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Let C
(3)
n denote the 3-uniform tight cycle, that is the hypergraph with vertices

v1, . . . , vn and edges v1v2v3, v2v3v4, . . . , vn−1vnv1, vnv1v2. We prove that the small-
est integer N = N(n) for which every red-blue coloring of the edges of the complete

3-uniform hypergraph with N vertices contains a monochromatic copy of C
(3)
n is

asymptotically equal to 4n/3 if n is divisible by 3, and 2n otherwise. The proof uses
the regularity lemma for hypergraphs of Frankl and Rödl.

1. Introduction

Given a k-uniform hypergraph H, k ≥ 2, the Ramsey number r(H) is the smallest integer

N such that every red-blue coloring of the edges of the complete k-uniform hypergraph

† Correspondence to: A. Ruciński
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K
(k)
N with N vertices yields a monochromatic copy of H. A classical result in graph

Ramsey theory ([1, 5, 18]) states that for k = 2 and n ≥ 5 the Ramsey number of the

graph cycle Cn with n vertices is

r(Cn) =

{

3
2n − 1 if n is even,

2n − 1 if n is odd.

Thus, the Ramsey numbers for graph cycles depend strongly on the parity of n.

In this paper we continue our study of Ramsey numbers for 3-uniform hypercycles,

initiated in [11]. There are various definitions of a cycle in a 3-uniform hypergraph.

Given a suitably labeled set of vertices {v1, . . . , vn}, a loose cycle has the edge set

{v1v2v3, v3v4v5, v5v6v7, . . . , vn−1vnv1}, while the tight cycle, denoted henceforth by C
(3)
n ,

has the edge set

{v1v2v3, v2v3v4, v3v4v5, . . . , vn−1vnv1, vnv1v2}.
In [11] we proved that the Ramsey number for the n-vertex loose cycle, n even, is asymp-

totic to 5n/4. (Note that loose cycles do not exist for n odd.) Subsequently, Gyárfás,

Sárközy and Szemerédi [8] extended this result to the k-uniform loose cycles.

Here an analogous problem is investigated for the tight cycles. So far, the only known

value of the Ramsey number for a tight cycle is r(C
(3)
4 ) = 13 (see [16]). Asymptotically,

it turns out that the Ramsey number for the tight cycle is larger than that for the loose

cycle, and depends on whether n is divisible by 3. Thus in this respect, tight cycles behave

more like graph cycles than loose cycles do. Our aim is to prove the following theorem.

Theorem 1.1.

(a) For every integer n ≥ 1 and i = 0, 1, 2,

r(C
(3)
3n+i) ≥

{

4n − 1 if i = 0,

6n + 2i − 1 if i 6= 0.

(b) Let η > 0 be given. Then for all sufficiently large n and i = 0, 1, 2,

r(C
(3)
3n+i) ≤

{

(4 + η)n if i = 0,

(6 + η)n if i 6= 0.

We should mention that one more natural definition of cycle for hypergraphs is the so-

called Berge cycle. The Ramsey number for Berge cycles was investigated by Gyárfás,

Sárközy and Szemerédi [9, 10].

The proof of part (a) and Theorem 1.1(b) also yield the asymptotic value of the Ramsey

number of tight paths. A (tight) path P
(3)
n is a hypergraph with vertices v1, . . ., vn and

edges v1v2v3, v2v3v4, . . . , vn−2vn−1vn.

Corollary 1.2. r(P
(3)
n ) = (4/3 + o(1))n, where o(1) → 0 as n → ∞.

The loose and tight cycles are examples of hypergraphs with bounded maximum degree.
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For this class of hypergraphs, it was conjectured that their Ramsey number is linear in

their number of vertices. This conjecture was confirmed in [14, 3, 4] using the regularity

method for hypergraphs. Recently, Conlon, Fox, and Sudakov [2] managed to prove the

same result without the regularity method.

In the next section we prove the lower bounds and outline the proofs of the upper

bounds. Their complete proofs are deferred to Section 5.

2. Lower bounds and the outline of the main proof

Most of the work in proving Theorem 1.1 lies in the upper bounds. In this section, we

begin by establishing the lower bounds (Theorem 1.1(a)), and then we sketch the main

ideas needed for Theorem 1.1(b), which include a notion of connectedness for 3-uniform

hypergraphs. Since all hypergraphs considered in this paper are 3-uniform, we will more

concisely call them hypergraphs.

2.1. Proof of lower bounds

The first lower bound is based on relation between cycles and matchings. Let M
(3)
n be

a 3-uniform 3n-vertex matching, that is, a hypergraph consisting of n disjoint edges.

Observe that C
(3)
3n contains M

(3)
n , and so r(C

(3)
3n ) ≥ r(M

(3)
n ).

Proof of Theorem 1.1(a) To prove that r(C
(3)
3n ) ≥ 4n− 1, partition the vertex set of

K
(3)
4n−2 into two parts, X and Y , where |X| = 3n − 1, |Y | = n − 1, and color all edges

inside X red and all other edges blue. It is easily seen that this coloring contains no

monochromatic M
(3)
n , and thus no monochromatic copy of C

(3)
3n . (Unlike in the case of

graphs, the above extremal coloring is not unique. For another one, see Example 1 in

Subsection 2.2.)

To prove that r(C
(3)
3n+i) ≥ 6n + 2i − 1, i = 1, 2, partition the vertex set of K

(3)
6n+2i−2

into two parts, X and Y , where |X| = |Y | = 3n + i − 1, and color red [blue] all edges

with an odd [even] number of elements in X. An edge containing a vertex of X and a

vertex of Y is called crossing.

Suppose that there is a red copy C of C
(3)
3n+i in such a coloring. Since |X| < 3n + i, at

least one edge of C is crossing. But then, by the definition of a tight cycle, every edge

of C is crossing, that is, every edge of C contains one vertex of X and two of Y . This

means that every third vertex of C belongs to X, which is impossible when i 6= 0.

Note that the first construction in the above proof implies that r(M
(3)
n ) ≥ 4n − 1, and

so, in view of Theorem 1.1, r(M
(3)
n ) and r(C

(3)
3n ) are asymptotically equal. In fact, it is

easy to prove that r(M
(3)
n ) = 4n − 1.

Clearly, every path P
(3)
3n+i, i = 0, 1, 2, contains the matching M

(3)
n and it is contained

in C
(3)
3n+3. Hence we have 4n − 1 = r(M

(3)
n ) ≤ r(P

(3)
3n+i) ≤ r(C

(3)
3n+3) and Corollary 1.2

follows from Theorem 1.1(b).
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A common extension of the above constructions yields that for all n ≥ k ≥ 2 we have

r(C
(k)
n ) ≥ (d + 1)n/d, where C

(k)
n is the k-uniform tight cycle1 of length n = i(mod k)

and d = (i, k), the greatest common divisor of i and k. We conjecture that the actual

value of r(C
(k)
n ) is asymptotically equal to (d + 1)n/d.

2.2. Paths, pseudo-paths and connectedness

Consider a tight path with vertices v1, . . ., vp+2 and edges v1v2v3, v2v3v4, . . . , vpvp+1vp+2.

The pairs (v1, v2) and (vp+2, vp+1) are called the endpairs of the path. (Note the reverse

order of the latter pair which emphasizes the symmetry of the path.) The length of a

path on p + 2 vertices is equal to p, the number of edges.

A pseudo-path in a hypergraph H is a sequence (e1, . . . , ep) of not necessarily distinct

edges of H such that |ei ∩ ei+1| = 2 for each i = 1, . . . , p − 1. In particular, the edges

of every path can be ordered (in two ways) to form a pseudo-path. If (e1, . . . , ep) is a

pseudo-path in H then we say that e1 and ep are connected in H by a pseudo-path.

Unlike for paths, this defines an equivalence relation and we call the equivalence classes

the components of H.

A hypergraph H is connected if every two edges e, f ∈ H are connected by a pseudo-

path. Note that there are several ways to define connectedness in hypergraphs (cf. [11]),

but in this paper we will always mean the one defined above. A sub-hypergraph H ′ of H

is externally connected (in H) if every two edges e, f ∈ H ′ are connected in H by a

pseudo-path. In other words, there is a component C of H that contains H ′.

Example 1. Consider a 3-uniform hypergraph with vertex set V = X ∪ Y , X,Y 6= ∅,

and a red-blue coloring where every edge with an odd intersection with X is colored red

and all other edges are colored blue. Then, the red sub-hypergraph has two components,

one consisting of all edges contained in X, the other formed by all edges with one vertex

in X and two in Y .

Clearly, every red tight cycle must be entirely contained in one of these two components,

a fact utilized already in the proof of Theorem 1.1(a), i 6= 0. Moreover, with |X| = |Y | =

2n−1 this yields an alternative “extremal coloring” in the proof of Theorem 1.1(a), i = 0.

Indeed, neither of the two red components contains a cycle of length 3n. As a matter of

fact, none of them contains an externally connected matching of size n.

2.3. Monochromatic matchings in colorings of almost complete hypergraphs

The basic idea of our proof, similar to that given by  Luczak [13] and Figaj and  Luczak

[6] (see also [11]), is to apply to the colored complete (hyper)graph the regularity lemma,

find in the cluster (hyper)graph a large structure of a certain type, and use this structure

to obtain a long, monochromatic cycle.

Thus, a crucial role in the proof of Theorem 1.1(b) is played by the two following

Ramsey-type results on externally connected matchings. We state them now, but their

proofs are deferred to the end of the paper.

1 The k-uniform tight cycle C
(k)
n is the k-uniform hypergraph with vertices v1, . . ., vn and the edge set

{v1+iv2+i . . . vk−1+ivk+i : i = 0, 1, . . . , n − 1}, where, for i > 0, we set vn+i := vi.
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Lemma 2.1. For every η > 0 there exist δ > 0 and s0 such that the following holds.

Let K be a hypergraph with t = (4 + η)s vertices, s ≥ s0, and at least (1 − δ)
(

t
3

)

edges.

Then, for every red-blue coloring K = Kred ∪ Kblue, either Kred or Kblue contains an

externally connected matching M
(3)
s .

The proof, given in Section 8, is so technically involved that, for the sake of the reader,

it is preceded in Section 6 by its “idealized” version with η = δ = 0. There we will

prove that the Ramsey number r(M
(3)
s ) = 4s − 1 does not increase when the matching

is requested to be externally connected in one of the colors (cf. Theorem 6.1).

To deal with the case i 6= 0, we will need the following modification of Lemma 2.1.

Lemma 2.2. For every η > 0 there exist δ > 0 and s0 such that the following holds.

Let K be a hypergraph with t = (6 + η)s vertices, s ≥ s0, and at least (1 − δ)
(

t
3

)

edges.

Then, for every red-blue coloring K = Kred ∪ Kblue, either Kred or Kblue contains an

externally connected union of a matching M
(3)
s and a cycle C

(3)
4 or C

(3)
5 .

Why does the size of the largest monochromatic, externally connected matching found

in a red-blue colored K go down from t/4 to t/6, if it has to be accompanied by a copy

of C
(3)
4 or C

(3)
5 ? The answer can be provided by the second construction in the proof of

Theorem 1.1(a) (see Section 2.1). Indeed, that construction yields a coloring of K6s+2i−2

without any externally connected, monochromatic copy of a vertex-disjoint union of M
(3)
s1

and C
(3)
3s2+i, s = s1 + s2, i = 1, 2. Although in Lemma 2.2 we do not assume that a copy

of C
(3)
4 or C

(3)
5 has to be disjoint from the matching, it can be reduced to the disjoint

case by disregarding at most five edges of the matching. This small loss does not affect

the asymptotics of Lemma 2.2.

The proof of Lemma 2.2 is based on Lemma 2.1 and quite similar to its proof, but

even more technical. Therefore, we decided to include only a proof of an idealized version

of Lemma 2.2 (cf. Theorem 7.1). The full version can be be found in [12].

2.4. Outline of the proof of upper bounds

We first consider the case of C
(3)
3n . Let K

(3)
N = Hred ∪Hblue, where N ∼ 4n, be a red-blue

coloring of the edges of the complete 3-uniform hypergraph K
(3)
N .

We apply simultaneously, to both Hred and Hblue, the hypergraph regularity lemma

(Theorem 3.2) with suitably chosen parameters, and obtain a vertex partition V =

V1 ∪ . . . ∪ Vt, |Vi| ∼ N/t, such that for almost all triples {i, j, k} one of the induced

sub-hypergraphs, Hred[Vi ∪ Vj ∪ Vk] or Hblue[Vi ∪ Vj ∪ Vk], is “well structured”, that is,

enjoys high regularity and large density (see Section 5 for details).

It will be proved in Section 4 that a “well structured” hypergraph contains a long path

(Lemma 4.6), in our case of length almost 3N/t. We will build a monochromatic copy of

C
(3)
3n mostly out of such paths, coming from about t/4 vertex disjoint “well-structured”

hypergraphs. Thus, it is crucial to find about t/4 disjoint, but mutually connected, “well-

structured” sub-hypergraphs in one color.

To this end, let Kred and Kblue be two auxiliary hypergraphs on the vertex set

{1, 2, . . . , t}, whose edges are those triples {i, j, k} for which, respectively, Hred[Vi∪Vj∪Vk]
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or Hblue[Vi ∪Vj ∪Vk] contains a “well structured” sub-hypergraph. Set K = Kred ∪Kblue

and note that |K| ∼
(

t
3

)

. We call K the cluster hypergraph and the edges of K the cluster

edges.

By Lemma 2.1 either Kred or Kblue (say, Kred) contains an externally connected match-

ing M = M
(3)
s of size s ∼ t/4. Next, using Lemma 4.6, we will find a long path in each

sub-hypergraph Hred[Vi, Vj , Vk], where {i, j, k} ∈ M . These paths are disjoint and have

total length of about (t/4) × (3N/t) = 3N/4 ∼ 3n (in fact, 3n − O(1)).

To connect the long paths together into a red cycle of length 3n, we will construct

in Hred short paths (length O(1)) between the endpairs of long paths, being guided by

the pseudo-paths linking in Kred the cluster edges of M
(3)
s (in reality, we build the short

paths first).

