The Ramsey number for 3-uniform tight hypergraph cycles

P. E. HAXELL1, T. LUCZAK2, Y. PENG3, V. RÖDL4, A. RUCIŃSKI2,† and J. SKOKAN5

1 Department of Combinatorics and Optimization
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
(e-mail: pehaxell@math.uwaterloo.ca)

2 Department of Discrete Mathematics
Adam Mickiewicz University, 61-614 Poznań, Poland
(e-mail: tomasz@amu.edu.pl, andrzej@mathcs.emory.edu)

3 Department of Mathematics and Computer Science
Indiana State University, Terre Haute, IN 47809, USA
(e-mail: mapeng@isugw.indstate.edu)

4 Department of Mathematics and Computer Science
Emory University, Atlanta, GA 30032, USA
(e-mail: rodl@mathcs.emory.edu)

5 Department of Mathematics
London School of Economics and Political Science
Houghton Street, London WC2A 2AE, United Kingdom
(e-mail: jozef@member.ams.org)

Let $C_n^{(3)}$ denote the 3-uniform tight cycle, that is the hypergraph with vertices v_1, \ldots, v_n and edges $v_1v_2v_3, v_2v_3v_4, \ldots, v_{n-1}v_nv_1, v_nv_1v_2$. We prove that the smallest integer $N = N(n)$ for which every red-blue coloring of the edges of the complete 3-uniform hypergraph with N vertices contains a monochromatic copy of $C_n^{(3)}$ is asymptotically equal to $4n/3$ if n is divisible by 3, and $2n$ otherwise. The proof uses the regularity lemma for hypergraphs of Frankl and Rödl.

1. Introduction

Given a k-uniform hypergraph H, $k \geq 2$, the Ramsey number $r(H)$ is the smallest integer N such that every red-blue coloring of the edges of the complete k-uniform hypergraph

† Correspondence to: A. Ruciński
$K_{N}^{(k)}$ with N vertices yields a monochromatic copy of H. A classical result in graph Ramsey theory ([1, 5, 18]) states that for $k = 2$ and $n \geq 5$ the Ramsey number of the graph cycle C_n with n vertices is

$$ r(C_n) = \begin{cases} \frac{3}{2}n - 1 & \text{if } n \text{ is even}, \\ 2n - 1 & \text{if } n \text{ is odd}. \end{cases} $$

Thus, the Ramsey numbers for graph cycles depend strongly on the parity of n.

In this paper we continue our study of Ramsey numbers for 3-uniform hypercycles, initiated in [11]. There are various definitions of a cycle in a 3-uniform hypergraph. Given a suitably labeled set of vertices $\{v_1, \ldots, v_n\}$, a loose cycle has the edge set $\{v_1v_2v_3, v_3v_4v_5, \ldots, v_{n-1}v_nv_1\}$, while the tight cycle, denoted henceforth by $C_n^{(3)}$, has the edge set $\{v_1v_2v_3, v_2v_3v_4, v_3v_4v_5, \ldots, v_{n-1}v_nv_1, v_nv_1v_2\}$.

In [11] we proved that the Ramsey number for the n-vertex loose cycle, n even, is asymptotic to $5n/4$. (Note that loose cycles do not exist for n odd.) Subsequently, Gyárfás, Sárközy and Szemerédi [8] extended this result to the k-uniform loose cycles.

Here an analogous problem is investigated for the tight cycles. So far, the only known value of the Ramsey number for a tight cycle is $r(C_4^{(3)}) = 13$ (see [16]). Asymptotically, it turns out that the Ramsey number for the tight cycle is larger than that for the loose cycle, and depends on whether n is divisible by 3. Thus in this respect, tight cycles behave more like graph cycles than loose cycles do. Our aim is to prove the following theorem.

Theorem 1.1.

(a) For every integer $n \geq 1$ and $i = 0, 1, 2$,

$$ r(C_n^{(3)}) \geq \begin{cases} 4n - 1 & \text{if } i = 0, \\ 6n + 2i - 1 & \text{if } i \neq 0. \end{cases} $$

(b) Let $\eta > 0$ be given. Then for all sufficiently large n and $i = 0, 1, 2$,

$$ r(C_n^{(3)}) \leq \begin{cases} (4 + \eta)n & \text{if } i = 0, \\ (6 + \eta)n & \text{if } i \neq 0. \end{cases} $$

We should mention that one more natural definition of cycle for hypergraphs is the so-called Berge cycle. The Ramsey number for Berge cycles was investigated by Gyárfás, Sárközy and Szemerédi [9, 10].

The proof of part (a) and Theorem 1.1(b) also yield the asymptotic value of the Ramsey number of tight paths. A (tight) path $P_n^{(3)}$ is a hypergraph with vertices v_1, \ldots, v_n and edges $v_1v_2v_3, v_2v_3v_4, \ldots, v_{n-2}v_{n-1}v_n$.

Corollary 1.2. $r(P_n^{(3)}) = (4/3 + o(1))n$, where $o(1) \to 0$ as $n \to \infty$.

The loose and tight cycles are examples of hypergraphs with bounded maximum degree.
For this class of hypergraphs, it was conjectured that their Ramsey number is linear in their number of vertices. This conjecture was confirmed in [14, 3, 4] using the regularity method for hypergraphs. Recently, Conlon, Fox, and Sudakov [2] managed to prove the same result without the regularity method.

In the next section we prove the lower bounds and outline the proofs of the upper bounds. Their complete proofs are deferred to Section 5.

2. Lower bounds and the outline of the main proof

Most of the work in proving Theorem 1.1 lies in the upper bounds. In this section, we begin by establishing the lower bounds (Theorem 1.1(a)), and then we sketch the main ideas needed for Theorem 1.1(b), which include a notion of connectedness for 3-uniform hypergraphs. Since all hypergraphs considered in this paper are 3-uniform, we will more concisely call them hypergraphs.

2.1. Proof of lower bounds

The first lower bound is based on relation between cycles and matchings. Let $M_n^{(3)}$ be a 3-uniform 3n-vertex matching, that is, a hypergraph consisting of n disjoint edges. Observe that $C_n^{(3)}$ contains $M_n^{(3)}$, and so $r(C_n^{(3)}) \geq r(M_n^{(3)})$.

Proof of Theorem 1.1(a) To prove that $r(C_n^{(3)}) \geq 4n - 1$, partition the vertex set of K_{4n-2} into two parts, X and Y, where $|X| = 3n - 1$, $|Y| = n - 1$, and color all edges inside X red and all other edges blue. It is easily seen that this coloring contains no monochromatic $M_n^{(3)}$, and thus no monochromatic copy of $C_n^{(3)}$. (Unlike in the case of graphs, the above extremal coloring is not unique. For another one, see Example 1 in Subsection 2.2.)

To prove that $r(C_n^{(3)}) \geq 6n + 2i - 1$, $i = 1, 2$, partition the vertex set of $K_{6n+2i-2}$ into two parts, X and Y, where $|X| = |Y| = 3n + i - 1$, and color red [blue] all edges with an odd [even] number of elements in X. An edge containing a vertex of X and a vertex of Y is called crossing.

Suppose that there is a red copy C of $C_n^{(3)}$ in such a coloring. Since $|X| < 3n + i$, at least one edge of C is crossing. But then, by the definition of a tight cycle, every edge of C is crossing, that is, every edge of C contains one vertex of X and two of Y. This means that every third vertex of C belongs to X, which is impossible when $i \neq 0$.

Note that the first construction in the above proof implies that $r(M_n^{(3)}) \geq 4n - 1$, and so, in view of Theorem 1.1, $r(M_n^{(3)})$ and $r(C_n^{(3)})$ are asymptotically equal. In fact, it is easy to prove that $r(M_n^{(3)}) = 4n - 1$.

Clearly, every path P_{3n+i}, $i = 0, 1, 2$, contains the matching $M_n^{(3)}$ and it is contained in $C_n^{(3)}$. Hence we have $4n - 1 = r(M_n^{(3)}) \leq r(P_{3n+i}) \leq r(C_n^{(3)})$ and Corollary 1.2 follows from Theorem 1.1(b).
A common extension of the above constructions yields that for all \(n \geq k \geq 2 \) we have \(r(C_n^{(k)}) \geq (d + 1)n/d \), where \(C_n^{(k)} \) is the \(k \)-uniform tight cycle\(^1\) of length \(n = i \pmod{k} \) and \(d = (i, k) \), the greatest common divisor of \(i \) and \(k \). We conjecture that the actual value of \(r(C_n^{(k)}) \) is asymptotically equal to \((d + 1)n/d\).

2.2. Paths, pseudo-paths and connectedness

Consider a tight path with vertices \(v_1, \ldots, v_p \) and edges \(v_1v_2v_3, v_2v_3v_4, \ldots, v_pv_{p+1}v_{p+2} \). The pairs \((v_1, v_2)\) and \((v_{p+2}, v_{p+1})\) are called the endpairs of the path. (Note the reverse order of the latter pair which emphasizes the symmetry of the path.) The length of a path on \(p + 2 \) vertices is equal to \(p \), the number of edges.

A *pseudo-path* in a hypergraph \(H \) is a sequence \((e_1, \ldots, e_p)\) of not necessarily distinct edges of \(H \) such that \(|e_i \cap e_{i+1}| = 2\) for each \(i = 1, \ldots, p - 1 \). In particular, the edges of every path can be ordered (in two ways) to form a pseudo-path. If \((e_1, \ldots, e_p)\) is a pseudo-path in \(H \) then we say that \(e_1 \) and \(e_p \) are connected in \(H \) by a pseudo-path. Unlike for paths, this defines an equivalence relation and we call the equivalence classes the components of \(H \).

A hypergraph \(H \) is connected if every two edges \(e, f \in H \) are connected by a pseudo-path. Note that there are several ways to define connectedness in hypergraphs (cf. [11]), but in this paper we will always mean the one defined above. A sub-hypergraph \(H' \) of \(H \) is externally connected (in \(H \)) if every two edges \(e, f \in H' \) are connected in \(H \) by a pseudo-path. In other words, there is a component \(C \) of \(H \) that contains \(H' \).

Example 1. Consider a 3-uniform hypergraph with vertex set \(V = X \cup Y, X, Y \neq \emptyset \), and a red-blue coloring where every edge with an odd intersection with \(X \) is colored red and all other edges are colored blue. Then, the red sub-hypergraph has two Components, one consisting of all edges contained in \(X \), the other formed by all edges with one vertex in \(X \) and two in \(Y \).

Clearly, every red tight cycle must be entirely contained in one of these two components, a fact utilized already in the proof of Theorem 1.1(a), \(i \neq 0 \). Moreover, with \(|X| = |Y| = 2n - 1\) this yields an alternative “extremal coloring” in the proof of Theorem 1.1(a), \(i = 0 \). Indeed, neither of the two red components contains a cycle of length \(3n \). As a matter of fact, none of them contains an externally connected matching of size \(n \).

