; € Ui i £ §,  uu; € FL. 7.7
J J J

Take any three vertices w;,u},u;, such that u,;,u; € U; and u; € Uj. Since the edges
vu;u; and vuju; are both in A and Cf’) ¢ A, either vu,;u} is red or w;uju; is red. In the
first case, u;u; € F?, while in the second case u;u} € F'.

The previous two paragraphs show that every pair of vertices uu’, where u,u’ € {v} U
Uy UU;z or u € U UUs, v € Us, is contained in F' U F3. Since F? is disjoint from
F'u F3, it follows that all pairs of F? are contained in {v} U Us. The same argument
(see Fig.3) yields that all pairs of F3 are contained in {v} U Us. Each Fi i= 2,3, can
contain at most deg;(v) pairs of the form vu;, u; € U;, and |F?| > 3t > deg;(v). Hence
there exist vertices u;, u} € U; such that u;u} € Fi i=23.

If all four edges induced by {us, v}, uz, u5} C Viue were blue, we would have C’f’) in A
— a contradiction with (7.3). Hence, at least one of them is red, say ugubus. Since by (7.7)
UgUz € Fl, we have uqul, € F!. But then Uy € FINF? c F' N F? - a contradiction
with Observation 7.10(i). Ul

For 1 <i < j <3, let Wi; = {v € Vipe: deg;(v) > 0,deg;(v) > 0}. Next, we prove
that Wio, Whs, and W3 have each at least two vertices.

Observation 7.12. |W;;| > 2 for1 <i<j<3.
Proof. By symmetry, we can restrict ourselves to the case ¢ = 1 and j = 2. Since |Z:”| >

3t, 1 = 1,2, there is a matching M; of size four in Lﬁ'l| Let wyu} € My and uqub € Mo
be vertex disjoint. Since, by (7.3), the copy of C’f’ induced by {uy,u],uz,ub} C Vilue
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Figure 3. Partitioning (Vbzl“e) into ﬁ'l, F? and F3. Labels on an edge correspond to possible partition
classes for this edge.

cannot be blue, at least one of its edges must be red. However then at least one pair from
Ut g, uyuh, uhug, wiul is in F' or F2. This implies that at least one of these vertices is
adjacent to an edge of F! and an edge of F2 and, thus, belongs to Wi,. Now we remove
that vertex and find another pair of disjoint edges, one from M, the other from Ms.
Repeating the above reasoning, we obtain another vertex in Wis, completing the proof.

O
Let wya, wiy € Wi, wiz, wis € Wis, wes, why € Wag. Clearly, by Observation 7.11,
forall1 <i<j<3andl<d <j <3, {i,j} # {5},
the pairs w;jwirjr, wiwir g, wing,j,, ngwg,j, are from F*, where (7.8)

C={i, 3y n{i’, '}
We show now that the sub-hypergraph H induced in K by vertices w12, wis, w13, wis,
Wa3, Whs € Vilye contains a copy of C’ég) in the azure component A.

Since F* N F? = (), the pair wyaw}, is either not contained in F* or not contained in
F?2. (At this point, we do not know whether wisw}, € F* U F? or not.) Without loss of
generality we may assume that wisw/, is not contained in F'. Also, at least one edge of
the sub-hypergraph of K induced by vertices wia, W)y, w13, w}s must be red (otherwise
we would have C’f’) in the azure component — a contradiction to (7.3)).

Edges wiaw],w13 and wiaw)sw); must be blue because wiawis, wiawis € F by (7.8)
and wyaw}y does not belong to F'. Hence, either wiswizw)s or wiywizw)y is red, and
the pair wizw); must lie in F'*. Since F! and F? are disjoint, wizw}; does not lie in F3.

Using the same argument we infer that wasw}; belongs to F3: to avoid a contradiction
with (7.3), at least one of the edges induced by was, whs, wis, wis must be red. Edges
w13wswa3 and wizw]whs must be blue because, by (7.8), wizwas, wizwhy € F3 and
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wizw)s does not lie in F3. Hence, either wy3wazwhs or w);3wazwhs is red, implying that
the pair wozwhs is in F3 (and, consequently, not in F?). Similarly, we get wisw), € F2.
/

Observe now that all edges of the form vi2v13v23, Where v;; € {wij,wij}, are blue
because, by (7.8), the pairs contained in them belong to different F*’s and the shadow of
every component is contained in a unique F**. Moreover, the edges wiaw]yw13, wigw)yw} s,
W13W] 3Was, W13W]5Whs, WasWhswia, and wazwhsw], must be blue as well because, again,
all the pairs contained in any red edge belong to the shadow of the same red component
(and to a unique F*), which is not the case here.