The case of C
(3)
3n+i, i = 1, 2, requires just one modification: in addition to an externally

connected, monochromatic matching in K, we will need a copy of a cycle of length not

divisible by three in the same color. This is provided by Lemma 2.2, which guarantees

in either Kred or Kblue the existence of an externally connected sub-hypergraph which

is a union of M
(3)
s , s ∼ t/6, and a copy of either C

(3)
4 or C

(3)
5 . Due to the presence of a

cluster cycle of length not divisible by three we will be able to adjust the length of the

final cycle to be equal one or two modulo three (by running once or twice around the

cluster cycle – see Section 5 for more details).

In the next section we introduce the regularity of hypergraphs and present a corre-

sponding regularity lemma. In Section 4 we prove the existence of paths of prescribed

length in quasi-random hypergraphs (Lemma 4.6), one of the two main ingredients of

the proof of Theorem 1.1(b). In Section 5 we put together the main proof, and, finally, in

Sections 6-8 we provide the proofs of the second crucial ingredient, Lemmas 2.1 and 2.2.

3. Regularity of hypergraphs

In this section we describe the regularity lemma for hypergraphs established in [7], in

a modified version presented in [17]. To do this we will need to refer to the notion of

ǫ-regularity for graphs, the key idea in Szemerédi’s Regularity Lemma [19].

3.1. Graph regularity

For a graph G and two disjoint sest of vertices X,Y ⊆ V (G), we write EG(X,Y ) for the

set of edges of G that have one end in X and the other in Y . The density dG(X,Y ) of G

over the pair (X,Y ) is defined by

dG(X,Y ) =
|EG(X,Y )|

|X||Y | .

We denote by G[X,Y ] the bipartite subgraph of G induced by vertex classes X and Y .

Note that EG(X,Y ) is the edge set of G[X,Y ].

Let G be a bipartite graph with vertex classes X and Y and let 0 ≤ d ≤ 1 and ǫ > 0

be given. We say that G is (d, ǫ)-regular, if for all X ′ ⊆ X and Y ′ ⊆ Y with |X ′| ≥ ǫ|X|
and |Y ′| ≥ ǫ|Y |, we have

|dG(X ′, Y ′) − d| < ǫ .
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We say that G is ǫ-regular if it is (d, ǫ)-regular with d = dG(X,Y ).

3.2. Hypergraph regularity

We now turn to hypergraph regularity. A triple (P 12, P 13, P 23) of bipartite graphs with

vertex sets V1 ∪ V2, V1 ∪ V3 and V2 ∪ V3, or equivalently, the 3-partite graph P =

P 12 ∪ P 13 ∪ P 23 itself, will be referred to as a triad.

In what follows we often need to focus on the set of edges of a hypergraph H that are

also vertex sets of triangles in a fixed triad P with V (P ) ⊆ V (H). We denote by Tr(P )

the family of the vertex sets of the triangles in the graph P , and set tr(P ) = |Tr(P )|.
Thus for any P , Tr(P ) is a 3-uniform hypergraph on the same vertex set as P . Moreover,

Tr(P ) is 3-partite in the sense that every edge intersects each set V1, V2 and V3.

Further, we define the notion of the density of H with respect to P as

dH(P ) =
|H ∩ Tr(P )|
|Tr(P )| .

Similarly, for every r-tuple of triads ~Q = (Q(1), Q(2), . . . , Q(r)), let

dH
~(Q) =

∣

∣

∣
H ∩ ⋃r

p=1 Tr(Q(p))
∣

∣

∣

∣

∣

∣

⋃r
p=1 Tr(Q(p))

∣

∣

∣

.

Note that in the definition above, the sets of triangles Tr(Q(p)) need not be pairwise

disjoint.

Next, we define the notion of regularity for 3-uniform hypergraphs. Given a triad

P = P 12 ∪ P 13 ∪ P 23, by a sub-triad we mean a triad Q = Q12 ∪ Q13 ∪ Q23 where

Q12 ⊆ P 12, Q13 ⊆ P 13, Q23 ⊆ P 23.

Definition 3.1. Let δ > 0 and α > 0, and let r be a positive integer. Further, let H

be a 3-uniform hypergraph with V (H) ⊇ V (P ).

• We say that H is (α, δ, r)-regular with respect to a triad P if for every r-tuple of

sub-triads ~Q = (Q(1), Q(2), . . . , Q(r)) satisfying
∣

∣

r
⋃

p=1
Tr(Q(p))

∣

∣ > δ|Tr(P )|, we have

|dH
~(Q) − α| < δ.

• We say that H is (δ, r)-regular with respect to P if it is (α, δ, r)-regular with α = dH(P ).

• A triad P with respect to which H is (δ, r)-regular will be called (δ, r)-regular. Other-

wise, it will be called (δ, r)-irregular .

• Moreover, if each graph P 12, P 13, P 23 of an (α, δ, r)-regular triad P = P 12 ∪P 13 ∪P 23

is (1/ℓ, ǫ)-regular, then we call the pair (H,P ) an (α, δ, ℓ, r, ǫ)-regular complex .

Observe that if Hc is the complement of H then dH
~(Q) = 1 − dHc

~(Q). Consequently,

if H is (α, δ, r)-regular, then Hc is (1 − α, δ, r)-regular with respect to the same triad P .
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3.3. Regularity Lemma for Hypergraphs

We now state the regularity lemma for 3-uniform hypergraphs from [7] in a simplified

form presented in [17] (see Lemma 4.1 and Remark 4.1 there). We write K(U,W ) for the

complete bipartite graph with vertex sets U and W .

Theorem 3.2 (Regularity Lemma for Hypergraphs). For every δ > 0, every

integer t0, all integer-valued functions r = r(t, ℓ), and all decreasing sequences ε(ℓ) > 0,

there exist constants T0, L0 and N0 such that every 3-uniform hypergraph H with at

least N0 vertices admits a partition Π consisting of an auxiliary vertex set partition

V (H) = V0 ∪ V1 ∪ · · · ∪ Vt, where t0 ≤ t < T0, |V0| < t and |V1| = |V2| = · · · = |Vt|,
and, for each pair i, j, 1 ≤ i < j ≤ t, a partition K(Vi, Vj) =

ℓ
⋃

a=1
P ij

a , where 1 ≤ ℓ < L0,

satisfying the following conditions:

(i) all graphs P ij
a are (1/ℓ, ε(ℓ))-regular,

(ii) H is (δ, r)-regular with respect to all but at most δℓ3t3 triads (Phi
a , Phj

b , P ij
c ).

Note that the conclusions of Theorem 3.2 hold for the complement Hc of H as well.

Since the outcome of the regularity lemma may be overwhelming, we simplify the

picture a little bit by selecting only one graph P ij
a from each K(Vi, Vj).

Claim 3.3. Given the partition produced by Theorem 3.2, there exists a family P of

bipartite graphs P ij = P ij
aij

, one between each pair (Vi, Vj), where 1 ≤ i < j ≤ t, such

that H is (δ, r)-regular with respect to all but at most 2δt3 triads (Phi, Phj , P ij).

Proof. We apply the probabilistic method. For all 1 ≤ i < j ≤ t, choose an index aij ∈
{1, 2, . . . , ℓ} independently and uniformly at random. The selected indices determine a

(random) family P of
(

t
2

)

bipartite graphs. By condition (ii) of Theorem 3.2, the expected

number of (δ, r)-irregular triads of P is at most δt3ℓ3(1/ℓ)3 = δt3, and hence, by Markov’s

inequality, the probability that there are more than 2δt3 such triads is less than 1/2. Thus,

there exists a selection P with fewer than 2δt3 (δ, r)-irregular triads.

4. A long, long path

Our goal in this section is to find tight hyperpaths of given lengths connecting two

designated edges of P in an (α, δ, ℓ, r, ε)-complex (H,P ), as defined in Definition 3.1. To

distinguish the hypergraph edges from the graph edges, in this section the former will

be called hyperedges. On the other hand, as in the whole paper, we will use the name

“path” instead of “hyperpath”.

4.1. Short paths

Recall that a tight path of length m was defined as a hypergraph with vertices v1,

v2, . . ., vm+2 and the m hyperedges v1v2v3, . . ., vmvm+1vm+2. We call the (ordered) pairs

(v1, v2) and (vm+2, vm+1) the endpairs of the path, while the vertices v3, . . . , vm are called
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internal vertices. Two paths are said to be internally disjoint if they do not share any

internal vertex.

Note that the endpairs of a 3-uniform path are ordered pairs of vertices. However, in

a 3-partite 3-uniform hypergraph H on vertex set V1 ∪ V2 ∪ V3, we may designate one

cyclic orientation, say V1 → V2 → V3 → V1, as canonical, and view the endpairs of paths

as unordered pairs of vertices, or simply the edges of the underlying graph P . Then

saying that a path goes from e to f is not ambiguous and means that the endpairs of the

paths are the edges e and f directed by the canonical ordering. For example, let e = ab

and f = cd be two edges, where a, d ∈ V1, b, c ∈ V2. Then, under the above canonical

orientation, a path going from edge e to edge f is a path with the endpairs (a, b) and

(c, d).

Definition 4.1. With the convention that ijk is the canonical cyclic orientation, we

say that an ordered pair of edges (e, f), where e ∈ P ij , is of type 1 if f ∈ P jk, of type 2

if f ∈ P ik, and of type 3 if f ∈ P ij . We denote the type of (e, f) by type(e, f).

Thus, every path from e to f has some length m such that

m ≡ type(e, f) (mod 3).

Set

γ0 =
α4

5000ℓ7
.

Definition 4.2. Let e1, e2 be two edges of P and x be a positive integer. We say that

e1 γ0-reaches e2 within H if there exist at least γ0|V (H)| internally disjoint paths in H

of length 4 from e1 to e2.

For an edge e ∈ P we denote by Four+(e,H) the set of those edges of P which are

γ0-reached from e within H and by Four−(e,H) the set of all edges of P which γ0-reach

e within H (see Fig. 1). Owing to the canonical orientation in which all paths proceed,

the sets Four+(e,H) and Four−(e,H) are contained in different subgraphs P ij , and thus

are disjoint.

In [15] the following result is proved. For a subset S ⊂ V (H) a path Q ⊂ H is called

S-avoiding if V (Q) ∩ S = ∅. Given a graph G with V (G) = V (H), we denote by H − G

the sub-hypergraph of H obtained by removing from H all hyperedges containing at least

one edge of G.

Theorem 4.3 ([15]). For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ),

ε(ℓ), and n0(ℓ) such that for all integers ℓ ≥ 1 the following holds: if (H,P ) is an

(α, δ, ℓ, r(ℓ), ε(ℓ))-complex with |V1| = |V2| = |V3| = n > n0(ℓ) and

R0 =

{

e ∈ P : min
{

|Four+(e,H)|, |Four−(e,H)|
}

<
α4

2000
× n2

ℓ

}

,

then there is a subgraph P0 of at most 27
√

δn2/ℓ edges of P such that
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Vk

Vj

Vi

g

e

h

Figure 1. The fourth neighborhoods of e (g ∈ Four−(e, H), h ∈ Four+(e, H))

(i) for all e ∈ P \ P0

min
(

|Four+(e,H − P0)|, |Four−(e,H − P0)|
)

≥
(

α4

2000

)

n2

ℓ
,

and

(ii) for every ordered pair of disjoint edges (e, f) ∈ (P \R0) × (P \R0) and for every set

S ⊂ V (H) \ (e ∪ f) of size |S| ≤ n/ log n, there is in H an S-avoiding path from e

to f of length 9 + type(e, f).

Part (i) above is Lemma 4.2 in [15], while part (ii) is Theorem 3.4(ii) in [15] (see also

Remark 4.3 there). Now we formulate a useful corollary of Theorem 4.3.

Corollary 4.4. For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ), ε(ℓ), and

n0(ℓ) such that for all integers ℓ ≥ 1 the following holds: if (H,P ) is an (α, δ, ℓ, r(ℓ), ε(ℓ))-

complex with |V1| = |V2| = |V3| = n > n0(ℓ), then there is a subgraph P0 of at most

27
√

δn2/ℓ edges of P such that

(i) for all e ∈ P \ P0

|Four+(e,H)| ≥
(

α4

2000

)

n2

ℓ
,

and

(ii) for every ordered pair of disjoint edges (e, f) ∈ (P \ P0) × (P \ P0)and for every set

S ⊂ V (H) \ (e ∪ f) of size |S| ≤ n/ log n, there is in H an S-avoiding path from e

to f of length 9 + type(e, f).

Proof. Part (i) follows from Theorem 4.3(i) because Four+(e,H) ⊇ Four+(e,H −P0).

To prove part (ii), observe that, by definition of R0 and Theorem 4.3(i), we have R0 ⊆ P0,
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and thus (P \ P0) × (P \ P0) ⊆ (P \ R0) × (P \ R0). Hence, part (ii) follows from

Theorem 4.3(ii).

Let us conclude this subsection with an observation that, for a small decrease in

the size of S, the path length in Corollary 4.4(ii) may be specified to be any integer

from {10, . . . , 17}.

Claim 4.5. Under the assumptions of Corollary 4.4, for every ordered pair of disjoint

edges (e, f) ∈ (P \P0)×(P \P0), for every set S ⊂ V (H)\(e∪f) of size |S| ≤ n/ log n−12,

and for each m ∈ {10, . . . , 17}, m = type(e, f)(mod 3), there is in H an S-avoiding path

from e to f of length m.

Proof. In view of Corollary 4.4(ii), we may assume that m ≥ 13. In this case will apply

Corollary 4.4(ii) twice. First we find in H an S-avoiding path Q1 from e to f of length

m0 = 10, 11, or 12, depending on the type of (e, f). Note that m0 ≡ m(mod 3), and thus

m − m0 is divisible by three.

Consider the initial segment Q′
1 of Q1 of length m − m0, and call its other endpair e′

(note that type(e′, f) = type(e, f)). Now, find in H an (S ∪V (Q′
1)\ e′)-avoiding path Q2

from e′ to f of length m0. Then, the concatenation Q′
1 + Q2 forms in H an S-avoiding

path from e to f of length m.

4.2. Long paths

It was shown in [15] that (α, δ, ℓ, r, ε)-complexes contain long paths. Here we strengthen

that result by showing that, in fact, most pairs of edges of the underlying graph P are

connected in H by paths of any given, feasible length m, for a wide range of m.