2.3. Monochromatic matchings in colorings of almost complete hypergraphs

The basic idea of our proof, similar to that given by Luczak [13] and Figaj and Luczak [6] (see also [11]), is to apply to the colored complete (hyper)graph the regularity lemma, find in the cluster (hyper)graph a large structure of a certain type, and use this structure to obtain a long, monochromatic cycle.

Thus, a crucial role in the proof of Theorem 1.1(b) is played by the two following Ramsey-type results on externally connected matchings. We state them now, but their proofs are deferred to the end of the paper.

\(^1\) The \(k \)-uniform tight cycle \(C_n^{(k)} \) is the \(k \)-uniform hypergraph with vertices \(v_1, \ldots, v_n \) and the edge set \(\{v_{i+1}v_{i+2} \ldots v_{j-1+i}v_{j+i} : i = 0, 1, \ldots, n - 1 \} \), where, for \(i > 0 \), we set \(v_{n+i} := v_i \).
Lemma 2.1. For every $\eta > 0$ there exist $\delta > 0$ and s_0 such that the following holds. Let K be a hypergraph with $t = (4 + \eta)s$ vertices, $s \geq s_0$, and at least $(1 - \delta)\binom{s}{3}$ edges. Then, for every red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$, either K_{red} or K_{blue} contains an externally connected matching $M_s^{(3)}$.

The proof, given in Section 8, is so technically involved that, for the sake of the reader, it is preceded in Section 6 by its “idealized” version with $\eta = \delta = 0$. There we will prove that the Ramsey number $r(M_s^{(3)}) = 4s - 1$ does not increase when the matching is requested to be externally connected in one of the colors (cf. Theorem 6.1).

To deal with the case $i \neq 0$, we will need the following modification of Lemma 2.1.

Lemma 2.2. For every $\eta > 0$ there exist $\delta > 0$ and s_0 such that the following holds. Let K be a hypergraph with $t = (6 + \eta)s$ vertices, $s \geq s_0$, and at least $(1 - \delta)\binom{s}{3}$ edges. Then, for every red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$, either K_{red} or K_{blue} contains an externally connected union of a matching $M_s^{(3)}$ and a cycle $C_4^{(3)}$ or $C_5^{(3)}$.

Why does the size of the largest monochromatic, externally connected matching found in a red-blue colored K go down from $t/4$ to $t/6$, if it has to be accompanied by a copy of $C_4^{(3)}$ or $C_5^{(3)}$? The answer can be provided by the second construction in the proof of Theorem 1.1(a) (see Section 2.1). Indeed, that construction yields a coloring of $K_{6s+2i-2}$ without any externally connected, monochromatic copy of a vertex-disjoint union of $M_s^{(3)}$ and $C_{3s+1}^{(3)}$, $s = s_1 + s_2$, $i = 1, 2$. Although in Lemma 2.2 we do not assume that a copy of $C_4^{(3)}$ or $C_5^{(3)}$ has to be disjoint from the matching, it can be reduced to the disjoint case by disregarding at most five edges of the matching. This small loss does not affect the asymptotics of Lemma 2.2.

The proof of Lemma 2.2 is based on Lemma 2.1 and quite similar to its proof, but even more technical. Therefore, we decided to include only a proof of an idealized version of Lemma 2.2 (cf. Theorem 7.1). The full version can be found in [12].

2.4. Outline of the proof of upper bounds

We first consider the case of $C_{3n}^{(3)}$. Let $K_N^{(3)} = H_{\text{red}} \cup H_{\text{blue}}$, where $N \sim 4n$, be a red-blue coloring of the edges of the complete 3-uniform hypergraph $K_N^{(3)}$.

We apply simultaneously, to both H_{red} and H_{blue}, the hypergraph regularity lemma (Theorem 3.2) with suitably chosen parameters, and obtain a vertex partition $V = V_1 \cup \ldots \cup V_t$, $|V_i| \sim N/t$, such that for almost all triples $\{i, j, k\}$ one of the induced sub-hypergraphs, $H_{\text{red}}[V_i \cup V_j \cup V_k]$ or $H_{\text{blue}}[V_i \cup V_j \cup V_k]$, is “well structured”, that is, enjoys high regularity and large density (see Section 5 for details).

It will be proved in Section 4 that a “well structured” hypergraph contains a long path (Lemma 4.6), in our case of length almost $3N/t$. We will build a monochromatic copy of $C_{3n}^{(3)}$ mostly out of such paths, coming from about $t/4$ vertex disjoint “well-structured” hypergraphs. Thus, it is crucial to find about $t/4$ disjoint, but mutually connected, “well-structured” sub-hypergraphs in one color.

To this end, let K_{red} and K_{blue} be two auxiliary hypergraphs on the vertex set $\{1, 2, \ldots, t\}$, whose edges are those triples $\{i, j, k\}$ for which, respectively, $H_{\text{red}}[V_i \cup V_j \cup V_k]$
or $H_{\text{blue}}[V_i \cup V_j \cup V_k]$ contains a “well structured” sub-hypergraph. Set $K = K_{\text{red}} \cup K_{\text{blue}}$ and note that $|K| \sim \binom{t}{3}$. We call K the cluster hypergraph and the edges of K the cluster edges.

By Lemma 2.1 either K_{red} or K_{blue} (say, K_{red}) contains an externally connected matching $M = M(3)_i$ of size $s \sim t/4$. Next, using Lemma 4.6, we will find a long path in each sub-hypergraph $H_{\text{red}}[V_i, V_j, V_k]$, where $\{i, j, k\} \in M$. These paths are disjoint and have total length of about $(t/4) \times (3N/t) = 3N/4 \sim 3n$ (in fact, $3n - O(1)$).

To connect the long paths together into a red cycle of length $3n$, we will construct in H_{red} short paths (length $O(1)$) between the endpairs of long paths, being guided by the pseudo-paths linking in K_{red} the cluster edges of $M(3)_i$ (in reality, we build the short paths first).

The case of $C^{(3)}_{3n+1}$, $i = 1, 2$, requires just one modification: in addition to an externally connected, monochromatic matching in K, we will need a copy of a cycle of length not divisible by three in the same color. This is provided by Lemma 2.2, which guarantees in either K_{red} or K_{blue} the existence of an externally connected sub-hypergraph which is a union of $M(3)_i$, $s \sim t/6$, and a copy of either $C^{(3)}_4$ or $C^{(3)}_5$. Due to the presence of a cluster cycle of length not divisible by three we will be able to adjust the length of the final cycle to be equal one or two modulo three (by running once or twice around the cluster cycle – see Section 5 for more details).

In the next section we introduce the regularity of hypergraphs and present a corresponding regularity lemma. In Section 4 we prove the existence of paths of prescribed length in quasi-random hypergraphs (Lemma 4.6), one of the two main ingredients of the proof of Theorem 1.1(b). In Section 5 we put together the main proof, and, finally, in Sections 6-8 we provide the proofs of the second crucial ingredient, Lemmas 2.1 and 2.2.

3. Regularity of hypergraphs

In this section we describe the regularity lemma for hypergraphs established in [7], in a modified version presented in [17]. To do this we will need to refer to the notion of ϵ-regularity for graphs, the key idea in Szemerédi’s Regularity Lemma [19].

3.1. Graph regularity

For a graph G and two disjoint sets of vertices $X, Y \subseteq V(G)$, we write $E_G(X, Y)$ for the set of edges of G that have one end in X and the other in Y. The density $d_G(X, Y)$ of G over the pair (X, Y) is defined by

$$d_G(X, Y) = \frac{|E_G(X, Y)|}{|X||Y|}.$$

We denote by $G[X, Y]$ the bipartite subgraph of G induced by vertex classes X and Y. Note that $E_G(X, Y)$ is the edge set of $G[X, Y]$.

Let G be a bipartite graph with vertex classes X and Y and let $0 \leq d \leq 1$ and $\epsilon > 0$ be given. We say that G is (d, ϵ)-regular, if for all $X' \subseteq X$ and $Y' \subseteq Y$ with $|X'| \geq \epsilon|X|$ and $|Y'| \geq \epsilon|Y|$, we have

$$|d_G(X', Y') - d| < \epsilon.$$
We say that G is ϵ-regular if it is (d, ϵ)-regular with $d = d_G(X, Y)$.

3.2. Hypergraph regularity

We now turn to hypergraph regularity. A triple (P^{12}, P^{13}, P^{23}) of bipartite graphs with vertex sets $V_1 \cup V_2$, $V_1 \cup V_3$ and $V_2 \cup V_3$, or equivalently, the 3-partite graph $P = P^{12} \cup P^{13} \cup P^{23}$ itself, will be referred to as a triad.

In what follows we often need to focus on the set of edges of a hypergraph H that are also vertex sets of triangles in a fixed triad P with $V(P) \subseteq V(H)$. We denote by $\text{Tr}(P)$ the family of the vertex sets of the triangles in the graph P, and set $\text{tr}(P) = |\text{Tr}(P)|$.

Thus for any P, $\text{Tr}(P)$ is a 3-uniform hypergraph on the same vertex set as P. Moreover, $\text{Tr}(P)$ is 3-partite in the sense that every edge intersects each set V_1, V_2 and V_3.

Further, we define the notion of the density of H with respect to P as

$$d_H(P) = \frac{|H \cap \text{Tr}(P)|}{|\text{Tr}(P)|}.$$

Similarly, for every r-tuple of triads $\vec{Q} = (Q(1), Q(2), \ldots, Q(r))$, let

$$d_H(\vec{Q}) = \frac{|H \cap \bigcup_{p=1}^r \text{Tr}(Q(p))|}{\left| \bigcup_{p=1}^r \text{Tr}(Q(p)) \right|}.$$

Note that in the definition above, the sets of triangles $\text{Tr}(Q(p))$ need not be pairwise disjoint.

Next, we define the notion of regularity for 3-uniform hypergraphs. Given a triad $P = P^{12} \cup P^{13} \cup P^{23}$, by a sub-triad we mean a triad $Q = Q^{12} \cup Q^{13} \cup Q^{23}$ where

$$Q^{12} \subseteq P^{12}, \quad Q^{13} \subseteq P^{13}, \quad Q^{23} \subseteq P^{23}.$$

Definition 3.1.

Let $\delta > 0$ and $\alpha > 0$, and let r be a positive integer. Further, let H be a 3-uniform hypergraph with $V(H) \supseteq V(P)$.

- We say that H is (α, δ, r)-regular with respect to a triad P if for every r-tuple of sub-triads $\vec{Q} = (Q(1), Q(2), \ldots, Q(r))$ satisfying $|\bigcup_{p=1}^r \text{Tr}(Q(p))| > \delta |\text{Tr}(P)|$, we have $|d_H(\vec{Q}) - \alpha| < \delta$.
- We say that H is (δ, r)-regular with respect to P if it is (α, δ, r)-regular with $\alpha = d_H(P)$.
- A triad P with respect to which H is (δ, r)-regular will be called (δ, r)-regular. Otherwise, it will be called (δ, r)-irregular.
- Moreover, if each graph P^{12}, P^{13}, P^{23} of an (α, δ, r)-regular triad $P = P^{12} \cup P^{13} \cup P^{23}$ is $(1/\ell, \epsilon)$-regular, then we call the pair (H, P) an $(\alpha, \delta, \ell, r, \epsilon)$-regular complex.