Thereforeé all edges wiawa3wig, Wezw1sW) s, W13W]i5Whs, WisWhsw1a, and whswiswag of
the cycle C’5( ) on vertices W12, Wa3, W13, W3, Why are colored blue and belong to the azure
component. ]

8. Matchings in components (the real thing)

In this section we prove Lemma 2.1. Since the hypergraph K appearing in Lemma 2.1 is
almost complete, we will be guided by the proof of Theorem 6.1 presented in Section 6.
However, it will be convenient to replace K with a large sub-hypergraph K; with a more
regular structure. Its existence is guaranteed by the following simple lemma.

For a vertex z in a hypergraph H, let Ny (z) = {y : 2y € OH}. For two vertices z, y,
let Ny(x,y) = {z : xyz € H}. Note that if y € Ny (z) (equivalently, © € Ng(y)), then
Ny (x,y) # 0. We call all such pairs zy of vertices active. Thus, the active pairs in H are
exactly those pairs of vertices which belong to the shadow 0H of H.

Lemma 8.1. Fiz § > 0 and set 6, = 106Y/5. Let K be a 3-uniform hypergraph with
t vertices and at least (1 — 0) (;) edges. Then K contains a sub-hypergraph K with
t1 > (1 — 01)t vertices such that every vertex x of Ky is in an active pair and for all
active pairs xy we have |Ng, (x,y)| > (1 — 61)t1.

A (fairly standard) proof of Lemma 8.1 can be found in [11] (see Lemma 4.1 therein).

Proof of Lemma 2.1 We may assume that n < 1. Given 0 < n < 1, define § =
n510=24. For any hypergraph K on ¢t = (4 + n)s vertices and with at least (1 — 6)(5)
edges, let K7 be the sub-hypergraph of K satisfying the conclusions of Lemma 8.1 with
81 = 106'/6 = 7/1000. In particular, using the bound ¢ < 5s, we get

t = V(K1) > (1= 61)t >t — 50ys =t — (/200)s > (4 +1/2)s.

Since every monochromatic component of K is contained in a monochromatic component
of K, it is enough to show the conclusion of Lemma 2.1 for K. For the clarity of our
presentation we will reset K := K3, § := §; and n := 2n. Equivalently, we will assume
that K has t = (4 4+ n)s vertices, 0 < n < 1/2, every vertex x of K is in an active pair,
and for all active pairs zy

Nk (,9)] > (1- ), ®.1)
where ¢ = 1/500.
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Since every x is in an active pair, it follows from (8.1) that for all z € V(K),
INg(z) = {y 2y € 0K} > (1 —-4d)t + 1. (8.2)

Let V = V(K) and fix a coloring K = Keq U Kplye- Our ultimate goal is to show that
either in K oq or in Ky there is an externally connected matching M, 5(3). We begin with
some preliminary results. Our first observation establishes for every x € V' the existence
of a dominant monochromatic component C, the shadow of which contains most pairs
of vertices zy. (For the complete hypergraph K this was done in Observation 6.2.)

Observation 8.2. For every vertex x € V there exists a monochromatic component C,,
such that

H{y e V:iay € 0C,}| > (1-6)t. (8.3)
The observation will follow from a simple graph theoretic result.

Fact 8.3. Let G be a graph with n vertices and minimum degree d. If n > d > 3n/4,
then for every red-blue coloring of the edges of G there is a monochromatic component
with at least d + 1 vertices.

Proof. Let G = Geq UGhiue be a red-blue coloring of the edges of G. Suppose that no
component of Gyeq has more than d vertices. Then, by Fact 7.9(a) in Section 7 there is
a partition V(G) = V1 U Va, where

n—d<|Vi| <5 <|Val < dand Eo,, (V3,V2) = 0.