Lemma 4.6. For each α ∈ (0, 1) there exists δ > 0 and sequences r(ℓ), ε(ℓ), and n1(ℓ)

with the following property: for all integers ℓ ≥ 1, if (H,P ) is a (dH(P ), δ, ℓ, r(ℓ), ε(ℓ))-

complex with dH(P ) ≥ α and |V1| = |V2| = |V3| = n > n1(ℓ), then there is a subgraph

P0 of at most 27
√

δn2/ℓ edges of P such that for all ordered pairs of disjoint edges

(e, f) ∈ (P \ P0) × (P \ P0), for every set S ⊂ V (H) \ (e ∪ f), |S| < n/(log n)2, and for

all integers m from the range

10 ≤ m ≤ (1 − δ1/4)(3n),

with m = type(e, f)(mod 3), there is in H an S-avoiding path from e to f of length m.

Proof. Note that unlike in Claim 4.5, here we need to construct a possibly very long

path from e to f . This will be achieved by a repeated application of Corollary 4.4(i).

There is a minor, but irritating difference, however, in the set-ups of Corollary 4.4 and

Lemma 4.6: in the former, the hypergraph density was roughly equal to α, while now

we have a hypergraph H satisfying dH(P ) ≥ α. To circumvent this technical obstacle,

we consider a random sub-hypergraph HR ⊂ H, where each hyperedge of H is present

independently with probability α/dH(P ). By Chernoff’s bound, the pair (HR, P ) is an
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(α, 2δ, ℓ, r(ℓ), ε(ℓ))-complex. Clearly, if HR contains the desired path then so does H. By

resetting H := HR and δ := δ/2, we thus reduce Lemma 4.6 to the instance when (H,P )

is an (α, δ, ℓ, r(ℓ), ε(ℓ))-complex.

Given α, let δ > 0 and the sequences r(ℓ), ε1(ℓ), and n0(ℓ) be such that Corollary 4.4

holds with δ′ = 4δ
1

4 in place of δ, r(ℓ), ε1(ℓ) in place of ε(ℓ), and n0(ℓ). Set ε(ℓ) = δ
1

4 ε1(ℓ).

Assume also that

27
√

4δ
1

4 <
α4

2000
. (4.1)

We will prove Lemma 4.6 with the above choice of δ, r(ℓ) and ε(ℓ), and with a choice

of n1(ℓ) ≥ n0(ℓ) such that for all ℓ ≥ 1 and n ≥ n1(ℓ) all inequalities encountered in

the proof below hold true. Let (H,P ) be an (α, δ, ℓ, r(ℓ), ε(ℓ))-complex and P0 = P0(H)

be given by Corollary 4.4, where |V1| = |V2| = |V3| = n > n1 = n1(ℓ). Let us fix an

ordered pair of disjoint edges (e, f) ∈ (P \ P0) × (P \ P0), and a set S ⊂ V (H) \ (e ∪ f),

|S| < n/(log n)2. Finally, fix an integer m from the range 10 ≤ m ≤ (1 − δ1/4)(3n), with

m ≡ type(e, f)(mod 3).

Our goal is to show that there exists an S-avoiding path from e to f of length m.

Without loss of generality, let us assume that type(e, f) = 3, e = ab ∈ P 12 and f = cd ∈
P 12, where a, d ∈ V1 and b, c ∈ V2.

The plan is to first grow, by recursive application of Corollary 4.4(i), two disjoint S-

avoiding paths Qe and Qf of equal length m′, one from e, the other from f , until their

total length 2m′ reaches roughly m. Then, making sure that 10 ≤ m − 2m′ ≤ 17, we

will use Claim 4.5 to connect the other endpairs of these two paths to form in H an

S-avoiding path from e to f of length precisely m.

The two “parallel” paths will be grown recursively, in increments of four, using the

property of the sets Four+(e′,H) and Four+(f ′,H), where e′ and f ′ will denote the

current endpairs. Thus, we must take care to always choose the extending paths so that

the new endpairs are outside the exceptional set P0 of the current sub-hypergraph. To this

end, at any given step of this procedure, we will have to consider two sub-hypergraphs

defined as follows.

Given two disjoint paths, Qe from e and Qf from f , of equal length m′, let H ′ =

H ′(Qe, Qf ) be the sub-hypergraph obtained from H by deleting all vertices of Qe and

Qf , except for the last four from each path (if m′ ≤ 4, we set H ′ = H). Further, let the

sub-hypergraph H ′′ = H ′′(Qe, Qf ) be obtained from H by deleting all vertices of Qe and

Qf (no exceptions). Set also P ′ = P [V (H ′)] and P ′′ = P [V (H ′′)]. As long as
∣

∣V (Qe) ∪ V (Qf )
∣

∣ = 2m′ <
(

1 − δ1/4
)

(3n),

the hypergraphs H ′ and H ′′ have at least δ1/4n vertices in each set Vi, i = 1, 2, 3, and so,

the pairs (H ′, P ′) and (H ′′, P ′′) are (α, 4δ
1

4 , ℓ, r, ε/δ
1

4 )-complexes (see, e.g., [17], Fact 4.2).

Let P ′
0 and P ′′

0 be the subgraphs of P ′ and P ′′, respectively, guaranteed by Corollary 4.4.

As a next step in the proof of Lemma 4.6, we show that two long paths can be grown

from e and f . Their length m′, due to the chosen method of construction, will be a

multiple of four.

Fact 4.7. For every 0 ≤ m′ < 1
2 (1 − δ1/4)(3n), m′ divisible by four, there exists in H
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a pair of disjoint S-avoiding paths Qe and Qf of length m′, originating from e and f ,

respectively, and such that their other endpairs are not in P ′
0 .

Proof. We proceed by induction on m′. There is nothing to prove for m′ = 0. Let Qe

and Qf be a pair of disjoint S-avoiding paths, one from e and the other from f , of the

same length m′ ≥ 0, m′ divisible by four, and such that their other endpairs, e′ and f ′,

are not in P ′
0. (If m′ = 0, we set e′ = e and f ′ = f .) We will now show how to extend Qe

and Qf to a new pair of paths Q′
e and Q′

f of length m′ +4, thus completing the inductive

step. (The reader may be guided throughout by Fig. 2.)

Noticing that |V (H ′′)| < |V (H ′)| and ε/δ
1

4 = ε1(ℓ), by Corollary 4.4 applied to H ′′

we have

|P ′′
0 | ≤ 27

√

4δ
1

4

⌈|V (H ′′)|/3⌉2
ℓ

< 27
√

4δ
1

4

⌊|V (H ′)|/3⌋2
ℓ

. (4.2)

On the other hand, by Corollary 4.4(i) applied to H ′ and by the fact that e′ ∈ P ′ \ P ′
0,

we infer that the edge e′ γ0-reaches at least

α4

2000

⌊|V (H ′)|/3⌋2
ℓ

other edges of P ′ within H ′. Therefore, since n > n1, by (4.2) and (4.1), e′ γ0-reaches at

least |P ′′
0 | + 2|V (H ′)| other edges of P ′ within H ′, where the term 2|V (H ′)| takes care

of all edges adjacent to the two vertices of the set

Te = V (H ′) ∩ V (Qe) \ e′.

Consequently, there exists at least one edge e′′ ∈ P ′′ \ P ′′
0 which is γ0-reached from e′

within H ′, that is, there are at least γ0|V (H ′′)| internally disjoint paths from e′ to e′′ of

length four in H ′. Thus, since n > n1, at least one of them avoids S ∪ Te, and we may

extend Qe by four vertices, so that the new path Q′
e ends in e′′ 6∈ P ′′

0 .

We now similarly extend Qf by four vertices, so that the new path Q′
f is disjoint

from Q′
e, avoids S, and ends in f ′′ 6∈ P ′′

0 . Since H ′′ = H ′(Q′
e, Q

′
f ), and so P ′′

0 =

P0(H ′(Q′
e, Q

′
f )), the pair of paths (Q′

e, Q
′
f ) satisfies all conditions required in Fact 4.7.

Now comes the final, gluing part of the proof of Lemma 4.6. First, we have to choose

the right length m′ of the paths Qe and Qf guaranteed by Fact 4.7. Since their total

length 2m′ is divisible by eight, it is convenient to represent m in the form

m = 8k + h,

where 0 ≤ h ≤ 7. Note that in view of Claim 4.5, there is nothing to prove when

k = 1, or k = 2 and h ≤ 1. If k ≥ 2 and h ≥ 2, we need m′ = 4(k − 1) because then

m− 2m′ = 8 + h ∈ {10, . . . , 15}. Similarly, when k ≥ 3 and h ≤ 1, we need m′ = 4(k− 2)

(this time m − 2m′ = 16 or 17).

Let

Tf = V (H ′) ∩ V (Qf ) \ f ′.

We connect e′ and f ′ by a path Qe′f ′ in H ′ of length precisely m − 2m′ ∈ {10, . . . , 17},
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Vk

H ′ = H ′(Qe, Qf )

Qf

Qe

H ′′ = H ′′(Qe, Qf )

Q′
f

Q′
e

c

d

f

e

f ′

e′

f ′′

e′′

a

b

Figure 2. Growing hyperpaths from e and f (illustration to the proof of Lemma 4.6).

which avoids the set S ∪ Te ∪ Tf . This follows from Claim 4.5 above. The concatenation

Qe + Qf + Qe′f ′ forms in H an S-avoiding path from e to f of length m, as required.

5. Proof of Theorem 1.1(b)

In Sections 5.1-5.4 we prove Theorem 1.1(b) for C
(3)
3n and then, in Section 5.5, we explain

how to adjust the proof to obtain Theorem 1.1(b) in the remaining cases of C
(3)
3n+1 and

C
(3)
3n+2.

5.1. The choice of constants and the use of the regularity lemma

Let η > 0 be given. Set α = 1/2 and let δ′, r(ℓ), ǫ(ℓ), n1(ℓ) be as guaranteed by

Lemma 4.6. Let δ′′ = δ(η/2) and s0 = s0(η/2) be given by Lemma 2.1. Envisioning an

application of Theorem 3.2, we set

δ = min

{

δ′

2
,
δ′′

40

}

, (5.1a)

t0 = max
{

δ−100, 5s0

}

, (5.1b)

and

r(t, ℓ) = r(ℓ). (5.1c)

Theorem 3.2 yields integers L0, T0, N0 from which we derive

N1 = max

{

2T0 max
ℓ≤L0

n1(ℓ), N0

}

.

Now, for an arbitrary n > 1
4N1, consider a red-blue coloring K

(3)
N = Hred ∪Hblue, where

N = (4 + η)n > N1 ≥ N0.
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We apply the hypergraph regularity lemma (Theorem 3.2) with parameters given by

(5.1a)-(5.1c) to Hred (and Hblue), yielding a partition Π satisfying conditions (i) and (ii)

of Theorem 3.2. In particular, this determines the values of t and ℓ. Note that |V1| =

|V2| = · · · = |Vt| > (N − T0)/T0 > n1(ℓ).

By Claim 3.3, setting ε = ε(ℓ), there exists a family P of (1/ℓ, ε)-regular, bipartite

graphs P ij = P ij
aij

between pairs (Vi, Vj), where 1 ≤ i < j ≤ t, such that Hred (and,

by complement, Hblue) is (δ, r(t, ℓ))-regular with respect to all but at most 2δt3 triads

P ijk = P ij ∪ P jk ∪ P ik. Setting r = r(t, ℓ), we will more concisely call these triads

(δ, r)-regular.

Note that if P ijk is a (δ, r)-regular triad then

(Hred, P ijk) is a (dHred
(P ijk), δ, ℓ, r, ε)-complex

and

(Hblue, P
ijk) is a (dHblue

(P ijk), δ, ℓ, r, ε)-complex.

Moreover, since

dHred
(P ijk) + dHblue

(P ijk) = 1, (5.2)

either dHred
(P ijk) ≥ 1/2 or dHblue

(P ijk) ≥ 1/2. (This is what we meant in Section 2.4

by a “well structured” sub-hypergraph.)

5.2. Finding a monochromatic pseudo-path in K

We construct the cluster hypergraph K with the vertex set {1, . . . , t}, and the edge set

consisting of all triples {i, j, k} such that the triad P ijk is (δ, r)-regular. Note that K

contains at least
(

t

3

)

− 2δt3 > (1 − δ′′)

(

t

3

)

edges, where the inequality follows by (5.1a).

With the ultimate goal of finding a monochromatic cycle C
(3)
n , we first design a “big

picture” route (as a pseudo-path in K) that the monochromatic cycle will eventually

follow.

To this end, define a red-blue coloring K = Kred ∪Kblue of the cluster hypergraph K,

by including {i, j, k} ∈ Kred if

dHred
(P ijk) ≥ 1/2

and {i, j, k} ∈ Kblue otherwise. By (5.2), this coloring is well defined.

By Lemma 2.1 with η/2 in place of η, there exists in Kred, say, a connected matching

M = {h1, . . . , hs} of size s = t/(4 + η/2). Let Qi, i = 1, . . . , s − 1, be a shortest pseudo-

path in Kred from hi to hi+1. Note that the edges of each Qi are all distinct, and thus

the length ℓi of Qi satisfies the bound ℓi ≤
(

t
3

)

, which is independent of n.

Given two pseudo-paths P and Q, where the last edge of P coincides with the first

edge of Q, P + Q stands for the concatenation of P and Q. The pseudo-path

Q = Q1 + · · · + Qs−1 = (e1, . . . , ep)

will serve as “a frame” for the long red cycle in Hred.
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5.3. Creating a short monochromatic cycle in H

For every i = 1, . . . , p, let P i = P ei be the triad corresponding to a cluster edge ei. Recall

that all these triads are (δ, r)-regular. Let P i
0 ⊂ P i be the subgraph of P i (of prohibited

edges) given by Lemma 4.6 applied to the complex (Hred, P i), and, for i = 1, . . . , p − 1,

set

Bi = (P i \ P i
0) ∩ (P i+1 \ P i+1

0 ).

Choose mutually distinct edges fi, gi ∈ Bi for 1 ≤ i ≤ p − 1. The bound on |P i
0| from

Lemma 4.6 ensures that for sufficiently large n this is possible.

In the next step of our construction, applying repeatedly Claim 4.5, we create a short

cycle C in Hred of length divisible by 3. To this end, we connect by disjoint paths of length

10, 11, or 12, f1 to f2 to f3 . . . to fp−1 to gp−1 and then, “backward”, gp−1 to gp−2 . . .

to g1 to f1.