Observe that if H^c is the complement of H then $d_H(\vec{Q}) = 1 - d_{H^c}(\vec{Q})$. Consequently, if H is (α, δ, r)-regular, then H^c is $(1 - \alpha, \delta, r)$-regular with respect to the same triad P.
3.3. Regularity Lemma for Hypergraphs

We now state the regularity lemma for 3-uniform hypergraphs from [7] in a simplified form presented in [17] (see Lemma 4.1 and Remark 4.1 there). We write \(K(U,W) \) for the complete bipartite graph with vertex sets \(U \) and \(W \).

Theorem 3.2 (Regularity Lemma for Hypergraphs). For every \(\delta > 0 \), every integer \(t_0 \), all integer-valued functions \(r = r(t, \ell) \), and all decreasing sequences \(\varepsilon(\ell) > 0 \), there exist constants \(T_0, L_0 \) and \(N_0 \) such that every 3-uniform hypergraph \(H \) with at least \(N_0 \) vertices admits a partition \(\Pi \) consisting of an auxiliary vertex set partition \(V(H) = V_0 \cup V_1 \cup \cdots \cup V_t \), where \(t_0 \leq t < T_0 \), \(|V_0| < t \) and \(|V_1| = |V_2| = \cdots = |V_t| \), and, for each pair \(i, j \), \(1 \leq i < j \leq t \), a partition \(K(V_i,V_j) = \bigcup_{a=1}^{\ell} P^{ij}_a \), where \(1 \leq \ell < L_0 \), satisfying the following conditions:

(i) all graphs \(P^{ij}_a \) are \((1/\ell, \varepsilon(\ell))-regular\),

(ii) \(H \) is \((\delta, r)-regular\) with respect to all but at most \(\delta t^3 \) triads \((P^{h_1}, P^{b_j}, P^{i_j}) \).

Note that the conclusions of Theorem 3.2 hold for the complement \(H^c \) of \(H \) as well.

Since the outcome of the regularity lemma may be overwhelming, we simplify the picture a little bit by selecting only one graph \(P^{ij}_a \) from each \(K(V_i,V_j) \).

Claim 3.3. Given the partition produced by Theorem 3.2, there exists a family \(\mathcal{P} \) of bipartite graphs \(P^{ij} = P^{ij}_{a_{ij}} \), one between each pair \((V_i,V_j)\), where \(1 \leq i < j \leq t \), such that \(H \) is \((\delta, r)-regular\) with respect to all but at most \(2\delta t^3 \) triads \((P^{h_1}, P^{b_j}, P^{i_j}) \).

Proof. We apply the probabilistic method. For all \(1 \leq i < j \leq t \), choose an index \(a_{ij} \in \{1,2,\ldots,\ell\} \) independently and uniformly at random. The selected indices determine a (random) family \(\mathcal{P} \) of \(\binom{t}{2} \) bipartite graphs. By condition (ii) of Theorem 3.2, the expected number of \((\delta, r)\)-irregular triads of \(\mathcal{P} \) is at most \(\delta t^3 \ell^3 \left(1/\ell\right)^3 = \delta t^3 \), and hence, by Markov’s inequality, the probability that there are more than \(2\delta t^3 \) such triads is less than \(1/2 \). Thus, there exists a selection \(\mathcal{P} \) with fewer than \(2\delta t^3 \) \((\delta, r)\)-irregular triads. \(\square \)

4. A long, long path

Our goal in this section is to find tight hyperpaths of given lengths connecting two designated edges of \(P \) in an \((\alpha, \delta, \ell, r, \varepsilon)\)-complex \((H,P)\), as defined in Definition 3.1. To distinguish the hypergraph edges from the graph edges, in this section the former will be called hyperedges. On the other hand, as in the whole paper, we will use the name “path” instead of “hyperpath”.

4.1. Short paths

Recall that a tight path of length \(m \) was defined as a hypergraph with vertices \(v_1, v_2, \ldots, v_{m+2} \) and the \(m \) hyperedges \(v_1v_2v_3, \ldots, v_{m+1}v_{m+2} \). We call the (ordered) pairs \((v_1, v_2)\) and \((v_{m+2}, v_{m+1})\) the endpairs of the path, while the vertices \(v_3, \ldots, v_m \) are called
internal vertices. Two paths are said to be internally disjoint if they do not share any internal vertex.

Note that the endpairs of a 3-uniform path are ordered pairs of vertices. However, in a 3-partite 3-uniform hypergraph H on vertex set $V_1 \cup V_2 \cup V_3$, we may designate one cyclic orientation, say $V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_1$, as canonical, and view the endpairs of paths as unordered pairs of vertices, or simply the edges of the underlying graph P. Then, under the above canonical orientation, a path going from edge e to edge f is not ambiguous and means that the endpairs of the paths are the edges e and f directed by the canonical ordering. For example, let $e = ab$ and $f = cd$ be two edges, where $a, d \in V_1$, $b, c \in V_2$. Then, $\text{Four}^+(e, H)$ and $\text{Four}^-(e, H)$ are contained in different subgraphs P_{ij}, and thus are disjoint.

In [15] the following result is proved. For a subset $S \subset V(H)$ a path $Q \subset H$ is called S-avoiding if $V(Q) \cap S = \emptyset$. Given a graph G with $V(G) = V(H)$, we denote by $H - G$ the sub-hypergraph of H obtained by removing from H all hyperedges containing at least one edge of G.

Theorem 4.3 ([15]). For each $\alpha \in (0, 1)$ there exists $\delta > 0$ and sequences $r(\ell)$, $\varepsilon(\ell)$, and $n_0(\ell)$ such that for all integers $\ell \geq 1$ the following holds: if (H, P) is an $(\alpha, \delta, \ell, r(\ell), \varepsilon(\ell))$-complex with $|V_1| = |V_2| = |V_3| = n > n_0(\ell)$ and

$$R_0 = \left\{ e \in P : \min \{|\text{Four}^+(e, H)|, |\text{Four}^-(e, H)|\} < \frac{\alpha^4}{2000} \times \frac{n^2}{\ell} \right\},$$

then there is a subgraph P_0 of at most $27\sqrt{5}n^2/\ell$ edges of P such that
Figure 1. The fourth neighborhoods of e ($g \in \text{Four}^-(e, H)$, $h \in \text{Four}^+(e, H)$)

(i) for all $e \in P \setminus P_0$

$$\min\left(|\text{Four}^+(e, H - P_0)|, |\text{Four}^-(e, H - P_0)|\right) \geq \left(\frac{\alpha^4}{2000}\right) \frac{n^2}{\ell},$$

and

(ii) for every ordered pair of disjoint edges $(e, f) \in (P \setminus P_0) \times (P \setminus P_0)$ and for every set $S \subseteq V(H) \setminus (e \cup f)$ of size $|S| \leq n/\log n$, there is in H an S-avoiding path from e to f of length $9 + \text{type}(e, f)$.

Part (i) above is Lemma 4.2 in [15], while part (ii) is Theorem 3.4(ii) in [15] (see also Remark 4.3 there). Now we formulate a useful corollary of Theorem 4.3.

Corollary 4.4. For each $\alpha \in (0, 1)$ there exists $\delta > 0$ and sequences $r(\ell)$, $\varepsilon(\ell)$, and $n_0(\ell)$ such that for all integers $\ell \geq 1$ the following holds: if (H, P) is an $(\alpha, \delta, \ell, r(\ell), \varepsilon(\ell))$-complex with $|V_1| = |V_2| = |V_3| = n > n_0(\ell)$, then there is a subgraph P_0 of at most $27\sqrt{5n^2/\ell}$ edges of P such that

(i) for all $e \in P \setminus P_0$

$$|\text{Four}^+(e, H)| \geq \left(\frac{\alpha^4}{2000}\right) \frac{n^2}{\ell},$$

and

(ii) for every ordered pair of disjoint edges $(e, f) \in (P \setminus P_0) \times (P \setminus P_0)$ and for every set $S \subseteq V(H) \setminus (e \cup f)$ of size $|S| \leq n/\log n$, there is in H an S-avoiding path from e to f of length $9 + \text{type}(e, f)$.

Proof. Part (i) follows from Theorem 4.3(i) because $\text{Four}^+(e, H) \supseteq \text{Four}^+(e, H - P_0)$.

To prove part (ii), observe that, by definition of R_0 and Theorem 4.3(i), we have $R_0 \subseteq P_0$.
and thus \((P \setminus P_0) \times (P \setminus P_0) \subseteq (P \setminus R_0) \times (P \setminus R_0)\). Hence, part (ii) follows from Theorem 4.3(ii).

Let us conclude this subsection with an observation that, for a small decrease in the size of \(S\), the path length in Corollary 4.4(ii) may be specified to be any integer from \(\{10, \ldots, 17\}\).

Claim 4.5. Under the assumptions of Corollary 4.4, for every ordered pair of disjoint edges \((e, f) \in (P \setminus P_0) \times (P \setminus P_0)\), for every set \(S \subseteq V(H) \setminus (e \cup f)\) of size \(|S| \leq n/\log n - 12\), and for each \(m \in \{10, \ldots, 17\}\), \(m = \text{type}(e, f) \pmod 3\), there is in \(H\) an \(S\)-avoiding path from \(e\) to \(f\) of length \(m\).

Proof. In view of Corollary 4.4(ii), we may assume that \(m \geq 13\). In this case will apply Corollary 4.4(ii) twice. First we find in \(H\) an \(S\)-avoiding path \(Q_1\) from \(e\) to \(f\) of length \(m_0 = 10, 11,\) or 12, depending on the type of \((e, f)\). Note that \(m_0 \equiv m \pmod 3\), and thus \(m - m_0\) is divisible by three.

Consider the initial segment \(Q'_1\) of \(Q_1\) of length \(m - m_0\), and call its other endpair \(e'\) (note that \(\text{type}(e', f) = \text{type}(e, f)\)). Now, find in \(H\) an \((S \cup V(Q'_1))'\)-avoiding path \(Q_2\) from \(e'\) to \(f\) of length \(m_0\). Then, the concatenation \(Q'_1 + Q_2\) forms in \(H\) an \(S\)-avoiding path from \(e\) to \(f\) of length \(m\).

4.2. Long paths

It was shown in [15] that \((\alpha, \delta, \ell, r, \varepsilon)\)-complexes contain long paths. Here we strengthen that result by showing that, in fact, most pairs of edges of the underlying graph \(P\) are connected in \(H\) by paths of any given, feasible length \(m\), for a wide range of \(m\).