Observe that in Gypye every vertex of V5 has a neighbor in V; and every vertex of V; has
more than |V3|/2 neighbors in V5. Thus, the graph Gpy,e is connected, and so there is a
blue component on all n > d + 1 vertices. ]

Proof of Observation 8.2 Note that ¢ < 1/4 and that, by (8.1), for every vertex
x € V the graph K(x) = {yz : zyz € K} has minimum degree at least (1 — )t > 3¢/4
(and at most t vertices). The coloring K = Kjeq U Kplye induces a coloring K (z) =
Kied(z) U Kpue(2) which, by Fact 8.3, contains a monochromatic component with at
least (1 — §)t vertices. Consequently, there is a monochromatic component C' in K such
that OC contains at least (1 — §)t pairs zy. L]

For each x € V let us choose arbitrarily one component satisfying the condition in
Observation 8.2 and denote it by C,. Let

Viea = {2 € V: C, is red} and Vijye = {z € V: C, is blue}.

Observation 8.2 tells us that V' = Vi.oq U V1ue and this union is disjoint by the definition
of V;ed and Vblue-

Our next result says that for most x € V,.q, as well as for most x € V},1ue, the compo-
nents C, are the same. (For the complete hypergraph K this is Observation 6.3.)
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Observation 8.4. If |Viea| > 66t (|Voiue| = 60t, respectively) then there is a red com-
ponent Crea (a blue component Criye) S0 that Cp = Creq (Cy = Chiue) for all but at most
20t vertices x € Viea (T € Vilue)-

Proof. Consider a graph G defined on V,¢q by putting an edge between = and y when-
ever zy € 9C, N IC, (note that by (6.1) this means that C;,, = C}). By Observation 8.2
every vertex “spoils” at most 6t edges, and thus |E(G)| > () — vdt, where v = |Vieq|-
Our goal is to show that G has a component of order at least v — 2dt. Suppose this is not
true. Then, by Fact 7.9(a) in Section 7 with d = v—24t, there is a partition Vieq = V1 UV3
with

20t < V1|, [Va| < v — 20t and Eg(V1,Va) =0,

which yields at least 25¢(v — 2t) > vdt edges in the complement of G — a contradiction.
O

If |[Viea| > 60t, we define the scarlet component S as the (unique) red component Cieq
guaranteed by Observation 8.4 and set

Viea = {z € Viea : Cp = S}.
Then
Vgl = |Viea| — 26t > 46t.

If [Viea| < 60t, then we say that the scarlet component does not exist and V., = 0.
Similarly, when |Vijue| > 60t, we define the azure component A and the set

Vilwe = 17 € Vilue : Cp = A}

Then
|Vb/1ue| > ‘Vblue| — 26t > 45t7
and Vi, = 0 if [Viie| < 66¢. We also set
V"= Viea U Vilue:

Since § < 1/12,

V'] = [Vieal + Viel = ¢ — 84t. (84)
For each z € V.

ods Set

0S(x) = ‘{y eV:.aye 8S}|,
and for each z € V., set
OA(x) = |{y € V : zy € DA}|.
By Observation 8.2 and the definitions of S and A we have
|0S(x)], |0A(x)] > (1 —d)t. (8.5)

Our last preliminary result is the Mirror Lemma (cf. Lemma 6.7) adjusted to non-
complete hypergraphs.
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Lemma 8.5 (The Blurred Mirror Lemma). Let M be a largest matching in a red
component Creq and let P C V, where PNV (M) = () and |P| > |M| + 305t. Assume
further that for some blue component Cyye and for every e € M, the bipartite induced
subgraph OCypluele, P] of OChiue contains Ky |p|—gsi—1. Then there exists a matching M' C
Chlue such that

(i) |M'| > |M| and
(ii) [V(M') 0 P| < |M]| + 45t.

Proof. Let M" C Cpue be a largest matching such that
o |[V(M")Nn P| < |M"| and
o V(M") intersects at most |M"| edges of M.
We first claim that |M”| > |M| — 46t. Indeed, suppose |M"| < |M| — 45t. We will show
that there exist e;,es € M and a,b,c € P" := P\V(M") such that (e;Uex)NV(M") =0
and the set X = e; Ues U {a,b,c} satisfies the assumptions of Claim 6.5 (see Remark
6.6).