For the passages from fp−1 to gp−1 and from g1 to f1, we choose the triads P p and

P 1, respectively, while for all i = 1, . . . , p − 2, the paths from fi to fi+1 and from gi+1

to gi use the triad P i+1.

We have a choice of the direction around P 2 in which we connect f1 to f2, but then

all other directions are determined. For the types to be well defined (cf. Definition 4.1),

we need to designate one orientation around each triad as canonical. For convenience,

we declare canonical the orientation consistent with the direction in which our paths

proceed.

Note that for each i = 1, . . . , p− 2, the paths from fi to fi+1 and from gi+1 to gi go in

the same, canonical by now, direction around P i+1. Hence,

type(fi, fi+1) + type(gi+1, gi) = 1 + 2 = 0(mod 3). (5.3)

Since also

type(g1, f1) = type(fp−1, gp−1) = 0(mod 3),

the obtained short cycle C has length divisible by 3.

To keep the paths disjoint, we apply Claim 4.5 with the set S collecting the vertices of

the so far constructed paths. Since |S| ≤ 12(2p) < n/ log n, the assumptions on the size

of S in Claim 4.5 are satisfied. For future reference, we denote by R1 the just created

short path from g1 to f1, by Ri+1, i = 1, . . . , p− 2, the paths from fi to fi+1, and by Rp

the path from fp−1 to gp−1.

5.4. Creating a monochromatic cycle of length 3n

Preparing for the final step, let

I = {1, ℓ1, ℓ1 + ℓ2 − 1, . . . , p}.

Observe that |I| = s and that M = {h1, . . . , hs} = {ei : i ∈ I}.

To complete the proof, we replace the short paths Ri, i ∈ I, in C by disjoint, long

paths with the same endpairs as the Ri’s, which lie in the same triads (and thus, have the

same length modulo 3 as the Ri’s), in such a way that the total length of the obtained

cycle is 3n.

Specifically, let m′ be the length of C, minus the sum of the lengths of all paths Rj
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with j ∈ I. Furthermore, for each i ∈ I, i 6= p, let

mi =

⌊

3n − m′

s

⌋

+ xi,

where xi = 0, 1, or 2, so that

mi − type(fi, fi+1) = 0(mod 3).

For each i ∈ I, i 6= 1, p, we apply Lemma 4.6 to the complex (Hred, P i+1), with e = fi,

f = fi+1, S = V (C) \ (e ∪ f) (note that |S| = O(1)), and with m = mi. As a result, we

obtain paths Ti from fi to fi+1 of length mi, i ∈ I, i 6= 1, p, and, similarly, a path T1

from f1 to g1 of length m1. To achieve precisely the length 3n for the final cycle, we take

a path Tp from fp−1 to gp−1 of length

mp = 3n −



m′ +
∑

i∈I\{p}

mi



 .

This is possible, because for large n

10 ≤ mp ≤ 3n

s
+ O(1) ≤ (1 − δ1/4)3

⌊

N

t

⌋

,

and Lemma 4.6 can again be applied. Since the edges of M are vertex-disjoint, the paths

Ti do not interfere with each other.

5.5. Adjustment to lengths 3n + 1 and 3n + 2

In order to prove the second part of Theorem 1.1(b), we first choose the constants in the

same way as in Section 5.1, then apply the hypergraph regularity lemma (Theorem 3.2) to

the red-blue colored K(6+η)n = Hred∪Hblue, from which we obtain the cluster hypergraph

K.

Next, we color the edges of K with red and blue as in Section 5.2 and then use

Lemma 2.2 to find, say, in Kred a connected union of a matching M = {h1, . . . , hs} of

size s = t/(6 + η/2) and a copy D of C
(3)
4 or C

(3)
5 . Below we consider only the case when

D = C
(3)
4 , leaving the other case to the reader.

We use the approach from Section 5.3 to obtain a red copy of C
(3)
3n+1 [or C

(3)
3n+2]. Let,

as before, Qi, i = 1, . . . , s − 1, be a shortest red pseudo-path from hi to hi+1, and, in

addition, let Qs be the shortest red pseudo-path from hs to an edge of D. The pseudo-

path

Q = Q1 + · · · + Qs = (e1, . . . , ep)

will now serve as a frame for the desired red cycle in Hred.

We define P i, P i
0, Bi and mutually distinct edges fi, gi ∈ Bi for 1 ≤ i ≤ p−1 as before.

Relying on Claim 4.5, we construct first the short paths as before, except that now the

path Rp from fp−1 to gp−1 has to be of length equal to 1 [or 2] modulo 3. To ensure this,

we build Rp out of 4 pieces, one in each triad constituting D, each piece connecting a

pair of edges of type 1 [or 2].

More specifically, let V (D) = {a, b, c, d}, where ep = {a, b, c} and {a, b} ⊂ ep−1. Let us
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choose disjoint, typical (that is, not belonging to respective prohibited subgraphs P xyz
0 )

edges from the intersections of consecutive triads: fbc ∈ P abc ∩ P bcd, fcd ∈ P bcd ∩ P cda,

and fda ∈ P cda ∩ P dab.

By Claim 4.5, going around each triad alphabetically, there are internally disjoint paths

of length 10, connecting fp−1 to fbc to fcd to fda to gp−1. This settles the case i = 1. For

i = 2, we build paths of length 11, connecting fp−1 to fda to fcd to fbc to gp−1.

Finally, using Lemma 4.6, some s paths Ri, corresponding to the edges of M , are

replaced by long paths Ti, in exactly the same way as in Section 5.4. Of course, we now

adjust the length of the last path, so that the length of the resulting cycle is exactly

3n + 1 [or 3n + 2].

6. Matchings in components (idealized)

In this section we prove a version of Lemma 2.1 with η = δ = 0. There are two reasons

for doing this. Firstly, we exhibit here all essential ingredients of the real proof given

in Section 8, not hidden under the burden of tedious estimations. Secondly, the result

we present here is interesting in its own right, as dealing with a “connected” version

of the classical Ramsey number r(M
(3)
s ) = 4s − 1. It turns out that this Ramsey num-

ber is not affected by the additional restriction that the matching must be contained

in a monochromatic component. Interestingly, besides the extremal coloring of K
(3)
4s−2

described in the proof of Theorem 1.1(a), which prevents any monochromatic matching

of size s, there is another one which contains monochromatic matchings of size s, but

not externally connected (see Example 1 in Section 2.2).

Theorem 6.1. In every red-blue coloring of the complete 3-uniform hypergraph K
(3)
4s−1 =

Kred ∪ Kblue, either Kred or Kblue contains an externally connected matching M
(3)
s .

The connectedness and components of a hypergraph H were defined in Section 2.2.

Denote by ∂H the set of all pairs xy for which there exists z such that xyz ∈ H (∂H

is usually referred to as the shadow of H). We find it convenient to view ∂H as both a

graph and a set of pairs of the vertices of H. Observe that

∂H ′ ∩ ∂H ′′ = ∅ for any two distinct components H ′,H ′′ of H. (6.1)

In particular, any two edges of the same color (say red), sharing two vertices must be in

the same red component.

Set t = 4s − 1, K = K
(3)
t , V = V (K), and consider an arbitrary red-blue coloring

K = Kred ∪ Kblue. Our goal is to find M
(3)
s in some component of Kred or Kblue. We

start our proof with two observations.

Observation 6.2. For every x ∈ V there exists a monochromatic component C such

that {xy : y ∈ V \ {x}} ⊆ ∂C.

Proof. Let Kred(x) := {yz : xyz ∈ Kred} and Kblue(x) := {yz : xyz ∈ Kblue}. Since

every edge of K is colored by only one color, Kblue(x) is the complement of Kred(x),
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and consequently, one of these two graphs must be connected. Suppose that Kred(x) is

connected. Then, for every two vertices y, z ∈ V \{x} there is a path y = x1, x2, . . . , xk =

z in Kred(x) which corresponds to a red pseudo-path e1, e2, . . . , ek−1, where ei = xxixi+1,

i = 1, . . . , k− 1. This pseudo-path connects xy with xz in Kred, and hence, there is a red

component C such that xy, xz ∈ ∂C.

For each x ∈ V let us choose arbitrarily one component satisfying the condition in

Observation 6.2 and denote it by Cx. Let Vred = {x ∈ V : Cx is red} and Vblue = {x ∈
V : Cx is blue}. Note that V = Vred ∪ Vblue and these two sets are disjoint.

Observation 6.3. If Vred 6= ∅ (Vblue 6= ∅, respectively), then there is a red component S

(a blue component A) such that Cx = S for every x ∈ Vred (Cx = A for every x ∈ Vblue).

Proof. This observation is trivial if |Vred| = 1. Suppose |Vred| ≥ 2 and let x, x′ ∈ Vred.

Then xx′ ∈ ∂Cx ∩ ∂Cx′ , and, by (6.1), we have Cx = Cx′ .

Components A and S will play a special role, and we will refer to them as azure (A) and

scarlet (S).

The next two claims form a mechanism to build an externally connected matching in

one color given an externally connected matching of the same size in the other color (see

Lemma 6.7). Clearly, the colors in their statements can be interchanged.

Claim 6.4. Let X = {x, y, z, a, b, c, d} ⊂ V be a set of seven vertices. Suppose that xyz

is an edge of some red component Cred and ya, zb ∈ ∂Cblue for some blue component

Cblue. Then at least one of the following holds.

(1) X contains two disjoint edges of Cred,

(2) there is an edge e ⊂ X in Cblue such that |e ∩ {a, b, c}| = 1 and |e ∩ {x, y, z}| = 2,

(3) X contains two disjoint edges of Cblue.

Proof. Suppose that neither (1) nor (2) holds. Then both xya ∈ Cred and xzb ∈ Cred,

and, consequently, ya, zb ∈ ∂Cred. Thus, if zbc or yad were red, they would belong to

Cred. Since xya ∈ Cred, this implies that the edge zbc has to be blue, and thus zbc ∈ Cblue

(because zb ∈ ∂Cblue). Similarly, since xzb ∈ Cred, the edge yad has to be blue, and thus

yad ∈ Cblue (because ya ∈ ∂Cblue), yielding (3).

Claim 6.5. Let X = {u, v, w, x, y, z, a, b, c} ⊂ V be a set of nine vertices. Suppose that

uvw and xyz are edges of some red component Cred and ya, zb, vb, wc ∈ ∂Cblue for some

blue component Cblue. Then at least one of the following holds.

(1) X contains three disjoint edges of Cred,

(2) there is an edge e in Cblue such that |e ∩ {a, b, c}| = 1 and either |e ∩ {x, y, z}| = 2,

or |e ∩ {u, v, w}| = 2,

(3) there are two disjoint edges in Cblue such that both of them intersect each of {x, y, z},
{u, v, w}, and {a, b, c} in one vertex.



20 P.E. Haxell et al.

Proof. If (2) does not hold, then the edges xzb, vwc, uwc and yza are all red (because

ya, zb, wc ∈ ∂Cblue), and thus in Cred (because xyz, uvw ∈ Cred). Consider the edges

yua and xvb. If either of them is red, then it has to be in Cred (because ya, xb ∈ ∂Cred),

yielding (1), as xzb, vwc, and yua are disjoint and in Cred, and so are uwc, yza and xvb.

If both yua and xvb are blue, then they belong to Cblue (because ya, vb ∈ ∂Cblue). Hence

(3) holds.

Remark 6.6. Note that for the proofs of Claims 6.4 and 6.5 it is not essential that

K is a complete hypergraph. In the case of Claim 6.4, we just need to assume that all

triples of vertices within X, intersecting simultaneously {x, y, z} and {a, b, c, d}, are edges

of K. In the case of Claim 6.5, all triples of vertices within X, having two vertices in

{u, v, w, x, y, z} and one in {a, b, c}, must be edges of K. This observation will be used

in the full proof of Lemma 2.1 in Section 8.

Our last preliminary result relies heavily on the two previous claims. Essentially, it

says that given a maximal matching in a red component, one can construct a matching

in a blue component of roughly the same size.

Lemma 6.7 (The Mirror Lemma). Let M be a largest matching in a red component

Cred and let P be a set of at least |M |+3 vertices outside M . Assume further that for some

blue component Cblue and for every e ∈ M , the bipartite induced subgraph ∂Cblue[e, P ] of

∂Cblue contains K2,|P |−1. Moreover, setting G = ∂Cblue[V (M), P ], let J be an arbitrary,

non-empty subset of P such that

J ⊇
{

v ∈ P : degG(v) < |V (M)|
}

.

Then there exists a matching M ′ ⊂ Cblue such that either

(i) |M ′| = |M |,
(ii) |V (M ′) ∩ P | ≤ |M |, and

(iii) (P \ V (M ′)) ∩ J 6= ∅,
or

(iv) |M ′| = |M | + 1, and

(v) |V (M ′) ∩ P | ≤ |M | + 3.

Proof. Let M ′′ ⊂ Cblue be a largest matching such that

• |V (M ′′) ∩ P | ≤ |M ′′|,
• V (M ′′) intersects at most |M ′′| edges of M ,

• (P \ V (M ′′)) ∩ J 6= ∅.

(6.2)

We claim that |M ′′| ≥ |M | − 1. Indeed, suppose |M ′′| ≤ |M | − 2. It follows that there

exist e1, e2 ∈ M so that (e1 ∪ e2) ∩ V (M ′′) = ∅. Set P ′′ = P \ V (M ′′). Since

|P ′′| = |P | − |P ∩ V (M ′′)| ≥ |M | + 3 − (|M | − 2) = 5,

one can choose a, b, c ∈ P ′′ so that ∂Cblue[ei, {a, b, c}] ⊃ K2,3 for i = 1, 2, and (P ′′ \
{a, b, c})∩ J 6= ∅. This is always possible because, for each e1 and e2, at most one vertex
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of P can be excluded from the copy of K2,|P |−1 guaranteed by the assumptions, and

these excluded vertices must belong to J . (If no vertex is excluded, then we can simply

choose a, b, and c so that a vertex of J remains in P ′′ \ {a, b, c}.)

Claim 6.5, applied to X = e1 ∪ e2 ∪ {a, b, c}, implies that we can either enlarge M

in Cred (if (1) of Claim 6.5 occurs) or M ′′ in Cblue with conditions (6.2) preserved (if

(2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of M or M ′′,

respectively.