Lemma 4.6. For each \(\alpha \in (0, 1)\) there exists \(\delta > 0\) and sequences \(r(\ell), \varepsilon(\ell),\) and \(n(\ell)\) with the following property: for all integers \(\ell \geq 1\), if \((H, P)\) is a \((d_H(P), \delta, \ell, r(\ell), \varepsilon(\ell))\)-complex with \(d_H(P) \geq \alpha\) and \(|V_1| = |V_2| = |V_3| = n > n(\ell)\), then there is a subgraph \(P_0\) of at most \(27\sqrt{5n^2/\ell}\) edges of \(P\) such that for all ordered pairs of disjoint edges \((e, f) \in (P \setminus P_0) \times (P \setminus P_0)\), for every set \(S \subseteq V(H) \setminus (e \cup f)\), \(|S| < n/(\log n)^2\), and for all integers \(m\) from the range

\[
10 \leq m \leq (1 - \delta^{1/4})(3n),
\]

with \(m = \text{type}(e, f) \pmod 3\), there is in \(H\) an \(S\)-avoiding path from \(e\) to \(f\) of length \(m\).

Proof. Note that unlike in Claim 4.5, here we need to construct a possibly very long path from \(e\) to \(f\). This will be achieved by a repeated application of Corollary 4.4(i). There is a minor, but irritating difference, however, in the set-ups of Corollary 4.4 and Lemma 4.6: in the former, the hypergraph density was roughly equal to \(\alpha\), while now we have a hypergraph \(H\) satisfying \(d_H(P) \geq \alpha\). To circumvent this technical obstacle, we consider a random sub-hypergraph \(H_{R} \subset H\), where each hyperedge of \(H\) is present independently with probability \(\alpha / d_H(P)\). By Chernoff’s bound, the pair \((H_{R}, P)\) is an
The hypergraphs H ordered pair of disjoint edges (e, f) be given by Corollary 4.4, where δ, r, H will use Claim 4.5 to connect the other endpairs of these two paths to form in $\delta' = 4\delta^2$ in place of δ, $r(\ell)$, $e(\ell)$ in place of $e(\ell)$, and $n_0(\ell)$. Set $\varepsilon(\ell) = \delta^2\varepsilon(\ell)$. Assume also that

$$27\sqrt{4\delta^2} < \frac{\alpha^4}{2000}.$$

We will prove Lemma 4.6 with the above choice of $\delta, r(\ell)$ and $\varepsilon(\ell)$, and with a choice of $n_1(\ell) \geq n_0(\ell)$ such that for all $\ell \geq 1$ and $n \geq n_1(\ell)$ all inequalities encountered in the proof below hold true. Let (H, P) be an $(\alpha, \delta, \ell, \varepsilon(\ell))$-complex and $P_0 = P_0(H)$ be given by Corollary 4.4, where $|V_1| = |V_2| = |V_3| = n > n_1 = n_1(\ell)$. Let us fix an ordered pair of disjoint edges $(e, f) \in (P \setminus P_0) \times (P \setminus P_0)$, and a set $S \subset V(H) \setminus (e \cup f)$, $|S| < n/(\log n)^2$. Finally, fix an integer m from the range $10 \leq m \leq (1 - \delta^{1/4})(3n)$, with $m \equiv \text{type}(e, f) \pmod{3}$.

Our goal is to show that there exists an S-avoiding path from e to f of length m. Without loss of generality, let us assume that $\text{type}(e, f) = 3$, $e = ab \in P^{12}$ and $f = cd \in P^{12}$, where $a, d \in V_1$ and $b, e \in V_2$.

The plan is to first grow, by recursive application of Corollary 4.4(i), two disjoint S-avoiding paths Q_e and Q_f of equal length m', one from e, the other from f, until their total length $2m'$ reaches roughly m. Then, making sure that $10 \leq m - 2m' \leq 17$, we will use Claim 4.5 to connect the other endpairs of these two paths to form in H an S-avoiding path from e to f of length precisely m.

The two “parallel” paths will be grown recursively, in increments of four, using the property of the sets $\text{Four}^+(e', H)$ and $\text{Four}^+(f', H)$, where e' and f' will denote the current endpairs. Thus, we must take care to always choose the extending paths so that the new endpairs are outside the exceptional set P_0 of the current sub-hypergraph. To this end, at any given step of this procedure, we will have to consider two sub-hypergraphs defined as follows.

Given two disjoint paths, Q_e from e and Q_f from f, of equal length m', let $H' = H'(Q_e, Q_f)$ be the sub-hypergraph obtained from H by deleting all vertices of Q_e and Q_f, except for the last four from each path (if $m' \leq 4$, we set $H' = H$). Further, let the sub-hypergraph $H'' = H''(Q_e, Q_f)$ be obtained from H by deleting all vertices of Q_e and Q_f (no exceptions). Set also $P' = P[V(H')]$ and $P'' = P[V(H'')]$. As long as

$$|V(Q_e) \cup V(Q_f)| = 2m' < (1 - \delta^{1/4})(3n),$$

the hypergraphs H' and H'' have at least $\delta^{1/4}n$ vertices in each set V_i, $i = 1, 2, 3$, and so, the pairs (H', P') and (H'', P'') are $(\alpha, 4\delta^2, \ell, r, \varepsilon/\delta^2)$-complexes (see, e.g., [17], Fact 4.2). Let P'_0 and P''_0 be the subgraphs of P' and P'', respectively, guaranteed by Corollary 4.4.

As a next step in the proof of Lemma 4.6, we show that two long paths can be grown from e and f. Their length m', due to the chosen method of construction, will be a multiple of four.

Fact 4.7. For every $0 \leq m' < \frac{3}{4}(1 - \delta^{1/4})(3n)$, m' divisible by four, there exists in H
a pair of disjoint S-avoiding paths Q_e and Q_f of length m', originating from e and f, respectively, and such that their other endpairs are not in P'_0.

Proof. We proceed by induction on m'. There is nothing to prove for $m' = 0$. Let Q_e and Q_f be a pair of disjoint S-avoiding paths, one from e and the other from f, of the same length $m' \geq 0$, m' divisible by four, and such that their other endpairs, e' and f', are not in P'_0. (If $m' = 0$, we set $e' = e$ and $f' = f$.) We will now show how to extend Q_e and Q_f to a new pair of paths Q'_e and Q'_f of length $m' + 4$, thus completing the inductive step. (The reader may be guided throughout by Fig. 2.)

Noticing that $|V(H'')| < |V(H')|$ and $\frac{\varepsilon}{\delta^4} = \varepsilon_1(\ell)$, by Corollary 4.4 applied to H'' we have

$$|P''_0| \leq 27\sqrt{\frac{4\delta^4}{\varepsilon}} \frac{|V(H'')|/3|^2}{\ell} < 27\sqrt{\frac{4\delta^4}{\varepsilon}} \frac{|V(H')|/3|^2}{\ell}. \quad (4.2)$$

On the other hand, by Corollary 4.4(i) applied to H' and by the fact that $e' \in P' \setminus P'_0$, we infer that the edge $e' \gamma_0$-reaches at least

$$\frac{\alpha^4}{2000} \frac{|V(H')|/3|^2}{\ell}$$

other edges of P' within H'. Therefore, since $n > n_1$, by (4.2) and (4.1), $e' \gamma_0$-reaches at least $|P''_0| + 2|V(H')|$ other edges of P' within H', where the term $2|V(H')|$ takes care of all edges adjacent to the two vertices of the set $T_e = V(H') \cap V(Q_e) \setminus e'$.

Consequently, there exists at least one edge $e'' \in P''_0 \setminus P''_0$ which is γ_0-reached from e' within H', that is, there are at least $\gamma_0|V(H'')|$ internally disjoint paths from e' to e'' of length four in H'. Thus, since $n > n_1$, at least one of them avoids $S \cup T_e$, and we may extend Q_e by four vertices, so that the new path Q'_e ends in $e'' \notin P''_0$.

We now similarly extend Q_f by four vertices, so that the new path Q'_f is disjoint from Q'_e, avoids S, and ends in $f'' \notin P''_0$. Since $H'' = H'(Q'_e, Q'_f)$, and so $P''_0 = P_0(H'(Q'_e, Q'_f))$, the pair of paths (Q'_e, Q'_f) satisfies all conditions required in Fact 4.7. \Box

Now comes the final, gluing part of the proof of Lemma 4.6. First, we have to choose the right length m' of the paths Q_e and Q_f guaranteed by Fact 4.7. Since their total length $2m'$ is divisible by eight, it is convenient to represent m in the form

$$m = 8k + h,$$

where $0 \leq h \leq 7$. Note that in view of Claim 4.5, there is nothing to prove when $k = 1$, or $k = 2$ and $h \leq 1$. If $k \geq 2$ and $h \geq 2$, we need $m' = 4(k - 1)$ because then $m - 2m' = 8 + h \in \{10, \ldots, 15\}$. Similarly, when $k \geq 3$ and $h \leq 1$, we need $m' = 4(k - 2)$ (this time $m - 2m' = 16$ or 17).

Let

$$T_f = V(H') \cap V(Q_f) \setminus f'.$$

We connect e' and f' by a path $Q_{e'f'}$ in H' of length precisely $m - 2m' \in \{10, \ldots, 17\}$,
which avoids the set $S \cup T_e \cup T_f$. This follows from Claim 4.5 above. The concatenation $Q_e + Q_f + Q'_e f'$ forms in H an S-avoiding path from e to f of length m, as required. □

5. Proof of Theorem 1.1(b)

In Sections 5.1-5.4 we prove Theorem 1.1(b) for $C_{3n}^{(3)}$ and then, in Section 5.5, we explain how to adjust the proof to obtain Theorem 1.1(b) in the remaining cases of $C_{3n+1}^{(3)}$ and $C_{3n+2}^{(3)}$.

5.1. The choice of constants and the use of the regularity lemma

Let $\eta > 0$ be given. Set $\alpha = 1/2$ and let $\delta', r(\ell), \epsilon(\ell), n_1(\ell)$ be as guaranteed by Lemma 4.6. Let $\delta'' = \delta(\eta/2)$ and $s_0 = s_0(\eta/2)$ be given by Lemma 2.1. Envisioning an application of Theorem 3.2, we set

$$\delta = \min \left\{ \frac{\delta'}{2}, \frac{\delta''}{40} \right\},$$

(5.1a)

$$t_0 = \max \left\{ \delta^{-100}, 5s_0 \right\},$$

(5.1b)

and

$$r(t, \ell) = r(\ell).$$

(5.1c)

Theorem 3.2 yields integers L_0, T_0, N_0 from which we derive

$$N_1 = \max \left\{ 2T_0 \max_{\ell \leq T_0} n_1(\ell), N_0 \right\}.$$

Now, for an arbitrary $n > \frac{1}{4} N_1$, consider a red-blue coloring $K_N^{(3)} = H_{\text{red}} \cup H_{\text{blue}}$, where $N = (4 + \eta)n > N_1 \geq N_0$.

Figure 2. Growing hyperpaths from e and f (illustration to the proof of Lemma 4.6).
We apply the hypergraph regularity lemma (Theorem 3.2) with parameters given by (5.1a)-(5.1c) to H_{red} (and H_{blue}), yielding a partition Π satisfying conditions (i) and (ii) of Theorem 3.2. In particular, this determines the values of t and ℓ. Note that $|V_1| = \cdots = |V_\ell| > (N - T_0)/T_0 > n_1(\ell)$.