From the second part of (8.6) and our supposed bound on |M”|, it follows that there
exist at least 4t edges of M disjoint from V' (M"). Let e; = uvw € M be any such edge.
Below we suppress the dependence on K and write N(z) for the neighborhood of z in
the shadow of K, and N(z,y) for the neighborhood of z,y in K. By (8.2),

[V (N(u) NN (v) N N(w)) | <3t = [N(w)] = [N(v)] = [N(w)| < 34t

(8.6)

and so, there exists e = xyz € M \ e; such that eo N V(M”) = () and every pair of
vertices p,q € ey Ueg = {u,v,w,z,y, z} is active.
By the first part of (8.6) and our bounds on |P| and |M"|, we have

P"| = |P| — |P 0 V(M) > |M| + 306t — (M| — 46t) = 34t.

Among the vertices of P’ at most 186t + 2 do not belong to the bipartite cliques
K5 | p|—g9st—1 between e;, i = 1,2, and P, guaranteed by the assumptions. Also, by (8.1),

6
< =
(%)= 0

where the intersection is taken over all pairs of vertices p,q € ey U es. Since (34 — 18 —

15)dt — 2 > 3, one can choose a,b, ¢ € P" so that

(a) OChelei,{a,b,c}] D Ky 3 for i = 1,2, and

(b) all triples of vertices having two vertices in {u,v,w,x,y,z} and one in {a,b,c} are
edges of K.

Thus, we can apply Claim 6.5 (see Remark 6.6) to the set X = e Uey U {a,b,c}. But
then we can either enlarge M in Cieq (if (1) of Claim 6.5 occurs) or M in Cpjye with
conditions (8.6) preserved (if (2) or (3) of Claim 6.5 occurs), yielding a contradiction
with the choice of M or M”, respectively.

Hence |M"| > |M| — 4dt. If |M"| > |M]|, we are done. Otherwise, we repeat the
following procedure which keeps enlarging M” by increments of two until its size reaches

P"\(\N(p.q)
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|M| (for convenience, we assume that | M| — |M"| is even). Let the current matching be
denoted by M’, |[M’'| < |M|. It is important that in each step we will

e not delete any edge of M’, that is, M"” C M’,

e add to V(M’') at most four vertices of P, and

e maintain the second part of (8.6).

Since there are (|M| — |M"])/2 steps, for the final M’ we have
V(M) 0PI < MY+ 2(]M| = |M"]) = [M[ + (|M| — [M"]) < [M] + 4dt,

so (ii) holds. Now we describe a single step of the procedure. Let e = zyz € M be
such that e N V(M’) = . Denote by Py the set of at most 95t + 1 vertices of P which
do not belong to the bipartite clique K3 |p|_g5:—1 between e and P, guaranteed by the
assumptions.

Set P/ = P\ (V(M')U Fy). Similarly to the above,
|P'| > | M|+ 305t — (|M] + 46t) — | Py| > 166t.

Set Ny = PPNN(z,y) NN (x,z)NN(y, z). By (8.1), |N1| > (16 — 3)dt = 135¢. Let a € Ny
and set No = N1 N N(a,z) N N(a,y) N N(a,z). We have, again by (8.1), |N2| > 104t.
Similarly, for every b € Ny and every ¢ € N3 = Na N N(b,x) N N(b,y) N N(b, z), we have

[Ns N N(c,z) N N(e,y) N N(e, z)| > 4t > 1.

Thus, one can choose a, b, c,d € P’ so that

(a) OChiuele, {a,b,c}t] D Ka3

(b) all triples of vertices within {z,y, z, a, b, ¢, d} intersecting simultaneously {z,y, z} and
{a,b,c,d} are edges of K.

We apply Claim 6.4 (see Remark 6.6) to the set X = e U {a,b,c,d}. By the maximality

of M in Cyeq and the maximality of M" with respect to (8.6) in Chye (note that V(M")N

X =0), conclusions (1) and (2) of Claim 6.4 cannot hold. Thus, (3) holds, which allows

us to enlarge M’ by adding the edges e; and es guaranteed by Claim 6.4(3). Note that,
indeed, in a single step we have used four vertices of P and one edge of M. ]

We are now ready to complete the proof of Lemma 2.1. Since § < 1/12, in view of
Observation 8.4, either the scarlet component S or the azure component A (or both)
does exist.