Hence |M ′′| ≥ |M | − 1. If |M ′′| ≥ |M |, we are done. Otherwise, let xyz ∈ M be such

that {x, y, z} ∩ V (M ′′) = ∅. Since

|P ′′| ≥ |M | + 3 − (|M | − 1) = 4,

one can choose a, b, c ∈ P ′′ so that ∂Cblue[e, {a, b, c}] ⊃ K2,3 and (P ′′ \ {a, b, c}) ∩ J 6= ∅.

We apply Claim 6.4 to the set X = {x, y, z, a, b, c, d}, where d ∈ P ′′ \{a, b, c} is arbitrary.

By the maximality of M in Cred, (1) cannot hold. If (2) holds, we enlarge M ′′ by adding

the edge e, obtaining a matching M ′ satisfying conditions (i), (ii), and (iii). If conclusion

(3) holds, we enlarge M ′′ by adding two disjoint edges, obtaining a matching M ′ satisfying

conditions (iv) and (v).

Proof of Theorem 6.1 Let M be a largest matching among all matchings contained

in S or A. Without loss of generality we assume that ∅ 6= M ⊂ S. This implies that

Vred 6= ∅, but Vblue might be empty. Suppose that

1 ≤ m = |M | ≤ s − 1 (6.3)

and set

R = Vred \ V (M) and B = Vblue \ V (M). (6.4)

Note that R ∩ B = ∅,

t = 4s − 1 = 3m + |R ∪ B|, (6.5)

and consequently, using also (6.3),

|R ∪ B| = 4s − 1 − 3m ≥ s + 2 ≥ m + 3 ≥ 4. (6.6)

Observation 6.8. All edges in R ∪ B with at least one vertex in R are blue, and

therefore in the same blue component Cblue. Furthermore, if B 6= ∅, then Cblue = A.

Proof. Note that any red edge with at least one vertex in R is in the scarlet component

S and, if disjoint from V (M), could be used to enlarge M . Hence, all edges from the set

T = {e ⊂ R ∪ B : e ∩ R 6= ∅} must be blue. Moreover, every pair of edges from T is

connected by a pseudo-path in T , and thus, they all belong to the same blue component.

The second part follows because any blue edge containing a vertex from Vblue also contains

a pair from A (see Observation 6.3).

For the rest of the proof we distinguish three cases. In each of them, the Mirror Lemma

plays a central role. However, we need its technical conclusion (iii) only in the third case.
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Case 1: B = ∅
In this case, R ∪ V (M) = V and thus |R| = t − 3m ≥ m + 3 ≥ 4. Denote by Cblue the

blue component guaranteed by Observation 6.8.

Observation 6.9. For every edge e ∈ M , the bipartite induced subgraph ∂Cblue[e,R]

of ∂Cblue contains K2,|R|−1 as a subgraph.

Proof. Suppose there is an edge xyz ∈ M and two vertices a, b ∈ R such that xa and

yb 6∈ ∂Cblue. Let c, d ∈ R \ {a, b} (recall that |R| ≥ 4). Note that, by Observation 6.8,

ac, bd ∈ ∂Cblue, and thus edges xac and ybd must be red.

Since ax, by ∈ ∂S, we have that xac, ybd ∈ S. Consequently, (M \ {xyz}) ∪ {xac, ybd}
is a red matching in S larger than M – a contradiction.

Now we apply Lemma 6.7 with P = R (recall that |R| ≥ m + 3), obtaining a matching

M ′ ⊂ Cblue either of size m and with |V (M ′) ∩ R| ≤ m, or of size m + 1 and with

|V (M ′) ∩ R| ≤ m + 3. Note that by (6.3)

|R \ V (M ′)| ≥
{

4s − 1 − 3m − m ≥ 3(s − m) in the former case,

4s − 1 − 3m − (m + 3) ≥ 3(s − m − 1) in the latter case.

This allows us in either case to enlarge M ′ to size s. Indeed, since all edges contained in R

are in Cblue (cf. Observation 6.8), we can greedily find s − m or s − m − 1, respectively,

disjoint edges from Cblue and add them to M ′.

Case 2: R = ∅
In this case, B ∪ V (M) = V and thus |B| = t − 3m ≥ m + 3 ≥ 4. Since B 6= ∅,

the azure component component A exists. Furthermore, by the definition of Vblue and

(6.4), we know that for every e ∈ M the bipartite subgraph ∂A[e,B] of ∂A is complete.

Thus, by the Mirror Lemma applied with P = B, we obtain a matching M ′ ⊂ A of

size |M ′| = m and such that |V (M ′) ∩ B| ≤ m. (A matching of size m + 1 in the azure

component A is impossible by our choice of M .)

Note that |B \ V (M ′)| ≥ 4s− 1− 3m−m ≥ 3. We claim that R′ := Vred \ V (M ′) = ∅.

Indeed, suppose that R′ 6= ∅. Take any three vertices a, b, c ∈ B \ V (M ′) and d ∈ R′

(observe that d 6∈ B \ V (M ′) because R′ ⊂ Vred in this case). Since ab ∈ ∂A (because

a ∈ Vblue), both abc and abd are red (otherwise we could enlarge M ′ to size m + 1).

But ad ∈ ∂S (because d ∈ Vred), therefore abd ∈ S and, consequently, abc ∈ S. Since

{a, b, c} ∩ V (M) = ∅, we can enlarge M , which is a contradiction.

Thus R′ = ∅ and we are back in Case 1 with the colors red and blue interchanged and

M replaced by M ′.

Case 3: |B|, |R| ≥ 1

Set P = R ∪ B and note that, by (6.6), we have |P | ≥ m + 3. Since B 6= ∅, the blue

component guaranteed by Observation 6.8 is Cblue = A. In particular, for all pairs of

vertices a, b ∈ P we have ab ∈ ∂A.

Observation 6.10. For every e ∈ M , the bipartite induced subgraph ∂A[e, P ] of ∂A

contains K2,|P |−1 as a subgraph.
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Proof. The proof follows the lines of the proof of Observation 6.9. Suppose there is

an edge xyz ∈ M and two vertices a, b ∈ P such that xa, yb 6∈ ∂A. Note that, in fact,

a, b ∈ R because ∂A[e,B] is the complete bipartite graph. Recall that |P | ≥ 4 by (6.6),

and choose arbitrarily c, d ∈ P \ {a, b}. Since ac, bd ∈ ∂A, edges xac and ybd must be

red.

On the other hand, by the definition of Vred, we also have ax, by ∈ ∂S, so xac, ybd ∈ S.

Hence, (M \ {xyz})∪{xac, ybd} is a red matching in S larger than M – a contradiction.

We apply the Mirror Lemma with Cred = S, Cblue = A, P = R ∪B, and J = R. Let M ′

be a matching in A satisfying conclusions (i)-(iii) (again, option (iv)-(v) is excluded by

the choice of M). We have

|P \ V (M ′)| ≥ 4s − 1 − 3m − m ≥ 3.

By conclusion (iii), we can choose a, b, c ∈ P \ V (M ′) so that c ∈ R. Hence, the pair

ac ∈ ∂S. Also, recall that ac ∈ ∂A. So abc ∈ S if it is red and abc ∈ A if it is blue.

Since {a, b, c} is disjoint from both V (M) and V (M ′), we obtain either a matching of

size |M | + 1 in S or a matching of size |M ′| + 1 = |M | + 1 in A. Either case contradicts

the maximality of M among all matchings contained in S or A.

7. Matchings and short cycles in components (idealized)

In this section we prove a version of Lemma 2.2 with δ = 0, and with the term ηs

replaced by Ω(
√

s). The main reason for doing this is, similarly to the previous section,

to show the ideas of the proof clearly and without tiring calculations. A complete proof

of Lemma 2.2 is not included in this paper, but can be found in [12].

Theorem 7.1. There exists c0 such that the following holds. Let s ≥ c2
0 and let K be

the complete 3-uniform hypergraph with t ≥ 6s + c0
√

s vertices. Then, for every red-blue

coloring K = Kred ∪ Kblue, either Kred or Kblue contains an externally connected union

of a matching M
(3)
s and a cycle C

(3)
4 or C

(3)
5 .

Please note that the above theorem determines only the asymptotic value of the Ramsey

number for a connected union of a matching M
(3)
s of size s and a copy of C

(3)
4 or C

(3)
5

(we do not require them to be disjoint). At this point we do not know whether the lower

bound of 6s + 2i − 1 given in Sections 2.1 and 2.3 is optimal.

Proof. Let c0 = 25
√

7, s ≥ c2
0, and let K be the complete 3-uniform hypergraph with

t = 6s + c0
√

s vertices. For simplicity, we assume that 6s + c0
√

s is an integer and note

that t ≤ 7s. Suppose that for an arbitrary red-blue coloring K = Kred ∪ Kblue

no monochromatic component contains M (3)
s and C

(3)
4 or C

(3)
5 . (7.1)

Recall that the sets Vred and Vblue, and the scarlet component S and the azure compo-

nent A were defined in Section 6. We distinguish two complementary cases, and in each
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of them we obtain a contradiction to (7.1) or its consequence, (7.2) below. In each case

we use the fact that r(C
(3)
4 ) = 13 (see [16]).

Case 1: |Vred|, |Vblue| ≥ s.

In this case we are able to prove Theorem 7.1 even with t = 6s − 1 and s ≥ 37. We

first prove that each of S and A contains a matching M
(3)
s .

Observation 7.2. M
(3)
s ⊂ A and M

(3)
s ⊂ S.

Proof. Partition the set of vertices V (K) := V into sets V ′, V ′
red, V ′

blue such that

V ′
red ⊂ Vred, |V ′

red| = s, V ′
blue ⊂ Vblue, |V ′

blue| = s, and V ′ = V \ (V ′
red ∪ V ′

blue).

Since |V ′| ≥ 6s − 1 − 2s ≥ 4s − 1, Theorem 6.1 applied to the induced red-blue

coloring Kred[V ′] ∪ Kblue[V
′] of K[V ′] implies that there exists a matching M = M

(3)
s

in a component (say red) Cred of Kred. (This is true because each component of any

sub-hypergraph of Kred is contained in some component of Kred.)

By (7.1) we know that C
(3)
4 6⊂ Cred. Consequently, for each edge xyz ∈ M and any

vertex a ∈ V ′
blue, at least one of the edges xya, xza, yza must be blue and also in A,

since a ∈ V ′
blue. Thus, using all s vertices of V ′

blue and s edges of M , we greedily find a

matching of size s in A. Using (7.1) again, we have C
(3)
4 6⊂ A. Replacing Cred with A,

Vblue with V ′
red, A with S, and interchanging colors red and blue in the argument above,

we obtain a matching of size s in S.

In view of Observation 7.2, it follows from (7.1) that

C
(3)
4 6⊂ A and C

(3)
4 6⊂ S. (7.2)

Observation 7.3. For every pair of vertices xy ∈
(

Vred

2

)

there exist at most twelve

vertices z ∈ Vblue such that xyz is blue (and therefore in A).

Proof. Suppose there is a pair xy ∈
(

Vred

2

)

and 13 vertices z1, . . . , z13 ∈ Vblue so that

xyzi ∈ A for i = 1, 2, . . . , 13. Since r(C
(3)
4 ) = 13, the sub-hypergraph induced in K by

z1, . . . , z13 contains a monochromatic copy C of C
(3)
4 .

On the one hand, all pairs zizj are in ∂A, because zi, zj ∈ Vblue. Therefore, if C was

blue then C ⊂ A – a contradiction to (7.2). On the other hand, all edges xyz, where

z ∈ V (C), are in A by our assumption. In order to avoid a copy of C
(3)
4 in A, one of the

edges xzz′, yzz′, where z, z′ ∈ V (C), must be red. Since x, y ∈ Vred, such an edge is in S,

and we have zz′ ∈ ∂S. Hence, if C was red, then C ⊂ S – again a contradiction to (7.2).

Observation 7.4. Every triple of vertices in Vred is blue and, consequently,
(

Vred

3

)

⊂
C ′

blue for some blue component C ′
blue.

Proof. By Observation 7.3, for all x, y, z ∈ Vred, there are at most 3 × 12 vertices
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a ∈ Vblue so that one of the edges xya, xza, yza is blue. Since |Vblue| ≥ s ≥ 37, we can

select a vertex a ∈ Vblue so that xya, xza, yza ∈ S. We must have xyz blue to avoid C
(3)
4

in S.

We can clearly interchange colors red and blue in Observations 7.3 and 7.4 and obtain

that
(

Vblue

3

)

⊂ C ′
red for some red component C ′

red. Since one of Vred, Vblue must contain

at least ⌈t/2⌉ ≥ 3s vertices, we find greedily both a copy of M
(3)
s and a copy of C

(3)
4 , in

either C ′
red or C ′

blue, contradicting (7.1).

Case 2: |Vred| < s or |Vblue| < s.

By symmetry, we may assume that |Vred| < s and |Vblue| > 5s + c0
√

s. We first prove

that the azure component A contains a matching M
(3)
s whose vertex set is in Vblue. Again,

this is true even for t = 6s − 2.

Observation 7.5. There exists a matching MA = M
(3)
s ⊂ A with V (MA) ⊂ Vblue.

Proof. Let Vblue = V ′∪V ′′ be a partition of Vblue such that |V ′| = s. Since |V ′′| ≥ 6s−
2−(s−1)−s ≥ 4s−1, Theorem 6.1 applied to the induced 2-coloring Kred[V ′′]∪Kblue[V

′′]

of K[V ′′] implies that there exists a matching M = M
(3)
s in a monochromatic component

of K[V ′′] (which is contained in some monochromatic component C in K).

If C is blue, then it must be A, because V ′′ is a subset of Vblue, and we are done.

Hence assume C = Cred is red. By (7.1), we have C
(3)
4 6⊂ Cred. To avoid C

(3)
4 in Cred, for

each edge xyz ∈ M and any vertex a ∈ V ′, at least one of the edges xya, xza, yza must

be a blue edge, and, consequently, also in A, because a ∈ V ′ ⊂ Vblue. Thus, using all s

vertices a ∈ V ′ and s edges of M , we greedily find a matching MA of size s in A. Clearly,

V (MA) ⊂ V ′ ∪ V ′′ = Vblue.