By Claim 3.3, setting $\varepsilon = \varepsilon(\ell)$, there exists a family P of $(1/\ell, \varepsilon)$-regular, bipartite graphs $P_{ij} = P_{ij}^{a_{ij}}$ between pairs (V_i, V_j), where $1 \leq i < j \leq t$, such that H_{red} (and, by complement, H_{blue}) is $(\delta, r(t, \ell))$-regular with respect to all but at most $2\delta t^3$ triads $P_{ijk} = P_{ij} \cup P_{jk} \cup P_{ik}$. Setting $r = r(t, \ell)$, we will more concisely call these triads (δ, r)-regular.

Moreover, since $d_{H_{\text{red}}}(P_{ijk}) + d_{H_{\text{blue}}}(P_{ijk}) = 1$, either $d_{H_{\text{red}}}(P_{ijk}) \geq 1/2$ or $d_{H_{\text{blue}}}(P_{ijk}) \geq 1/2$. (This is what we meant in Section 2.4 by a “well structured” sub-hypergraph.)

5.2. Finding a monochromatic pseudo-path in K

We construct the cluster hypergraph K with the vertex set $\{1, \ldots, t\}$, and the edge set consisting of all triples $\{i, j, k\}$ such that the triad P_{ijk} is (δ, r)-regular. Note that K contains at least

$$\left(\binom{t}{3}\right) - 2\delta t^3 > (1 - \delta'')(\ell(t/3))$$

edges, where the inequality follows by (5.1a).

With the ultimate goal of finding a monochromatic cycle $C_n^{(3)}$, we first design a “big picture” route (as a pseudo-path in K) that the monochromatic cycle will eventually follow.

To this end, define a red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$ of the cluster hypergraph K, by including $\{i, j, k\} \in K_{\text{red}}$ if

$$d_{H_{\text{red}}}(P_{ijk}) \geq 1/2$$

and $\{i, j, k\} \in K_{\text{blue}}$ otherwise. By (5.2), this coloring is well defined.

By Lemma 2.1 with $\eta/2$ in place of η, there exists in K_{red}, say, a connected matching $M = \{h_1, \ldots, h_s\}$ of size $s = t/(4 + \eta/2)$. Let Q_i, $i = 1, \ldots, s - 1$, be a shortest pseudo-path in K_{red} from h_i to h_{i+1}. Note that the edges of each Q_i are all distinct, and thus the length ℓ_i of Q_i satisfies the bound $\ell_i \leq \ell(t/3)$, which is independent of n.

Given two pseudo-paths P and Q, where the last edge of P coincides with the first edge of Q, $P + Q$ stands for the concatenation of P and Q. The pseudo-path

$$Q = Q_1 + \cdots + Q_{s-1} = (e_1, \ldots, e_p)$$

will serve as “a frame” for the long red cycle in H_{red}.
5.3. Creating a short monochromatic cycle in H

For every $i = 1, \ldots, p$, let $P^i = P^{e_i}$ be the triad corresponding to a cluster edge e_i. Recall that all these triads are (δ, r)-regular. Let $P_0^i \subset P^i$ be the subgraph of P^i (of prohibited edges) given by Lemma 4.6 applied to the complex (H_{red}, P^i), and, for $i = 1, \ldots, p - 1$, set

$$B^i = (P^i \setminus P_0^i) \cap (P^{i+1} \setminus P_0^{i+1}).$$

Choose mutually distinct edges $f_i, g_i \in B^i$ for $1 \leq i \leq p - 1$. The bound on $|P_0^i|$ from Lemma 4.6 ensures that for sufficiently large n this is possible.

In the next step of our construction, applying repeatedly Claim 4.5, we create a short cycle C in H_{red} of length divisible by 3. To this end, we connect by disjoint paths of length 10, 11, or 12, f_1 to f_2 to f_3 . . . to f_{p-1} to g_{p-1} and then, “backward”, g_{p-1} to g_{p-2} . . . to g_1 to f_1.

For the passages from f_{p-1} to g_{p-1} and from g_1 to f_1, we choose the trials P^p and P^1, respectively, while for all $i = 1, \ldots, p - 2$, the paths from f_i to f_{i+1} and from g_{i+1} to g_i use the triad P^{i+1}.

We have a choice of the direction around P^2 in which we connect f_1 to f_2, but then all other directions are determined. For the types to be well defined (cf. Definition 4.1), we need to designate one orientation around each triad as canonical. For convenience, we declare canonical the orientation consistent with the direction in which our paths proceed.

Note that for each $i = 1, \ldots, p - 2$, the paths from f_i to f_{i+1} and from g_{i+1} to g_i go in the same, canonical by now, direction around P^{i+1}. Hence,

$$\text{type}(f_i, f_{i+1}) + \text{type}(g_{i+1}, g_i) = 1 + 2 = 0 \text{ (mod 3)}. \quad (5.3)$$

Since also

$$\text{type}(g_1, f_1) = \text{type}(f_{p-1}, g_{p-1}) = 0 \text{ (mod 3)},$$

the obtained short cycle C has length divisible by 3.

To keep the paths disjoint, we apply Claim 4.5 with the set S collecting the vertices of the so far constructed paths. Since $|S| \leq 12(2p) < n/\log n$, the assumptions on the size of S in Claim 4.5 are satisfied. For future reference, we denote by R_i the just created short path from g_1 to f_1, by R_{i+1}, $i = 1, \ldots, p - 2$, the paths from f_i to f_{i+1}, and by R_p the path from f_{p-1} to g_{p-1}.

5.4. Creating a monochromatic cycle of length $3n$

Preparing for the final step, let

$$I = \{1, \ell_1, \ell_1 + \ell_2 - 1, \ldots, p\}.$$

Observe that $|I| = s$ and that $M = \{h_1, \ldots, h_s\} = \{e_i : i \in I\}$.

To complete the proof, we replace the short paths R_i, $i \in I$, in C by disjoint, long paths with the same endpairs as the R_i’s, which lie in the same triads (and thus, have the same length modulo 3 as the R_i’s), in such a way that the total length of the obtained cycle is $3n$.

Specifically, let m' be the length of C, minus the sum of the lengths of all paths R_j.
with \(j \in I \). Furthermore, for each \(i \in I, i \neq p \), let

\[
m_i = \left\lfloor \frac{3n - m'}{s} \right\rfloor + x_i,
\]

where \(x_i = 0, 1, \) or \(2 \), so that

\[
m_i - \text{type}(f_i, f_{i+1}) = 0 \pmod{3}.
\]

For each \(i \in I, i \neq 1, p \), we apply Lemma 4.6 to the complex \((H_{\text{red}}, P^{i+1})\), with \(e = f_i, f = f_{i+1}, S = V(C) \setminus (e \cup f)\) (note that \(|S| = O(1)|\), and with \(m = m_i \). As a result, we obtain paths \(T_i \) from \(f_i \) to \(f_{i+1} \) of length \(m_i, i \in I, i \neq 1, p \), and, similarly, a path \(T_1 \) from \(f_1 \) to \(g_1 \) of length \(m_1 \). To achieve precisely the length \(3n \) for the final cycle, we take a path \(T_p \) from \(f_{p-1} \) to \(g_{p-1} \) of length

\[
m_p = 3n - \left(m' + \sum_{i \in I \setminus \{p\}} m_i \right).
\]

This is possible, because for large \(n \)

\[
10 \leq m_p \leq \frac{3n}{s} + O(1) \leq (1 - \delta^{3/4})3 \left\lfloor \frac{N}{l} \right\rfloor,
\]

and Lemma 4.6 can again be applied. Since the edges of \(M \) are vertex-disjoint, the paths \(T_i \) do not interfere with each other.

5.5. Adjustment to lengths \(3n + 1 \) and \(3n + 2 \)

In order to prove the second part of Theorem 1.1(b), we first choose the constants in the same way as in Section 5.1, then apply the hypergraph regularity lemma (Theorem 3.2) to the red-blue colored \(K_{(6+\eta)n} = H_{\text{red}} \cup H_{\text{blue}} \), from which we obtain the cluster hypergraph \(K \).

Next, we color the edges of \(K \) with red and blue as in Section 5.2 and then use Lemma 2.2 to find a matching \(M = \{h_1, \ldots, h_s\} \) of size \(s = t/(6 + \eta/2) \) and a copy \(D \) of \(C^{(3)}_4 \) or \(C^{(3)}_5 \). Below we consider only the case when \(D = C^{(3)}_4 \), leaving the other case to the reader.

We use the approach from Section 5.3 to obtain a red copy of \(C^{(3)}_{3n+1} \) or \(C^{(3)}_{3n+2} \). Let, as before, \(Q_i, i = 1, \ldots, s - 1 \), be a shortest red pseudo-path from \(h_i \) to \(h_{i+1} \), and, in addition, let \(Q_s \) be the shortest red pseudo-path from \(h_s \) to an edge of \(D \). The pseudo-path

\[
Q = Q_1 + \cdots + Q_s = (e_1, \ldots, e_p)
\]

will now serve as a frame for the desired red cycle in \(H_{\text{red}} \).

We define \(P^i, P^i_0, B^i \) and mutually distinct edges \(f_i, g_i \in B^i \) for \(1 \leq i \leq p - 1 \) as before. Relying on Claim 4.5, we construct first the short paths as before, except that now the path \(R_p \) from \(f_{p-1} \) to \(g_{p-1} \) has to be of length equal to 1 [or 2] modulo 3. To ensure this, we build \(R_p \) out of 4 pieces, one in each triad constituting \(D \), each piece connecting a pair of edges of type 1 [or 2].

More specifically, let \(V(D) = \{a, b, c, d\} \), where \(e_p = \{a, b, c\} \) and \(\{a, b\} \subset e_{p-1} \). Let us
choose disjoint, typical (that is, not belonging to respective prohibited subgraphs $P^{	ext{xyz}}_0$) edges from the intersections of consecutive triads: $f_{bc} \in P^{abc} \cap P^{bcd}$, $f_{cd} \in P^{bcd} \cap P^{cda}$, and $f_{da} \in P^{cda} \cap P^{dab}$.

By Claim 4.5, going around each triad alphabetically, there are internally disjoint paths of length 10, connecting f_{p-1} to f_{bc} to f_{cd} to f_{da} to g_{p-1}. This settles the case $i = 1$. For $i = 2$, we build paths of length 11, connecting f_{p-1} to f_{da} to f_{cd} to f_{bc} to g_{p-1}.

Finally, using Lemma 4.6, some s paths R_i, corresponding to the edges of M, are replaced by long paths T_i, in exactly the same way as in Section 5.4. Of course, we now adjust the length of the last path, so that the length of the resulting cycle is exactly $3n + 1$ [or $3n + 2$].