Let M be a matching of maximum size in K among all matchings that lie in S or A.
Without loss of generality we assume that () # M C S. This implies that |V, | > 46t,
but V}),, might be empty, that is, the azure component A might not exist. Suppose that

1<m=|M|<s-1
and set
R=Viq\ V(M) and B = Vp,,. \ V(M). (8.7)

According to this definition, if B # 0, then V{ ., # 0, and consequently, the azure
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component A does exist. Note that RN B = () and
t=@4+n)s=3m+|RUB|+|V\V'], (8.8)
and, using m < s and (8.4),
|[RUB| > (44+n)s—3m— [V\V'| > (1+mn)s — 86t. (8.9)

Observe that by (8.9) and our choice of §, whenever one of the sets R or B has size at
most 53t then the other one has size at least

(1+n)s — 136t > m + 300t.

We first show the following variant of Observation 6.8.

Observation 8.6. If|R| > 24t, then all edges xyz € K[RUB| with x € R and zy € 95
belong to the same blue component Cyiye. Furthermore, if also |B| > 26t, then Cyue = A.

Proof. First note that any red edge zyz € K[R U B] with zy € 95 would be in S and
disjoint from V' (M), and thus it could be added to M, contradicting the maximality of M.
Hence, every such edge is blue. Let x,y, 2 € RUB and xy and xz be two pairs in 9S. Since
|B U R| > 24t and the pairs zy and zz are active, by (8.1) there is w € RU B such that
zyw € K and zzw € K. Hence, both edges are blue and in the same blue component.
Now, by (8.5), the subgraph dS[R] has minimum degree at least |R| — §t > |R|/2 and,
thus, it is connected. This implies that all pairs zy € 05 such that t € R and y € RUB
are in the shadow of the same blue component Chye.

To prove the second part, notice that if both |R|,|B| > 24t then, again by (8.5), the
number of edges of S5 with one endpoint in R and the other in B is more than |R||B|/2,
and the same is true for the edges of 0A. Hence, there is a pair x € R and y € B such
that xy € 0S N JA. Tt follows that Chpue = A. ]

For the rest of the proof of Lemma 2.1 we distinguish three cases analogous to the
three cases considered in the proof of Theorem 6.1.
Case 1: |B| < 56t

Denote by Chye the blue component guaranteed by Observation 8.6.

Observation 8.7. For every edge e € M, the bipartite induced subgraph OChyele, R)
of OChe contains Ko |g—3s5i—1 as a subgraph.

Proof. Let e = zyz € M. By (8.2), at least |R| — 30t vertices a € R are such that all
three pairs za, ya and za are active. Let the set of such vertices be denoted by R..
Suppose that dCh1yele, Re] contains no copy of Ky g, |—1. Then there exist two vertices
a,b € R, such that, say, ya, zb € OCyye. Since |R| > 25t + 5, by (8.5) and (8.1) there are
¢,d,u € R\ {a,b} such that ac,bd € 9S and yac, zbd, uac, ubd € K. By Observation 8.6,
uac, ubd € Cpue and thus ac,bd € IChe. Hence, the edges yac and zbd must be red.
Consequently, yac, zbd € S and (M \ {zyz}) U {yac, zbd} is a matching in S larger than
M — a contradiction. ]
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Now we apply Lemma 8.5 with Cieq = S, Chiye and P = R (recall that |R| > m+304t),
obtaining a matching M’ C Chyye of size |M'| :=m’ > m and with |V (M)NR| < m+46t.
If m’ > s, we are done. Otherwise, by (8.9) and (8.4), we have

[R\V(M")| > (44 n)s — 3m — 135t — (m + 45t) > 3(s — m’) + 34t.

This allows us to enlarge M’ to size s by adding blue edges contained in R\ V(M").
Indeed, by (8.1) and (8.5), we can greedily find s — m’ disjoint edges zyz € K[R] with
xy € 9S. Since all such edges belong to Cpiye (cf. Observation 8.6), we can add them
to M’ obtaining a matching of size s in a blue component.
Case 2: |R| < 54t

By our assumptions and (8.9), B # @ and thus the azure component A exists.

Observation 8.8. For every edge e € M, the bipartite induced subgraph dAle, B] of 0A
contains Ko |g|_gst—1 as a subgraph.

Proof. Fix an edge zyz € M. By (8.1), at least |B| — 30¢ vertices a € B are such
that all three pairs xa, ya and za are active. Let the set of such vertices be denoted by
B.. Call a vertex a € B, friendly to z if za € 05 U 0A and let B, be the subset of B,
containing all unfriendly vertices to x.