In view of Observation 7.5 and the assumption (7.1), we know that

C
(3)
4 6⊂ A. (7.3)

We distinguish two subcases. In the first one we assume that almost all pairs of vertices

from Vblue are contained in the shadows of at most two red components.

Subcase 2a. There exist two red components C1
red and C2

red such that
∣

∣

∣

∣

(

Vblue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 6t. (7.4)

We now prove a series of observations. Recall that by Observation 6.3 the scarlet com-

ponent S exists whenever Vred 6= ∅. We now show that in that case one of C1
red and C2

red

equals S or can be replaced by S.

Observation 7.6. If Vred 6= ∅, then there exists a red component Cred such that
∣

∣

∣

∣

(

Vblue

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

=

∣

∣

∣

∣

(

V

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

< 24t. (7.5)
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Proof. Note that
(

V
2

)

\
(

Vblue

2

)

⊂ ∂S. If |∂C1
red| ≤ 18t holds, then with Cred = C2

red we

have
∣

∣

∣

∣

(

V

2

)

\ (∂Cred ∪ ∂S)

∣

∣

∣

∣

(7.4)
< 6t + |∂C1

red| ≤ 24t.

Hence, suppose that |∂C1
red| > 18t and |∂C2

red| > 18t. We claim that there exist vertices

u, v, w ∈ Vblue such that uv ∈ ∂C1
red, uw ∈ ∂C2

red, and vw ∈ ∂C1
red ∪ ∂C2

red.

This follows from a simple graph-theoretic fact.

Fact 7.7. Let the edges of the complete graph Kn be partitioned into three sets E1, E2,

E3 so that, with ei = |Ei|, i = 1, 2, 3, we have min{e1, e2} > 3e3. Then there exists a

triangle with at least one edge in E1, at least one edge in E2 and no edge in E3.

Proof. Since the average degree in E3 is 2e3/n, there is a vertex u such that degE3
(u) ≤

2e3/n. If degE1
(u), degE2

(u) >
√

e3, then there is a non-E3 edge between the neighbor-

hoods NE1
(u) and NE2

(u), completing a desired triangle.

Suppose now that, say, degE1
(u) ≤ √

e3. If there is an edge xy ∈ E1 with x ∈ NE1
(u)

and y ∈ NE2
(u), then u, x, y is the desired triangle. Otherwise, the number of edges of E1

not contained in NE2
(u) is at most

degE1
(u) +

(

degE1
(u)

2

)

+ degE3
(u) × n ≤ 1

2
(
√

e3 + e3) + 2e3 < 3e3 < e1.

Hence, there is an edge of E1 with both endpoints in NE2
(u), yielding again a desired

triangle.

We apply Fact 7.7 to E1 := ∂C1
red, E2 := ∂C2

red and E3 :=
(

Vblue

2

)

\ (∂C1
red ∪ ∂C2

red)

(note that the assumptions hold).

Take any x ∈ Vred and vertices u, v, w ∈ Vblue such that uv ∈ ∂C1
red, uw ∈ ∂C2

red, and

vw ∈ ∂C1
red ∪ ∂C2

red. Since all three pairs of vertices contained in any red edge are in the

shadow of the same red component, uvw must be a blue edge and hence in A. To avoid a

copy of C
(3)
4 in A, at least one of the edges uvx, uwx, vwx must be a red edge, say uvx.

Since uv ∈ ∂C1
red and xu ∈ ∂S, we have C1

red = S and the proof is completed by setting

Cred = C2
red and recalling (7.4).

From now on we assume that
∣

∣

∣

∣

(

Vblue

2

)

\ (∂C1
red ∪ ∂C2

red)

∣

∣

∣

∣

< 24t, (7.6)

and that C1
red = S, if S exists.

Observation 7.8. Every set X ⊂ Vblue with |X| ≥ 25
√

t contains a copy of C
(3)
4 in C1

red

or C2
red.
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Proof. Let X ⊂ Vblue with |X| ≥ 25
√

t be given. Note that by (7.6)
∣

∣

∣

∣

(∂C1
red ∪ ∂C2

red) ∩
(

X

2

)∣

∣

∣

∣

≥
(|X|

2

)

− 24t >
11

24
|X|2.

Thus, by the Turán Theorem, there is a complete graph K13 in ∂C1
red ∪∂C2

red. Let X0 be

the vertex set of one such K13. Since r(C
(3)
4 ) = 13, the set

(

X0

3

)

contains a monochromatic

copy C of C
(3)
4 . It cannot be blue because all pairs of vertices of X are in ∂A and so C would

be in A. Hence, C must be red and, thus, in C1
red or C2

red because
(

X0

2

)

⊂ ∂C1
red ∪ ∂C2

red.

Now, we are ready to finish the proof of Theorem 7.1 in Subcase 2a. Recall that

c0 = 25
√

7 and t ≤ 7s. Suppose first that Vred = ∅. By Observation 7.8, every set of 25
√

t

vertices in Vblue = V contains a copy of C
(3)
4 in C1

red or C2
red. Hence, we can find greedily,

by taking one edge from a copy of C
(3)
4 and reusing the remaining vertex, a matching of

size
(

t − 25
√

t
)

/3 ≥
(

6s + c0

√
s − 25

√
7s

)

/3 ≥ 2s

in C1
red ∪C2

red. Thus, there is an index i ∈ {1, 2} such that Ci
red contains M

(3)
s as well as

a copy of C
(3)
4 .

Assume now that Vred 6= ∅ and, thus, S exists and C1
red = S. We know (see Ob-

servation 7.5) that A contains a matching MA, V (MA) ⊂ Vblue, of size s but no C
(3)
4 .

As in the proof of Observation 7.2, for every vertex x ∈ Vred and each edge e ∈ MA,

there exists a edge f ∈ S so that x ∈ f and |e ∩ f | = 2. Hence, we can find a match-

ing of size |Vred| < s in S that uses exactly 2|Vred| vertices of Vblue. After this, we

use the greedy procedure from the previous paragraph and find a matching in S ∪ C2
red

of size (|Vblue| − 2|Vred| − 25
√

t)/3. Combining these two matchings and the fact that

|Vblue| + |Vred| = |V | = t yields a matching in S ∪ C2
red of size

|Vred| +
(

|Vblue| − 2|Vred| − 25
√

t
)

/3 ≥
(

t − 25
√

7s
)

/3 ≥ 2s,

as before. Consequently, either S or C2
red contains M

(3)
s . Note that at least one edge of

this matching comes from a copy of C
(3)
4 in S or C2

red. Thus, in either case, we have M
(3)
s

and C
(3)
4 in the same red component.

Subcase 2b. Inequality (7.4) does not hold for any two red components C1
red and C2

red.

We will first show that in this case the red components can be grouped into three large

sets. To this end, we need the following simple fact. (We will only need part (b) now;

part (a) will be used twice in Section 8.)

Fact 7.9. For given numbers a1 ≥ a2 ≥ · · · ≥ ak ≥ 0, let N = a1 + · · · + ak.

(a) Let d ≥ 2N/3 and k ≥ 2. If a1 ≤ d, then there exists 1 ≤ ℓ0 ≤ k − 1 such that

N − d ≤
ℓ0
∑

i=1

ai ≤ d.
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(b) Let N ≥ 5r and k ≥ 3. If a1 + a2 ≤ N − 2r, then there exist 1 ≤ ℓ1 < ℓ2 ≤ k− 1 such

that
ℓ1
∑

i=1

ai ≥ r,
ℓ2
∑

i=ℓ1+1

ai ≥ r, and
k
∑

i=ℓ2+1

ai ≥ r.

Proof. (a) Define ℓ0 = min
{

ℓ :
ℓ

∑

i=1

ai ≥ N −d
}

. If ℓ0 = 1 then we are done. Otherwise,

aℓ0 ≤ a1 < N − d, and so

N − d ≤
ℓ0

∑

i=1

ai ≤ (N − d) + aℓ0 < 2(N − d) ≤ d.

(b) If a1 ≥ a2 ≥ r, take ℓ1 = 1 and ℓ2 = 2. If a1 ≥ r but a2 < r, take ℓ1 = 1 and define

ℓ2 = min{ℓ :
ℓ

∑

i=2

ai ≥ r}. Then,

ℓ2
∑

i=1

ai = a1 +

ℓ2−1
∑

i=2

ai + aℓ2 < a1 + r + a2 ≤ N − r,

and so,
k
∑

i=ℓ2+1

ai ≥ r as well. Finally, if a2 ≤ a1 < r, define ℓ1 = min
{

ℓ :
ℓ

∑

i=1

ai ≥ r
}

and

ℓ2 = min
{

ℓ :
ℓ

∑

i=ℓ1+1

ai ≥ r
}

. Then

ℓ1
∑

i=1

ai ≤
ℓ1−1
∑

i=1

ai + a1 ≤ 2r

and, similarly,
ℓ2
∑

i=ℓ1+1

ai ≤ 2r. Hence,

k
∑

i=ℓ2+1

ai ≥ N − 4r ≥ r.

Now we can prove the following consequence of negating (7.4).

Observation 7.10. There exists a partition
(

V
2

)

= F 1 ∪ F 2 ∪ F 3 such that

(i) F 1, F 2, F 3 are pairwise disjoint,

(ii) |F i[Vblue]| ≥ 3t for i = 1, 2, 3,

(iii) for every red component Cred there exists i ∈ {1, 2, 3} such that ∂Cred ⊂ F i.

Proof. The shadows of all red components, intersected by
(

Vblue

2

)

, form a partition

of
(

Vblue

2

)

into disjoint sets of pairs. (Each pair that is not in any red edge is in a partition

class by itself.) Let a1 ≥ a2 ≥ . . . be the sizes of these partition classes. If (7.4) does not

hold for any two red components then a1 + a2 ≤
(

|Vblue|
2

)

− 6t and, by Fact 7.9(b) with
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N =
(

|Vblue|
2

)

and r = 3t, the ai’s can be grouped into three sums, each at least 3t. Let

the corresponding three sets of pairs, forming a partition of
(

Vblue

2

)

, be denoted by F̃ i,

i = 1, 2, 3. Then the conclusion follows with F i’s being arbitrary extensions of F̃ i’s such

that for each red component Cred if ∂Cred ∩
(

Vblue

2

)

⊂ F̃ i, then ∂Cred ⊂ F i.

For convenience, set F̃ i = F i[Vblue] and degi(v) = degF̃ i(v), i = 1, 2, 3, v ∈ Vblue.

Observation 7.11. For every vertex v ∈ Vblue there is an index i ∈ {1, 2, 3} so that

degi(v) = 0.

Proof. Suppose that there is a vertex v ∈ Vblue such that degi(v) > 0 for all i = 1, 2, 3,

and denote by Ui the neighborhood of v in F̃ i, i = 1, 2, 3. Notice that F̃ 1 ∪ F̃ 2 ∪ F̃ 3 is a

partition of
(

Vblue

2

)

(cf. Observation 7.10) and, therefore, U1 ∪U2 ∪U3 ∪{v} is a partition

of Vblue.

Take any three vertices ui ∈ Ui, i = 1, 2, 3. Since the pairs vu1, vu2, vu3 belong to the

shadows of distinct red components, all edges vuiuj , 1 ≤ i < j ≤ 3, are blue and thus in

the azure component A (because v ∈ Vblue).

Consequently, since there is no C
(3)
4 in A, the edge u1u2u3 must be red. Thus, all pairs

of vertices ui ∈ Ui and uj ∈ Uj , i 6= j, are in the shadow of the same red component.

Without loss of generality we may assume that

∀ui ∈ Ui, uj ∈ Uj , i 6= j, uiuj ∈ F̃ 1. (7.7)

Take any three vertices ui, u
′
i, uj , such that ui, u

′
i ∈ Ui and uj ∈ Uj . Since the edges

vuiuj and vu′
iuj are both in A and C

(3)
4 6⊂ A, either vuiu

′
i is red or uiu

′
iuj is red. In the

first case, uiu
′
i ∈ F̃ i, while in the second case uiu

′
i ∈ F̃ 1.

The previous two paragraphs show that every pair of vertices uu′, where u, u′ ∈ {v} ∪
U1 ∪ U3 or u ∈ U1 ∪ U3, u′ ∈ U2, is contained in F̃ 1 ∪ F̃ 3. Since F̃ 2 is disjoint from

F̃ 1 ∪ F̃ 3, it follows that all pairs of F̃ 2 are contained in {v} ∪ U2. The same argument

(see Fig. 3) yields that all pairs of F̃ 3 are contained in {v} ∪ U3. Each F̃ i, i = 2, 3, can

contain at most degi(v) pairs of the form vui, ui ∈ Ui, and |F̃ i| ≥ 3t > degi(v). Hence

there exist vertices ui, u
′
i ∈ Ui such that uiu

′
i ∈ F̃ i, i = 2, 3.

If all four edges induced by {u2, u
′
2, u3, u

′
3} ⊂ Vblue were blue, we would have C

(3)
4 in A

– a contradiction with (7.3). Hence, at least one of them is red, say u2u
′
2u3. Since by (7.7)

u2u3 ∈ F̃ 1, we have u2u
′
2 ∈ F̃ 1. But then u2u

′
2 ∈ F̃ 1 ∩ F̃ 2 ⊂ F 1 ∩ F 2 – a contradiction

with Observation 7.10(i).

For 1 ≤ i < j ≤ 3, let Wij = {v ∈ Vblue : degi(v) > 0, degj(v) > 0}. Next, we prove

that W12,W13, and W23 have each at least two vertices.

Observation 7.12. |Wij | ≥ 2 for 1 ≤ i < j ≤ 3.

Proof. By symmetry, we can restrict ourselves to the case i = 1 and j = 2. Since |F̃ i| ≥
3t, i = 1, 2, there is a matching Mi of size four in |F̃ i|. Let u1u

′
1 ∈ M1 and u2u

′
2 ∈ M2

be vertex disjoint. Since, by (7.3), the copy of C
(3)
4 induced by {u1, u

′
1, u2, u

′
2} ⊂ Vblue
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v

U3U1 U2

1 1

2
1 3

1

1 or 2
1

1 or 3

Figure 3. Partitioning
(

Vblue

2

)

into F̃ 1, F̃ 2 and F̃ 3. Labels on an edge correspond to possible partition

classes for this edge.

cannot be blue, at least one of its edges must be red. However then at least one pair from

u1u2, u1u
′
2, u′

1u2, u′
1u

′
2 is in F̃ 1 or F̃ 2. This implies that at least one of these vertices is

adjacent to an edge of F̃ 1 and an edge of F̃ 2 and, thus, belongs to W12. Now we remove

that vertex and find another pair of disjoint edges, one from M1, the other from M2.