6. Matchings in components (idealized)

In this section we prove a version of Lemma 2.1 with $\eta = \delta = 0$. There are two reasons for doing this. Firstly, we exhibit here all essential ingredients of the real proof given in Section 8, not hidden under the burden of tedious estimations. Secondly, the result we present here is interesting in its own right, as dealing with a “connected” version of the classical Ramsey number $r(M^{(3)}_s) = 4s - 1$. It turns out that this Ramsey number is not affected by the additional restriction that the matching must be contained in a monochromatic component. Interestingly, besides the extremal coloring of $K^{(3)}_{4s-2}$ described in the proof of Theorem 1.1(a), which prevents any monochromatic matching of size s, there is another one which contains monochromatic matchings of size s, but not externally connected (see Example 1 in Section 2.2).

Theorem 6.1. In every red-blue coloring of the complete 3-uniform hypergraph $K^{(3)}_{4s-1} = K_{\text{red}} \cup K_{\text{blue}}$, either K_{red} or K_{blue} contains an externally connected matching $M^{(3)}_s$.

The connectedness and components of a hypergraph H were defined in Section 2.2. Denote by ∂H the set of all pairs xy for which there exists z such that $xyz \in H$ (the shadow of H). We find it convenient to view ∂H as both a graph and a set of pairs of the vertices of H. Observe that

$$\partial H' \cap \partial H'' = \emptyset \text{ for any two distinct components } H', H'' \text{ of } H. \quad (6.1)$$

In particular, any two edges of the same color (say red), sharing two vertices must be in the same red component.

Set $t = 4s - 1$, $K = K^{(3)}_{t}$, $V = V(K)$, and consider an arbitrary red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$. Our goal is to find $M^{(3)}_s$ in some component of K_{red} or K_{blue}. We start our proof with two observations.

Observation 6.2. For every $x \in V$ there exists a monochromatic component C such that $\{xy: y \in V \setminus \{x\}\} \subseteq \partial C$.

Proof. Let $K_{\text{red}}(x) := \{yz: xyz \in K_{\text{red}}\}$ and $K_{\text{blue}}(x) := \{yz: xyz \in K_{\text{blue}}\}$. Since every edge of K is colored by only one color, $K_{\text{blue}}(x)$ is the complement of $K_{\text{red}}(x)$,
and consequently, one of these two graphs must be connected. Suppose that $K_{\text{red}}(x)$ is connected. Then, for every two vertices $y, z \in V \setminus \{x\}$ there is a path $y = x_1, x_2, \ldots, x_k = z$ in $K_{\text{red}}(x)$ which corresponds to a red pseudo-path $e_1, e_2, \ldots, e_{k-1}$, where $e_i = xx_i, x_{i+1}$, $i = 1, \ldots, k-1$. This pseudo-path connects xy with xz in K_{red}, and hence, there is a red component C such that $xy, xz \in \partial C$. \hfill \Box

For each $x \in V$ let us choose arbitrarily one component satisfying the condition in Observation 6.2 and denote it by C_x. Let $V_{\text{red}} = \{x \in V: C_x \text{ red}\}$ and $V_{\text{blue}} = \{x \in V: C_x \text{ is blue}\}$. Note that $V = V_{\text{red}} \cup V_{\text{blue}}$ and these two sets are disjoint.

Observation 6.3. If $V_{\text{red}} \neq \emptyset$ ($V_{\text{blue}} \neq \emptyset$, respectively), then there is a red component S (a blue component A) such that $C_x = S$ for every $x \in V_{\text{red}}$ ($C_x = A$ for every $x \in V_{\text{blue}}$).

Proof. This observation is trivial if $|V_{\text{red}}| = 1$. Suppose $|V_{\text{red}}| \geq 2$ and let $x, x' \in V_{\text{red}}$. Then $xx' \in \partial C_x \cap \partial C_{x'}$, and, by (6.1), we have $C_x = C_{x'}$. \hfill \Box

Components A and S will play a special role, and we will refer to them as azure (A) and scarlet (S).

The next two claims form a mechanism to build an externally connected matching in one color given an externally connected matching of the same size in the other color (see Lemma 6.7). Clearly, the colors in their statements can be interchanged.

Claim 6.4. Let $X = \{x, y, z, a, b, c, d\} \subset V$ be a set of seven vertices. Suppose that xyz is an edge of some red component C_{red} and $ya, zb \in \partial C_{\text{blue}}$ for some blue component C_{blue}. Then at least one of the following holds.

1. X contains two disjoint edges of C_{red}.
2. There is an edge $e \subset X$ in C_{blue} such that $|e \cap \{a, b, c\}| = 1$ and $|e \cap \{x, y, z\}| = 2$.
3. X contains two disjoint edges of C_{blue}.

Proof. Suppose that neither (1) nor (2) holds. Then both $xya \in C_{\text{red}}$ and $xzsb \in C_{\text{red}}$, and, consequently, $ya, zb \in \partial C_{\text{red}}$. Thus, if zbc or yad were red, they would belong to C_{red}. Since $xya \in C_{\text{red}}$, this implies that the edge zbc has to be blue, and thus $zbc \in C_{\text{blue}}$ (because $zb \in \partial C_{\text{blue}}$). Similarly, since $xzsb \in C_{\text{red}}$, the edge yad has to be blue, and thus $yad \in C_{\text{blue}}$ (because $ya \in \partial C_{\text{blue}}$), yielding (3). \hfill \Box

Claim 6.5. Let $X = \{u, v, w, x, y, z, a, b, c\} \subset V$ be a set of nine vertices. Suppose that uvw and xyz are edges of some red component C_{red} and $ya, zb, vb, wc \in \partial C_{\text{blue}}$ for some blue component C_{blue}. Then at least one of the following holds.

1. X contains three disjoint edges of C_{red}.
2. There is an edge e in C_{blue} such that $|e \cap \{a, b, c\}| = 1$ and either $|e \cap \{x, y, z\}| = 2$, or $|e \cap \{u, v, w\}| = 2$.
3. There are two disjoint edges in C_{blue} such that both of them intersect each of $\{x, y, z\}$, $\{u, v, w\}$, and $\{a, b, c\}$ in one vertex.
Proof. If (2) does not hold, then the edges xzb, vwc, uwc and yza are all red (because $ya, zb, wc \in \partial C_{\text{blue}}$), and thus in C_{red} (because $xyz, uwv \in C_{\text{red}}$). Consider the edges yua and xvb. If either of them is red, then it has to be in C_{red} (because $ya, xb \in \partial C_{\text{red}}$), yielding (1), as xzb, vwc, and yua are disjoint and in C_{red}, and so are uwc, yzb and xvb. If both yua and xvb are blue, then they belong to C_{blue} (because $ya, vb \in \partial C_{\text{blue}}$). Hence (3) holds.

Remark 6.6. Note that for the proofs of Claims 6.4 and 6.5 it is not essential that K is a complete hypergraph. In the case of Claim 6.4, we just need to assume that all triples of vertices within X, intersecting simultaneously $\{x, y, z\}$ and $\{a, b, c, d\}$, are edges of K. In the case of Claim 6.5, all triples of vertices within X, having two vertices in $\{u, v, x, y, z\}$ and one in $\{a, b, c\}$, must be edges of K. This observation will be used in the full proof of Lemma 2.1 in Section 8.

Our last preliminary result relies heavily on the two previous claims. Essentially, it says that given a maximal matching in a red component, one can construct a matching in a blue component of roughly the same size.

Lemma 6.7 (The Mirror Lemma). Let M be a largest matching in a red component C_{red} and let P be a set of at least $|M|+3$ vertices outside M. Assume further that for some blue component C_{blue} and for every $e \in M$, the bipartite induced subgraph $\partial C_{\text{blue}}[e, P]$ of ∂C_{blue} contains $K_{2, |P|-1}$. Moreover, setting $G = \partial C_{\text{blue}}[V(M), P]$, let J be an arbitrary, non-empty subset of P such that

$$J \supseteq \{v \in P : \deg_G(v) < |V(M)|\}.$$

Then there exists a matching $M' \subset C_{\text{blue}}$ such that either

(i) $|M'| = |M|$,
(ii) $|V(M') \cap P| \leq |M|$, and
(iii) $(P \setminus V(M')) \cap J \neq \emptyset$,

or

(iv) $|M'| = |M| + 1$, and
(v) $|V(M') \cap P| \leq |M| + 3$.

Proof. Let $M'' \subset C_{\text{blue}}$ be a largest matching such that

- $|V(M'') \cap P| \leq |M''|$,
- $V(M'')$ intersects at most $|M''|$ edges of M,
- $(P \setminus V(M'')) \cap J \neq \emptyset$.

We claim that $|M''| \geq |M| - 1$. Indeed, suppose $|M''| \leq |M| - 2$. It follows that there exist $e_1, e_2 \in M$ so that $(e_1 \cup e_2) \cap V(M'') = \emptyset$. Set $P'' = P \setminus V(M'')$. Since $|P''| = |P| - |P \cap V(M'')| \geq |M| + 3 - (|M| - 2) = 5$, one can choose $a, b, c \in P''$ so that $\partial C_{\text{blue}}[e_i, \{a, b, c\}] \supset K_{2,3}$ for $i = 1, 2$, and $(P'' \setminus \{a, b, c\}) \cap J \neq \emptyset$. This is always possible because, for each e_1 and e_2, at most one vertex
of \(P \) can be excluded from the copy of \(K_{2,|P|-1} \) guaranteed by the assumptions, and these excluded vertices must belong to \(J \). (If no vertex is excluded, then we can simply choose \(a, b, \) and \(c \) so that a vertex of \(J \) remains in \(P'' \setminus \{a, b, c\} \).)

Claim 6.5, applied to \(X = e_1 \cup e_2 \cup \{a, b, c\} \), implies that we can either enlarge \(M \) in \(C_{\text{red}} \) (if (1) of Claim 6.5 occurs) or \(M'' \) in \(C_{\text{blue}} \) with conditions (6.2) preserved (if (2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of \(M \) or \(M'' \), respectively.

Hence \(|M''| \geq |M| - 1 \). If \(|M''| \geq |M| \), we are done. Otherwise, let \(xyz \in M \) be such that \(\{x, y, z\} \cap V(M') = \emptyset \). Since

\[
|P''| \geq |M| + 3 - (|M| - 1) = 4,
\]

one can choose \(a, b, c \in P'' \) so that \(\partial C_{\text{blue}}[e, \{a, b, c\}] \supset K_{2,3} \) and \((P'' \setminus \{a, b, c\}) \cap J \neq \emptyset \). We apply Claim 6.4 to the set \(X = \{x, y, z, a, b, c, d\} \), where \(d \in P'' \setminus \{a, b, c\} \) is arbitrary. By the maximality of \(M \) in \(C_{\text{red}} \), (1) cannot hold. If (2) holds, we enlarge \(M'' \) by adding the edge \(e \), obtaining a matching \(M' \) satisfying conditions (i), (ii), and (iii). If conclusion (3) holds, we enlarge \(M'' \) by adding two disjoint edges, obtaining a matching \(M' \) satisfying conditions (iv) and (v).