Claim 8.9. |B.| <26t

Proof. Suppose that |B;| > 20t, recall that |V | > 46t (since S exists), and consider
the bipartite induced subgraphs Gg and G4 of 95 and 0A, respectively, with vertex
set By UV . Assume for simplicity that |Bg| = 26t and |V | = 44t, taking subsets
if necessary. Recalling that B, C V{}.., by (8.5), |Gs| > 4(0t)? and |G 4| > 6(5t)?, and
consequently, |Gs NG a| > 2(6t)2. Let a € B, have degree at least dt in G's N G 4. Then,
by (8.1) and the definition of B, one can find a vertex u € V., such that zau € K and
au € GgN G4 C 0S N OA, which contradicts the assumption that a is unfriendly to x,

no matter how zau is colored. ]

Set B, = B, \ (B; UB, U B,). It is sufficient to show that 0A[e, B.] contains a copy
of Ky |p;|—1- Suppose it does not. Then there exist two vertices a,b € B, such that, say,
ya, zb &€ OA (and thus, they must be in 95). Since |B| > 2§t +4, by (8.5) and (8.1), there
are ¢,d, € B\ {a,b} such that ac,bd € A and yac, zbd € K. Hence, the edges yac and
zbd must be red. Consequently, yac, zbd € S and (M \ {zyz}) U {yac, zbd} is a matching
in S larger than M — a contradiction. L]

We apply Lemma 8.5 with Cyeq = S, Chiue = A and P = B (recall that |B| > m—+306t)
and obtain a matching M’ C A of size |M’| = m and |V (M')NB| < m+44§t. (A matching
larger than m in the azure component A is impossible by our choice of M.)

We claim that R’ := V' \ V(M') = 0. Indeed, suppose that d € R’. Since

B\ V(M')| > s+ 186t — (m + 45t) > 146t > 26t + 3,
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by (8.5) and (8.1) we can find vertices a,b,c € B\ V(M’) such that ad € 95, ab € JA,
and abd, abc € K. Then both abc and abd are red (or we can enlarge M'). But ad € 95,
therefore abd € S and, consequently, abc € S. Since {a,b,c} NV (M) = 0, we can enlarge
M in S, which is a contradiction.

Thus |R'| = 0 and we are back in Case 1 with the colors red and blue interchanged
and M replaced by M.
Case 3: |B|, |R| > 54t

Set P = RU B. In this case not only the azure component A exists, but also the blue
component Ch,e guaranteed by Lemma 8.6 is A.

Observation 8.10. For every edge e € M, the bipartite induced subgraph OAle, B]
of OA contains Ky |p|—gsi—1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 8.8. Fix an edge zyz € M.
By (8.2), at least |P| — 3dt vertices a € P are such that all three pairs xza, ya and za are
active. Let the set of such vertices be denoted by P..

Recall that a vertex a € P, N B friendly to x if xa € 05 U 0A and let B, be the
subset of unfriendly vertices of P. N B. We have shown in Claim 8.9 that |B,| < 24t.
Set P, = P. \ (B, U By U B.) and suppose that dAle, P!] contains no copy of K |ps|_1.
Thus, there exist two vertices a,b € P! such that, say, ya, zb € 0A. But then, combining
arguments from the proofs of Observations 8.7 and 8.8 (each of a and b can be in R or
B), one can show that there exist vertices ¢,d € P such that yac, zbd € S. Consequently,

(M \ {zyz}) U {yac, zbd} is a red matching in S larger than M — a contradiction. Ul

We apply Lemma 8.5 with Cyeq = 5, Chiue = A and P = (RU B) \ {a, b} where
a € R,b € B and ab is an active pair. Let M’ be a matching in A satisfying conclusions
(i) and (ii) of Lemma 8.5. By the maximality of M, we have |M'| = m and, by (ii) and
(8.9),

[P\ V(M")| > s+ 305t — 85t — (m + 45t) > 186t.

By (8.1) and (8.5), we can choose ¢ € P\ V(M’) so that ac € 9S, bc € 0A and abc € K.
Consequently, abc € S if it is red and abc € A if it is blue. Also abc is disjoint from both
V(M) and V(M’). Thus, either we obtain a matching of size m + 1 in S, or a matching
of size [M’'| +1 =m + 1 in A, contradicting the maximality of M among all matchings
contained in S or A. L]
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