Repeating the above reasoning, we obtain another vertex in W12, completing the proof.

Let w12, w
′
12 ∈ W12, w13, w

′
13 ∈ W13, w23, w

′
23 ∈ W23. Clearly, by Observation 7.11,

for all 1 ≤ i < j ≤ 3 and 1 ≤ i′ < j′ ≤ 3, {i, j} 6= {i′, j′},

the pairs wijwi′j′ , w′
ijwi′j′ , wijw

′
i′j′ , w′

ijw
′
i′j′ are from F ℓ, where

ℓ = {i, j} ∩ {i′, j′}.

(7.8)

We show now that the sub-hypergraph H induced in K by vertices w12, w′
12, w13, w′

13,

w23, w′
23 ∈ Vblue contains a copy of C

(3)
5 in the azure component A.

Since F 1 ∩ F 2 = ∅, the pair w12w
′
12 is either not contained in F 1 or not contained in

F 2. (At this point, we do not know whether w12w
′
12 ∈ F 1 ∪ F 2 or not.) Without loss of

generality we may assume that w12w
′
12 is not contained in F 1. Also, at least one edge of

the sub-hypergraph of K induced by vertices w12, w
′
12, w13, w

′
13 must be red (otherwise

we would have C
(3)
4 in the azure component – a contradiction to (7.3)).

Edges w12w
′
12w13 and w12w

′
12w

′
13 must be blue because w12w13, w12w

′
13 ∈ F 1 by (7.8)

and w12w
′
12 does not belong to F 1. Hence, either w12w13w

′
13 or w′

12w13w
′
13 is red, and

the pair w13w
′
13 must lie in F 1. Since F 1 and F 3 are disjoint, w13w

′
13 does not lie in F 3.

Using the same argument we infer that w23w
′
23 belongs to F 3: to avoid a contradiction

with (7.3), at least one of the edges induced by w23, w′
23, w13, w′

13 must be red. Edges

w13w
′
13w23 and w13w

′
13w

′
23 must be blue because, by (7.8), w13w23, w13w

′
23 ∈ F 3 and
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w13w
′
13 does not lie in F 3. Hence, either w13w23w

′
23 or w′

13w23w
′
23 is red, implying that

the pair w23w
′
23 is in F 3 (and, consequently, not in F 2). Similarly, we get w12w

′
12 ∈ F 2.

Observe now that all edges of the form v12v13v23, where vij ∈ {wij , w
′
ij}, are blue

because, by (7.8), the pairs contained in them belong to different F i’s and the shadow of

every component is contained in a unique F i. Moreover, the edges w12w
′
12w13, w12w

′
12w

′
13,

w13w
′
13w23, w13w

′
13w

′
23, w23w

′
23w12, and w23w

′
23w

′
12 must be blue as well because, again,

all the pairs contained in any red edge belong to the shadow of the same red component

(and to a unique F i), which is not the case here.

Therefore, all edges w12w23w13, w23w13w
′
13, w13w

′
13w

′
23, w′

13w
′
23w12, and w′

23w12w23 of

the cycle C
(3)
5 on vertices w12, w23, w13, w

′
13, w

′
23 are colored blue and belong to the azure

component.

8. Matchings in components (the real thing)

In this section we prove Lemma 2.1. Since the hypergraph K appearing in Lemma 2.1 is

almost complete, we will be guided by the proof of Theorem 6.1 presented in Section 6.

However, it will be convenient to replace K with a large sub-hypergraph K1 with a more

regular structure. Its existence is guaranteed by the following simple lemma.

For a vertex x in a hypergraph H, let NH(x) = {y : xy ∈ ∂H}. For two vertices x, y,

let NH(x, y) = {z : xyz ∈ H}. Note that if y ∈ NH(x) (equivalently, x ∈ NH(y)), then

NH(x, y) 6= ∅. We call all such pairs xy of vertices active. Thus, the active pairs in H are

exactly those pairs of vertices which belong to the shadow ∂H of H.

Lemma 8.1. Fix δ > 0 and set δ1 = 10δ1/6. Let K be a 3-uniform hypergraph with

t vertices and at least (1 − δ)
(

t
3

)

edges. Then K contains a sub-hypergraph K1 with

t1 ≥ (1 − δ1)t vertices such that every vertex x of K1 is in an active pair and for all

active pairs xy we have |NK1
(x, y)| ≥ (1 − δ1)t1.

A (fairly standard) proof of Lemma 8.1 can be found in [11] (see Lemma 4.1 therein).

Proof of Lemma 2.1 We may assume that η < 1. Given 0 < η < 1, define δ =

η610−24. For any hypergraph K on t = (4 + η)s vertices and with at least (1 − δ)
(

t
3

)

edges, let K1 be the sub-hypergraph of K satisfying the conclusions of Lemma 8.1 with

δ1 = 10δ1/6 = η/1000. In particular, using the bound t < 5s, we get

t1 = |V (K1)| ≥ (1 − δ1)t ≥ t − 5δ1s = t − (η/200)s > (4 + η/2)s.

Since every monochromatic component of K1 is contained in a monochromatic component

of K, it is enough to show the conclusion of Lemma 2.1 for K1. For the clarity of our

presentation we will reset K := K1, δ := δ1 and η := 2η. Equivalently, we will assume

that K has t = (4 + η)s vertices, 0 < η < 1/2, every vertex x of K is in an active pair,

and for all active pairs xy

|NK(x, y)| ≥ (1 − δ)t, (8.1)

where δ = η/500.



32 P.E. Haxell et al.

Since every x is in an active pair, it follows from (8.1) that for all x ∈ V (K),

|NK(x)| = |{y : xy ∈ ∂K}| ≥ (1 − δ)t + 1. (8.2)

Let V = V (K) and fix a coloring K = Kred ∪ Kblue. Our ultimate goal is to show that

either in Kred or in Kblue there is an externally connected matching M
(3)
s . We begin with

some preliminary results. Our first observation establishes for every x ∈ V the existence

of a dominant monochromatic component Cx the shadow of which contains most pairs

of vertices xy. (For the complete hypergraph K this was done in Observation 6.2.)

Observation 8.2. For every vertex x ∈ V there exists a monochromatic component Cx

such that
∣

∣{y ∈ V : xy ∈ ∂Cx}
∣

∣ ≥ (1 − δ)t. (8.3)

The observation will follow from a simple graph theoretic result.

Fact 8.3. Let G be a graph with n vertices and minimum degree d. If n > d ≥ 3n/4,

then for every red-blue coloring of the edges of G there is a monochromatic component

with at least d + 1 vertices.

Proof. Let G = Gred ∪Gblue be a red-blue coloring of the edges of G. Suppose that no

component of Gred has more than d vertices. Then, by Fact 7.9(a) in Section 7 there is

a partition V (G) = V1 ∪ V2, where

n − d ≤ |V1| ≤
n

2
≤ |V2| ≤ d and EGred

(V1, V2) = ∅.

Observe that in Gblue every vertex of V2 has a neighbor in V1 and every vertex of V1 has

more than |V2|/2 neighbors in V2. Thus, the graph Gblue is connected, and so there is a

blue component on all n ≥ d + 1 vertices.

Proof of Observation 8.2 Note that δ < 1/4 and that, by (8.1), for every vertex

x ∈ V the graph K(x) = {yz : xyz ∈ K} has minimum degree at least (1 − δ)t ≥ 3t/4

(and at most t vertices). The coloring K = Kred ∪ Kblue induces a coloring K(x) =

Kred(x) ∪ Kblue(x) which, by Fact 8.3, contains a monochromatic component with at

least (1 − δ)t vertices. Consequently, there is a monochromatic component C in K such

that ∂C contains at least (1 − δ)t pairs xy.

For each x ∈ V let us choose arbitrarily one component satisfying the condition in

Observation 8.2 and denote it by Cx. Let

Vred = {x ∈ V : Cx is red} and Vblue = {x ∈ V : Cx is blue}.

Observation 8.2 tells us that V = Vred ∪ Vblue and this union is disjoint by the definition

of Vred and Vblue.

Our next result says that for most x ∈ Vred, as well as for most x ∈ Vblue, the compo-

nents Cx are the same. (For the complete hypergraph K this is Observation 6.3.)
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Observation 8.4. If |Vred| ≥ 6δt (|Vblue| ≥ 6δt, respectively) then there is a red com-

ponent Cred (a blue component Cblue) so that Cx = Cred (Cx = Cblue) for all but at most

2δt vertices x ∈ Vred (x ∈ Vblue).

Proof. Consider a graph G defined on Vred by putting an edge between x and y when-

ever xy ∈ ∂Cx ∩ ∂Cy (note that by (6.1) this means that Cx = Cy). By Observation 8.2

every vertex “spoils” at most δt edges, and thus |E(G)| ≥
(

v
2

)

− vδt, where v = |Vred|.
Our goal is to show that G has a component of order at least v−2δt. Suppose this is not

true. Then, by Fact 7.9(a) in Section 7 with d = v−2δt, there is a partition Vred = V1∪V2

with

2δt ≤ |V1|, |V2| ≤ v − 2δt and EG(V1, V2) = ∅,
which yields at least 2δt(v − 2δt) > vδt edges in the complement of G – a contradiction.

If |Vred| ≥ 6δt, we define the scarlet component S as the (unique) red component Cred

guaranteed by Observation 8.4 and set

V ′
red = {x ∈ Vred : Cx = S}.

Then

|V ′
red| ≥ |Vred| − 2δt ≥ 4δt.

If |Vred| < 6δt, then we say that the scarlet component does not exist and V ′
red = ∅.

Similarly, when |Vblue| ≥ 6δt, we define the azure component A and the set

V ′
blue = {x ∈ Vblue : Cx = A}.

Then

|V ′
blue| ≥ |Vblue| − 2δt ≥ 4δt,

and V ′
blue = ∅ if |Vblue| < 6δt. We also set

V ′ = V ′
red ∪ V ′

blue.

Since δ < 1/12,

|V ′| = |V ′
red| + |V ′

blue| ≥ t − 8δt. (8.4)

For each x ∈ V ′
red, set

∂S(x) =
∣

∣{y ∈ V : xy ∈ ∂S}
∣

∣,

and for each x ∈ V ′
blue, set

∂A(x) =
∣

∣{y ∈ V : xy ∈ ∂A}
∣

∣.

By Observation 8.2 and the definitions of S and A we have

|∂S(x)|, |∂A(x)| ≥ (1 − δ)t. (8.5)

Our last preliminary result is the Mirror Lemma (cf. Lemma 6.7) adjusted to non-

complete hypergraphs.
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Lemma 8.5 (The Blurred Mirror Lemma). Let M be a largest matching in a red

component Cred and let P ⊂ V , where P ∩ V (M) = ∅ and |P | ≥ |M | + 30δt. Assume

further that for some blue component Cblue and for every e ∈ M , the bipartite induced

subgraph ∂Cblue[e, P ] of ∂Cblue contains K2,|P |−9δt−1. Then there exists a matching M ′ ⊂
Cblue such that

(i) |M ′| ≥ |M | and

(ii) |V (M ′) ∩ P | ≤ |M | + 4δt.

Proof. Let M ′′ ⊂ Cblue be a largest matching such that

• |V (M ′′) ∩ P | ≤ |M ′′| and

• V (M ′′) intersects at most |M ′′| edges of M .
(8.6)

We first claim that |M ′′| ≥ |M | − 4δt. Indeed, suppose |M ′′| ≤ |M | − 4δt. We will show

that there exist e1, e2 ∈ M and a, b, c ∈ P ′′ := P \V (M ′′) such that (e1∪e2)∩V (M ′′) = ∅
and the set X = e1 ∪ e2 ∪ {a, b, c} satisfies the assumptions of Claim 6.5 (see Remark

6.6).

From the second part of (8.6) and our supposed bound on |M ′′|, it follows that there

exist at least 4δt edges of M disjoint from V (M ′′). Let e1 = uvw ∈ M be any such edge.

Below we suppress the dependence on K and write N(x) for the neighborhood of x in

the shadow of K, and N(x, y) for the neighborhood of x, y in K. By (8.2),
∣

∣V \ (N(u) ∩ N(v) ∩ N(w))
∣

∣ ≤ 3t − |N(u)| − |N(v)| − |N(w)| ≤ 3δt

and so, there exists e2 = xyz ∈ M \ e1 such that e2 ∩ V (M ′′) = ∅ and every pair of

vertices p, q ∈ e1 ∪ e2 = {u, v, w, x, y, z} is active.

By the first part of (8.6) and our bounds on |P | and |M ′′|, we have

|P ′′| = |P | − |P ∩ V (M ′′)| ≥ |M | + 30δt − (|M | − 4δt) = 34δt.

Among the vertices of P ′′ at most 18δt + 2 do not belong to the bipartite cliques

K2,|P |−9δt−1 between ei, i = 1, 2, and P , guaranteed by the assumptions. Also, by (8.1),
∣

∣

∣

∣

∣

P ′′ \
⋂

p,q

N(p, q)

∣

∣

∣

∣

∣

≤
(

6

2

)

δt = 15δt,

where the intersection is taken over all pairs of vertices p, q ∈ e1 ∪ e2. Since (34 − 18 −
15)δt − 2 ≥ 3, one can choose a, b, c ∈ P ′′ so that

(a) ∂Cblue[ei, {a, b, c}] ⊃ K2,3 for i = 1, 2, and

(b) all triples of vertices having two vertices in {u, v, w, x, y, z} and one in {a, b, c} are

edges of K.

Thus, we can apply Claim 6.5 (see Remark 6.6) to the set X = e1 ∪ e2 ∪ {a, b, c}. But

then we can either enlarge M in Cred (if (1) of Claim 6.5 occurs) or M ′′ in Cblue with

conditions (8.6) preserved (if (2) or (3) of Claim 6.5 occurs), yielding a contradiction

with the choice of M or M ′′, respectively.