Proof of Theorem 6.1 Let \(M \) be a largest matching among all matchings contained in \(S \) or \(A \). Without loss of generality we assume that \(\emptyset \neq M \subset S \). This implies that \(V_{\text{red}} \neq \emptyset \), but \(V_{\text{blue}} \) might be empty. Suppose that

\[
1 \leq m = |M| \leq s - 1
\]

and set

\[
R = V_{\text{red}} \setminus V(M) \quad \text{and} \quad B = V_{\text{blue}} \setminus V(M). \tag{6.4}
\]

Note that \(R \cap B = \emptyset \),

\[
t = 4s - 1 = 3m + |R \cup B|, \tag{6.5}
\]

and consequently, using also (6.3),

\[
|R \cup B| = 4s - 1 - 3m \geq s + 2 \geq m + 3 \geq 4. \tag{6.6}
\]

Observation 6.8. All edges in \(R \cup B \) with at least one vertex in \(R \) are blue, and therefore in the same blue component \(C_{\text{blue}} \). Furthermore, if \(B \neq \emptyset \), then \(C_{\text{blue}} = A \).

Proof. Note that any red edge with at least one vertex in \(R \) is in the scarlet component \(S \) and, if disjoint from \(V(M) \), could be used to enlarge \(M \). Hence, all edges from the set \(T = \{e \in R \cup B : e \cap R \neq \emptyset\} \) must be blue. Moreover, every pair of edges from \(T \) is connected by a pseudo-path in \(T \), and thus, they all belong to the same blue component. The second part follows because any blue edge containing a vertex from \(V_{\text{blue}} \) also contains a pair from \(A \) (see Observation 6.3).

For the rest of the proof we distinguish three cases. In each of them, the Mirror Lemma plays a central role. However, we need its technical conclusion (iii) only in the third case.
Case 1: $B = \emptyset$

In this case, $R \cup V(M) = V$ and thus $|R| = t - 3m \geq m + 3 \geq 4$. Denote by C_{blue} the blue component guaranteed by Observation 6.8.

Observation 6.9. For every edge $e \in M$, the bipartite induced subgraph $\partial C_{\text{blue}}[e, R]$ of ∂C_{blue} contains $K_{2,|R|-1}$ as a subgraph.

Proof. Suppose there is an edge $xyz \in M$ and two vertices $a, b \in R$ such that xa and $yb \notin \partial C_{\text{blue}}$. Let $c, d \in R \setminus \{a, b\}$ (recall that $|R| \geq 4$). Note that, by Observation 6.8, $ac, bd \in \partial C_{\text{blue}}$, and thus edges xac and ybd must be red.

Since $ax, by \notin \partial S$, we have that $xac, ybd \in S$. Consequently, $(M \setminus \{xyz\}) \cup \{xac, ybd\}$ is a red matching in S larger than M -- a contradiction.

Now we apply Lemma 6.7 with $P = R$ (recall that $|R| \geq m + 3$), obtaining a matching $M' \subset C_{\text{blue}}$ either of size m and with $|V(M') \cap R| \leq m$, or of size $m + 1$ and with $|V(M') \cap R| \leq m + 3$. Note that by (6.3)

$$|R \setminus V(M')| \geq \begin{cases} 4s - 1 - 3m - m \geq 3(s - m) & \text{in the former case,} \\ 4s - 1 - 3m - (m + 3) \geq 3(s - m - 1) & \text{in the latter case.} \end{cases}$$

This allows us in either case to enlarge M' to size s. Indeed, since all edges contained in R are in C_{blue} (cf. Observation 6.8), we can greedily find $s - m$ or $s - m - 1$, respectively, disjoint edges from C_{blue} and add them to M'.

Case 2: $R = \emptyset$

In this case, $B \cup V(M) = V$ and thus $|B| = t - 3m \geq m + 3 \geq 4$. Since $B \neq \emptyset$, the azure component component A exists. Furthermore, by the definition of V_{blue} and (6.4), we know that for every $e \in M$ the bipartite subgraph $\partial A[e, B]$ of ∂A is complete.

Thus, by the Mirror Lemma applied with $P = B$, we obtain a matching $M' \subset A$ of size $|M'| = m$ and such that $|V(M') \cap B| \leq m$. (A matching of size $m + 1$ in the azure component is impossible by our choice of M.)

Note that $|B \setminus V(M')| \geq 4s - 1 - 3m - m \geq 3$. We claim that $R' := V_{\text{red}} \setminus V(M') = \emptyset$. Indeed, suppose that $R' \neq \emptyset$. Take any three vertices $a, b, c \in B \setminus V(M')$ and $d \in R'$ (observe that $d \notin B \setminus V(M')$ because $R' \subset V_{\text{red}}$ in this case). Since $ab \in \partial A$ (because $a \in V_{\text{blue}}$), both abc and abd are red (otherwise we could enlarge M' to size $m + 1$). But $ad \in \partial S$ (because $d \in V_{\text{red}}$), therefore $abd \in S$ and, consequently, $abc \in S$. Since $\{a, b, c\} \cap V(M) = \emptyset$, we can enlarge M, which is a contradiction.

Thus $R' = \emptyset$ and we are back in Case 1 with the colors red and blue interchanged and M replaced by M'.

Case 3: $|B|, |R| \geq 1$

Set $P = R \cup B$ and note that, by (6.6), we have $|P| \geq m + 3$. Since $B \neq \emptyset$, the blue component guaranteed by Observation 6.8 is $C_{\text{blue}} = A$. In particular, for all pairs of vertices $a, b \in P$ we have $ab \in \partial A$.

Observation 6.10. For every $e \in M$, the bipartite induced subgraph $\partial A[e, P]$ of ∂A contains $K_{2,|P|-1}$ as a subgraph.
The Ramsey number for 3-uniform tight hypergraph cycles

Proof. The proof follows the lines of the proof of Observation 6.9. Suppose there is an edge $xyz \in M$ and two vertices $a,b \in P$ such that $xa, yb \not\in \partial A$. Note that, in fact, $a,b \in R$ because $\partial A[e,B]$ is the complete bipartite graph. Recall that $|P| \geq 4$ by (6.6), and choose arbitrarily $c,d \in P \setminus \{a,b\}$. Since $ac, bd \in \partial A$, edges xac and ybd must be red.

On the other hand, by the definition of V_{red}, we also have $ax, by \in \partial S$, so $xac, ybd \in S$. Hence, $(M \setminus \{xyz\}) \cup \{xac, ybd\}$ is a red matching in S larger than M – a contradiction. We apply the Mirror Lemma with $C_{\text{red}} = S$, $C_{\text{blue}} = A$, $P = R \cup B$, and $J = R$. Let M' be a matching in A satisfying conclusions (i)-(iii) (again, option (iv)-(v) is excluded by the choice of M). We have

$$|P \setminus V(M')| \geq 4s - 1 - 3m - m \geq 3.$$

By conclusion (iii), we can choose $a,b,c \in P \setminus V(M')$ so that $c \in R$. Hence, the pair $ac \in \partial S$. Also, recall that $ac \in \partial A$. So $abc \in S$ if it is red and $abc \in A$ if it is blue. Since $\{a,b,c\}$ is disjoint from both $V(M)$ and $V(M')$, we obtain either a matching of size $|M| + 1$ in S or a matching of size $|M'| + 1 = |M| + 1$ in A. Either case contradicts the maximality of M among all matchings contained in S or A.

7. Matchings and short cycles in components (idealized)

In this section we prove a version of Lemma 2.2 with $\delta = 0$, and with the term η_s replaced by $\Omega(\sqrt{s})$. The main reason for doing this is, similarly to the previous section, to show the ideas of the proof clearly and without tiring calculations. A complete proof of Lemma 2.2 is not included in this paper, but can be found in [12].

Theorem 7.1. There exists c_0 such that the following holds. Let $s \geq c_0^2$ and let K be the complete 3-uniform hypergraph with $t \geq 6s + c_0\sqrt{s}$ vertices. Then, for every red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$, either K_{red} or K_{blue} contains an externally connected union of a matching $M_s^{(3)}$ and a cycle $C_4^{(3)}$ or $C_5^{(3)}$.

Please note that the above theorem determines only the asymptotic value of the Ramsey number for a connected union of a matching $M_s^{(3)}$ of size s and a copy of $C_4^{(3)}$ or $C_5^{(3)}$ (we do not require them to be disjoint). At this point we do not know whether the lower bound of $6s + 2i - 1$ given in Sections 2.1 and 2.3 is optimal.

Proof. Let $c_0 = 25\sqrt{7}$, $s \geq c_0^2$, and let K be the complete 3-uniform hypergraph with $t = 6s + c_0\sqrt{s}$ vertices. For simplicity, we assume that $6s + c_0\sqrt{s}$ is an integer and note that $t \leq 7s$. Suppose that for an arbitrary red-blue coloring $K = K_{\text{red}} \cup K_{\text{blue}}$

no monochromatic component contains $M_s^{(3)}$ and $C_4^{(3)}$ or $C_5^{(3)}$.

Recall that the sets V_{red} and V_{blue}, and the scarlet component S and the azure component A were defined in Section 6. We distinguish two complementary cases, and in each
of them we obtain a contradiction to (7.1) or its consequence, (7.2) below. In each case we use the fact that \(r(C_4^{(3)}) = 13 \) (see [16]).

Case 1: \(|V_{\text{red}}|, |V_{\text{blue}}| \geq s\).

In this case we are able to prove Theorem 7.1 even with \(t = 6s - 1 \) and \(s \geq 37\). We first prove that each of \(S \) and \(A \) contains a matching \(M_s^{(3)} \).

Observation 7.2. \(M_s^{(3)} \subset A \) and \(M_s^{(3)} \subset S \).

Proof. Partition the set of vertices \(V(K) := V \) into sets \(V' \), \(V'_{\text{red}} \), \(V'_{\text{blue}} \) such that \(V'_{\text{red}} \subset V_{\text{red}}, |V'_{\text{red}}| = s, V'_{\text{blue}} \subset V_{\text{blue}}, |V'_{\text{blue}}| = s \), and \(V' = V \setminus (V'_{\text{red}} \cup V'_{\text{blue}}) \).

Since \(|V'| \geq 6s - 1 - 2s = 4s - 1 \), Theorem 6.1 applied to the induced red-blue coloring \(K_{\text{red}}[V'] \cup K_{\text{blue}}[V'] \) of \(K[V'] \) implies that there exists a matching \(M = M_s^{(3)} \) in a component (say red) \(C_{\text{red}} \) of \(K_{\text{red}} \). (This is true because each component of any sub-hypergraph of \(K_{\text{red}} \) is contained in some component of \(K_{\text{red}} \).)