Hence |M ′′| ≥ |M | − 4δt. If |M ′′| ≥ |M |, we are done. Otherwise, we repeat the

following procedure which keeps enlarging M ′′ by increments of two until its size reaches
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|M | (for convenience, we assume that |M | − |M ′′| is even). Let the current matching be

denoted by M ′, |M ′| < |M |. It is important that in each step we will

• not delete any edge of M ′, that is, M ′′ ⊆ M ′,

• add to V (M ′) at most four vertices of P , and

• maintain the second part of (8.6).

Since there are (|M | − |M ′′|)/2 steps, for the final M ′ we have

|V (M ′) ∩ P | ≤ |M ′′| + 2(|M | − |M ′′|) = |M | + (|M | − |M ′′|) ≤ |M | + 4δt,

so (ii) holds. Now we describe a single step of the procedure. Let e = xyz ∈ M be

such that e ∩ V (M ′) = ∅. Denote by P0 the set of at most 9δt + 1 vertices of P which

do not belong to the bipartite clique K2,|P |−9δt−1 between e and P , guaranteed by the

assumptions.

Set P ′ = P \ (V (M ′) ∪ P0). Similarly to the above,

|P ′| ≥ |M | + 30δt − (|M | + 4δt) − |P0| ≥ 16δt.

Set N1 = P ′∩N(x, y)∩N(x, z)∩N(y, z). By (8.1), |N1| > (16−3)δt = 13δt. Let a ∈ N1

and set N2 = N1 ∩ N(a, x) ∩ N(a, y) ∩ N(a, z). We have, again by (8.1), |N2| > 10δt.

Similarly, for every b ∈ N2 and every c ∈ N3 = N2 ∩N(b, x) ∩N(b, y) ∩N(b, z), we have

|N3 ∩ N(c, x) ∩ N(c, y) ∩ N(c, z)| > 4δt ≥ 1.

Thus, one can choose a, b, c, d ∈ P ′ so that

(a) ∂Cblue[e, {a, b, c}] ⊃ K2,3

(b) all triples of vertices within {x, y, z, a, b, c, d} intersecting simultaneously {x, y, z} and

{a, b, c, d} are edges of K.

We apply Claim 6.4 (see Remark 6.6) to the set X = e ∪ {a, b, c, d}. By the maximality

of M in Cred and the maximality of M ′′ with respect to (8.6) in Cblue (note that V (M ′′)∩
X = ∅), conclusions (1) and (2) of Claim 6.4 cannot hold. Thus, (3) holds, which allows

us to enlarge M ′ by adding the edges e1 and e2 guaranteed by Claim 6.4(3). Note that,

indeed, in a single step we have used four vertices of P and one edge of M .

We are now ready to complete the proof of Lemma 2.1. Since δ < 1/12, in view of

Observation 8.4, either the scarlet component S or the azure component A (or both)

does exist.

Let M be a matching of maximum size in K among all matchings that lie in S or A.

Without loss of generality we assume that ∅ 6= M ⊂ S. This implies that |V ′
red| ≥ 4δt,

but V ′
blue might be empty, that is, the azure component A might not exist. Suppose that

1 ≤ m = |M | ≤ s − 1

and set

R = V ′
red \ V (M) and B = V ′

blue \ V (M). (8.7)

According to this definition, if B 6= ∅, then V ′
blue 6= ∅, and consequently, the azure
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component A does exist. Note that R ∩ B = ∅ and

t = (4 + η)s = 3m + |R ∪ B| + |V \ V ′|, (8.8)

and, using m < s and (8.4),

|R ∪ B| ≥ (4 + η)s − 3m − |V \ V ′| ≥ (1 + η)s − 8δt. (8.9)

Observe that by (8.9) and our choice of δ, whenever one of the sets R or B has size at

most 5δt then the other one has size at least

(1 + η)s − 13δt ≥ m + 30δt.

We first show the following variant of Observation 6.8.

Observation 8.6. If |R| ≥ 2δt, then all edges xyz ∈ K[R∪B] with x ∈ R and xy ∈ ∂S

belong to the same blue component Cblue. Furthermore, if also |B| ≥ 2δt, then Cblue = A.

Proof. First note that any red edge xyz ∈ K[R ∪ B] with xy ∈ ∂S would be in S and

disjoint from V (M), and thus it could be added to M , contradicting the maximality of M .

Hence, every such edge is blue. Let x, y, z ∈ R∪B and xy and xz be two pairs in ∂S. Since

|B ∪ R| ≥ 2δt and the pairs xy and xz are active, by (8.1) there is w ∈ R ∪ B such that

xyw ∈ K and xzw ∈ K. Hence, both edges are blue and in the same blue component.

Now, by (8.5), the subgraph ∂S[R] has minimum degree at least |R| − δt ≥ |R|/2 and,

thus, it is connected. This implies that all pairs xy ∈ ∂S such that x ∈ R and y ∈ R∪B

are in the shadow of the same blue component Cblue.

To prove the second part, notice that if both |R|, |B| ≥ 2δt then, again by (8.5), the

number of edges of ∂S with one endpoint in R and the other in B is more than |R||B|/2,

and the same is true for the edges of ∂A. Hence, there is a pair x ∈ R and y ∈ B such

that xy ∈ ∂S ∩ ∂A. It follows that Cblue = A.

For the rest of the proof of Lemma 2.1 we distinguish three cases analogous to the

three cases considered in the proof of Theorem 6.1.

Case 1: |B| ≤ 5δt

Denote by Cblue the blue component guaranteed by Observation 8.6.

Observation 8.7. For every edge e ∈ M , the bipartite induced subgraph ∂Cblue[e,R]

of ∂Cblue contains K2,|R|−3δt−1 as a subgraph.

Proof. Let e = xyz ∈ M . By (8.2), at least |R| − 3δt vertices a ∈ R are such that all

three pairs xa, ya and za are active. Let the set of such vertices be denoted by Re.

Suppose that ∂Cblue[e,Re] contains no copy of K2,|Re|−1. Then there exist two vertices

a, b ∈ Re such that, say, ya, zb 6∈ ∂Cblue. Since |R| ≥ 2δt + 5, by (8.5) and (8.1) there are

c, d, u ∈ R \ {a, b} such that ac, bd ∈ ∂S and yac, zbd, uac, ubd ∈ K. By Observation 8.6,

uac, ubd ∈ Cblue and thus ac, bd ∈ ∂Cblue. Hence, the edges yac and zbd must be red.

Consequently, yac, zbd ∈ S and (M \ {xyz}) ∪ {yac, zbd} is a matching in S larger than

M – a contradiction.
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Now we apply Lemma 8.5 with Cred = S, Cblue and P = R (recall that |R| ≥ m+30δt),

obtaining a matching M ′ ⊂ Cblue of size |M ′| := m′ ≥ m and with |V (M ′)∩R| ≤ m+4δt.

If m′ ≥ s, we are done. Otherwise, by (8.9) and (8.4), we have

|R \ V (M ′)| ≥ (4 + η)s − 3m − 13δt − (m + 4δt) ≥ 3(s − m′) + 3δt.

This allows us to enlarge M ′ to size s by adding blue edges contained in R \ V (M ′).

Indeed, by (8.1) and (8.5), we can greedily find s − m′ disjoint edges xyz ∈ K[R] with

xy ∈ ∂S. Since all such edges belong to Cblue (cf. Observation 8.6), we can add them

to M ′ obtaining a matching of size s in a blue component.

Case 2: |R| ≤ 5δt

By our assumptions and (8.9), B 6= ∅ and thus the azure component A exists.

Observation 8.8. For every edge e ∈ M , the bipartite induced subgraph ∂A[e,B] of ∂A

contains K2,|B|−9δt−1 as a subgraph.

Proof. Fix an edge xyz ∈ M . By (8.1), at least |B| − 3δt vertices a ∈ B are such

that all three pairs xa, ya and za are active. Let the set of such vertices be denoted by

Be. Call a vertex a ∈ Be friendly to x if xa ∈ ∂S ∪ ∂A and let Bx be the subset of Be

containing all unfriendly vertices to x.

Claim 8.9. |Bx| < 2δt

Proof. Suppose that |Bx| ≥ 2δt, recall that |V ′
red| ≥ 4δt (since S exists), and consider

the bipartite induced subgraphs GS and GA of ∂S and ∂A, respectively, with vertex

set Bx ∪ V ′
red. Assume for simplicity that |Bx| = 2δt and |V ′

red| = 4δt, taking subsets

if necessary. Recalling that Bx ⊂ V ′
blue, by (8.5), |GS | ≥ 4(δt)2 and |GA| ≥ 6(δt)2, and

consequently, |GS ∩GA| ≥ 2(δt)2. Let a ∈ Bx have degree at least δt in GS ∩GA. Then,

by (8.1) and the definition of Be, one can find a vertex u ∈ V ′
red such that xau ∈ K and

au ∈ GS ∩ GA ⊂ ∂S ∩ ∂A, which contradicts the assumption that a is unfriendly to x,

no matter how xau is colored.

Set B′
e = Be \ (Bx ∪ By ∪ Bz). It is sufficient to show that ∂A[e,B′

e] contains a copy

of K2,|B′

e|−1. Suppose it does not. Then there exist two vertices a, b ∈ B′
e such that, say,

ya, zb 6∈ ∂A (and thus, they must be in ∂S). Since |B| ≥ 2δt+4, by (8.5) and (8.1), there

are c, d,∈ B \ {a, b} such that ac, bd ∈ ∂A and yac, zbd ∈ K. Hence, the edges yac and

zbd must be red. Consequently, yac, zbd ∈ S and (M \ {xyz})∪ {yac, zbd} is a matching

in S larger than M – a contradiction.

We apply Lemma 8.5 with Cred = S, Cblue = A and P = B (recall that |B| ≥ m+30δt)

and obtain a matching M ′ ⊂ A of size |M ′| = m and |V (M ′)∩B| ≤ m+4δt. (A matching

larger than m in the azure component A is impossible by our choice of M .)

We claim that R′ := V ′
red \ V (M ′) = ∅. Indeed, suppose that d ∈ R′. Since

|B \ V (M ′)| ≥ s + 18δt − (m + 4δt) ≥ 14δt ≥ 2δt + 3,
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by (8.5) and (8.1) we can find vertices a, b, c ∈ B \ V (M ′) such that ad ∈ ∂S, ab ∈ ∂A,

and abd, abc ∈ K. Then both abc and abd are red (or we can enlarge M ′). But ad ∈ ∂S,

therefore abd ∈ S and, consequently, abc ∈ S. Since {a, b, c} ∩ V (M) = ∅, we can enlarge

M in S, which is a contradiction.

Thus |R′| = 0 and we are back in Case 1 with the colors red and blue interchanged

and M replaced by M ′.

Case 3: |B|, |R| ≥ 5δt

Set P = R ∪ B. In this case not only the azure component A exists, but also the blue

component Cblue guaranteed by Lemma 8.6 is A.

Observation 8.10. For every edge e ∈ M , the bipartite induced subgraph ∂A[e,B]

of ∂A contains K2,|P |−9δt−1 as a subgraph.

Proof. The proof follows the lines of the proof of Observation 8.8. Fix an edge xyz ∈ M .

By (8.2), at least |P | − 3δt vertices a ∈ P are such that all three pairs xa, ya and za are

active. Let the set of such vertices be denoted by Pe.

Recall that a vertex a ∈ Pe ∩ B friendly to x if xa ∈ ∂S ∪ ∂A and let Bx be the

subset of unfriendly vertices of Pe ∩ B. We have shown in Claim 8.9 that |Bx| ≤ 2δt.

Set P ′
e = Pe \ (Bx ∪ By ∪ Bz) and suppose that ∂A[e, P ′

e] contains no copy of K2,|P ′

e|−1.

Thus, there exist two vertices a, b ∈ P ′
e such that, say, ya, zb 6∈ ∂A. But then, combining

arguments from the proofs of Observations 8.7 and 8.8 (each of a and b can be in R or

B), one can show that there exist vertices c, d ∈ P such that yac, zbd ∈ S. Consequently,

(M \ {xyz}) ∪ {yac, zbd} is a red matching in S larger than M – a contradiction.

We apply Lemma 8.5 with Cred = S, Cblue = A and P = (R ∪ B) \ {a, b} where

a ∈ R, b ∈ B and ab is an active pair. Let M ′ be a matching in A satisfying conclusions

(i) and (ii) of Lemma 8.5. By the maximality of M , we have |M ′| = m and, by (ii) and

(8.9),

|P \ V (M ′)| ≥ s + 30δt − 8δt − (m + 4δt) ≥ 18δt.

By (8.1) and (8.5), we can choose c ∈ P \ V (M ′) so that ac ∈ ∂S, bc ∈ ∂A and abc ∈ K.

Consequently, abc ∈ S if it is red and abc ∈ A if it is blue. Also abc is disjoint from both

V (M) and V (M ′). Thus, either we obtain a matching of size m + 1 in S, or a matching

of size |M ′| + 1 = m + 1 in A, contradicting the maximality of M among all matchings

contained in S or A.
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and by FAPESP/CNPq grants (Proj. Temático–ProNEx Proc. FAPESP 2003/09925–5

and Proc. FAPESP 2004/15397-4).



The Ramsey number for 3-uniform tight hypergraph cycles 39

We thank Joanna Polcyn for her help in preparing Section 4 and an anonymous referee

for many helpful suggestions on the presentation of this paper.

References
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[4] Cooley, O., Fountoulakis, N., Kühn, D., Osthus, D., Embeddings and Ramsey numbers of

sparse k-uniform hypergraphs, Combinatorica, to appear.
[5] Faudree, R. and Schelp, R., All Ramsey numbers for cycles in graphs, Discrete Math. 8

(1974), 313–329.
[6] Figaj, A. and  Luczak, T., The Ramsey number for a triple of long even cycles, J. Combin.

Th. Series B 97 (2007), 584–596.
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[15] Polcyn, J., Rödl, V., Ruciński, A., Szemerédi, E., Short paths in quasi-random triple systems

with sparse underlying graphs, J. Combin. Th. Series B 96 (2006), 584–607.
[16] Radziszowski, S.P., Small Ramsey numbers, Electronic J. Combin., Dynamic Surveys, DS1,

42pp http://www.combinatorics.org/Surveys/ds1.pdf.
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