By (7.1) we know that \(C_4^{(3)} \not\subset C_{\text{red}} \). Consequently, for each edge \(xyz \in M \) and any vertex \(a \in V'_{\text{blue}} \), at least one of the edges \(xya, xza, yza \) must be blue and also in \(A \), since \(a \in V'_{\text{blue}} \). Thus, using all \(s \) vertices of \(V'_{\text{blue}} \) and \(s \) edges of \(M \), we greedily find a matching of size \(s \) in \(A \). Using (7.1) again, we have \(C_4^{(3)} \not\subset A \). Replacing \(C_{\text{red}} \) with \(A \), \(V_{\text{blue}} \) with \(V'_{\text{blue}} \), \(A \) with \(S \), and interchanging colors red and blue in the argument above, we obtain a matching of size \(s \) in \(S \).

In view of Observation 7.2, it follows from (7.1) that

\[
C_4^{(3)} \not\subset A \text{ and } C_4^{(3)} \not\subset S.
\]

(7.2)

Observation 7.3. For every pair of vertices \(xy \in \binom{V_{\text{red}}}{2} \) there exist at most twelve vertices \(z \in V_{\text{blue}} \) such that \(xyz \) is blue (and therefore in \(A \)).

Proof. Suppose there is a pair \(xy \in \binom{V_{\text{red}}}{2} \) and 13 vertices \(z_1, \ldots, z_{13} \in V_{\text{blue}} \) so that \(xyz_i \in A \) for \(i = 1, 2, \ldots, 13 \). Since \(r(C_4^{(3)}) = 13 \), the sub-hypergraph induced in \(K \) by \(z_1, \ldots, z_{13} \) contains a monochromatic copy \(C \) of \(C_4^{(3)} \).

On the one hand, all pairs \(z_i z_j \) are in \(\partial A \), because \(z_i, z_j \in V_{\text{blue}} \). Therefore, if \(C \) was blue then \(C \subset A \) – a contradiction to (7.2). On the other hand, all edges \(xyz \), where \(z \in V(C) \), are in \(A \) by our assumption. In order to avoid a copy of \(C_4^{(3)} \) in \(A \), one of the edges \(xzz' \), \(yzz' \), where \(z, z' \in V(C) \), must be red. Since \(x, y \in V_{\text{red}} \), such an edge is in \(S \), and we have \(zz' \in \partial S \). Hence, if \(C \) was red, then \(C \subset S \) – again a contradiction to (7.2).

Observation 7.4. Every triple of vertices in \(V_{\text{red}} \) is blue and, consequently, \(\binom{V_{\text{red}}}{3} \subset C_{\text{blue}} \) for some blue component \(C_{\text{blue}} \).

Proof. By Observation 7.3, for all \(x, y, z \in V_{\text{red}} \), there are at most \(3 \times 12 \) vertices
a \in V_{\text{blue}}$ so that one of the edges xya, xza, yza is blue. Since $|V_{\text{blue}}| \geq s \geq 37$, we can select a vertex $a \in V_{\text{blue}}$ so that $xya, xza, yza \in S$. We must have xyz blue to avoid $C_4^{(3)}$ in S.

We can clearly interchange colors red and blue in Observations 7.3 and 7.4 and obtain that $(V_{\text{blue}}^3) \subset C_{\text{red}}'$ for some red component C_{red}'. Since one of V_{red}, V_{blue} must contain at least $[t/2] \geq 3s$ vertices, we find greedily both a copy of $M_s^{(3)}$ and a copy of $C_4^{(3)}$, in either C_{red}' or C_{blue}', contradicting (7.1).

Case 2: $|V_{\text{red}}| < s$ or $|V_{\text{blue}}| < s$.

By symmetry, we may assume that $|V_{\text{red}}| < s$ and $|V_{\text{blue}}| > 5s + c_0 \sqrt{s}$. We first prove that the azure component A contains a matching $M_s^{(3)}$ whose vertex set is in V_{blue}. Again, this is true even for $t = 6s - 2$.

Observation 7.5. There exists a matching $M_A = M_s^{(3)} \subset A$ with $V(M_A) \subset V_{\text{blue}}$.

Proof. Let $V_{\text{blue}} = V' \cup V''$ be a partition of V_{blue} such that $|V'| = s$. Since $|V''| \geq 6s - 2 - (s - 1) - s \geq 4s - 1$, Theorem 6.1 applied to the induced 2-coloring $K_{\text{red}}[V''] \cup K_{\text{blue}}[V'']$ of $K[V'']$ implies that there exists a matching $M = M_s^{(3)}$ in a monochromatic component of $K[V'']$ (which is contained in some monochromatic component C in K).

If C is blue, then it must be A, because V'' is a subset of V_{blue}, and we are done. Hence assume $C = C_{\text{red}}$ is red. By (7.1), we have $C_s^{(3)} \not\subset C_{\text{red}}$. To avoid $C_s^{(3)}$ in C_{red}, for each edge $xyz \in M$ and any vertex $a \in V'$, at least one of the edges xya, xza, yza must be a blue edge, and, consequently, also in A, because $a \in V' \subset V_{\text{blue}}$. Thus, using all s vertices $a \in V'$ and s edges of M, we greedily find a matching M_A of size s in A. Clearly, $V(M_A) \subset V' \cup V'' = V_{\text{blue}}$.

In view of Observation 7.5 and the assumption (7.1), we know that

$$C_4^{(3)} \not\subset A. \quad (7.3)$$

We distinguish two subcases. In the first one we assume that almost all pairs of vertices from V_{blue} are contained in the shadows of at most two red components.

Subcase 2a. There exist two red components C_{red}^1 and C_{red}^2 such that

$$\left|\left(\frac{V_{\text{blue}}}{2}\right) \setminus (\partial C_{\text{red}}^1 \cup \partial C_{\text{red}}^2)\right| < 6t. \quad (7.4)$$

We now prove a series of observations. Recall that by Observation 6.3 the scarlet component S exists whenever $V_{\text{red}} \neq \emptyset$. We now show that in that case one of C_{red}^1 and C_{red}^2 equals S or can be replaced by S.

Observation 7.6. If $V_{\text{red}} \neq \emptyset$, then there exists a red component C_{red} such that

$$\left|\left(\frac{V_{\text{blue}}}{2}\right) \setminus (\partial C_{\text{red}} \cup \partial S)\right| = \left|\left(\frac{V}{2}\right) \setminus (\partial C_{\text{red}} \cup \partial S)\right| < 24t. \quad (7.5)$$
Proof. Note that $\binom{V}{2} \setminus \binom{V_{\text{blue}}}{2} \subset \partial S$. If $|\partial C^1_{\text{red}}| \leq 18t$ holds, then with $C_{\text{red}} = C^2_{\text{red}}$ we have

$$\left| \binom{V}{2} \setminus (\partial C_{\text{red}} \cup \partial S) \right| \leq 6t + |\partial C^1_{\text{red}}| \leq 24t.$$

Hence, suppose that $|\partial C^1_{\text{red}}| > 18t$ and $|\partial C^2_{\text{red}}| > 18t$. We claim that there exist vertices $u, v, w \in V_{\text{blue}}$ such that $uv \in \partial C^1_{\text{red}}$, $uw \in \partial C^2_{\text{red}}$, and $vw \in \partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}$. This follows from a simple graph-theoretic fact.

Fact 7.7. Let the edges of the complete graph K_n be partitioned into three sets E_1, E_2, E_3 so that, with $e_i = |E_i|$, $i = 1, 2, 3$, we have $\min\{e_1, e_2\} > 3e_3$. Then there exists a triangle with at least one edge in E_1, at least one edge in E_2 and no edge in E_3.

Proof. Since the average degree in E_3 is $2e_3/n$, there is a vertex u such that $\deg_{E_3}(u) \leq 2e_3/n$. If $\deg_{E_1}(u), \deg_{E_2}(u) > \sqrt{e_3}$, then there is a non-$E_3$ edge between the neighborhoods $N_{E_1}(u)$ and $N_{E_2}(u)$, completing a desired triangle.

Suppose now that, say, $\deg_{E_1}(u) \leq \sqrt{e_3}$. If there is an edge $xy \in E_1$ with $x \in N_{E_1}(u)$ and $y \in N_{E_2}(u)$, then u, x, y is the desired triangle. Otherwise, the number of edges of E_1 not contained in $N_{E_2}(u)$ is at most

$$\deg_{E_1}(u) + \frac{\deg_{E_1}(u)}{2} + \deg_{E_3}(u) \leq \frac{1}{2}(\sqrt{e_3} + e_3) + 2e_3 < 3e_3 < e_1.$$

Hence, there is an edge of E_1 with both endpoints in $N_{E_2}(u)$, yielding again a desired triangle.

We apply Fact 7.7 to $E_1 := \partial C^1_{\text{red}}$, $E_2 := \partial C^2_{\text{red}}$ and $E_3 := \left(\binom{V_{\text{blue}}}{2} \setminus (\partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}) \right)$ (note that the assumptions hold).

Take any $x \in V_{\text{red}}$ and vertices $u, v, w \in V_{\text{blue}}$ such that $uv \in \partial C^1_{\text{red}}$, $uw \in \partial C^2_{\text{red}}$, and $vw \in \partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}$. Since all three pairs of vertices contained in any red edge are in the shadow of the same red component, uvw must be a blue edge and hence in A. To avoid a copy of C^3_A in A, at least one of the edges ux, uv, uw must be a red edge, say ux. Since $uv \in \partial C^1_{\text{red}}$ and $uv \in \partial S$, we have $C^1_{\text{red}} = S$ and the proof is completed by setting $C_{\text{red}} = C^2_{\text{red}}$ and recalling (7.4).

From now on we assume that

$$\left| \binom{V_{\text{blue}}}{2} \setminus (\partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}) \right| < 24t,$$

and that $C^1_{\text{red}} = S$, if S exists.

Observation 7.8. Every set $X \subset V_{\text{blue}}$ with $|X| \geq 25\sqrt{t}$ contains a copy of C^3_A in C^1_{red} or C^2_{red}.

Proof. Let $X \subset V_{\text{blue}}$ with $|X| \geq 25\sqrt{t}$ be given. Note that by (7.6)
\[|(\partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}) \cap \binom{X}{2}| \geq \frac{|X|}{2} - 24t > \frac{11}{24}|X|^2. \]
Thus, by the Turán Theorem, there is a complete graph K_{13} in $\partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}$. Let X_0 be the vertex set of one such K_{13}. Since $r(C^{(3)}_{4}) = 13$, the set $\binom{X_0}{3}$ contains a monochromatic copy C of $C^{(3)}_{4}$. It cannot be blue because all pairs of vertices of X are in ∂A and so C would be in A. Hence, C must be red and, thus, in C^1_{red} or C^2_{red}, because $\binom{X_0}{2} \subset \partial C^1_{\text{red}} \cup \partial C^2_{\text{red}}$. \hfill \square

Now, we are ready to finish the proof of Theorem 7.1 in Subcase 2a. Recall that $c_0 = 25\sqrt{7}$ and $t \leq 7s$. Suppose first that $V_{\text{red}} = \emptyset$. By Observation 7.8, every set of $25\sqrt{t}$ vertices in $V_{\text{blue}} = V$ contains a copy of $C^{(3)}_{4}$ in C^1_{red} or C^2_{red}. Hence, we can find greedily, by taking one edge from a copy of $C^{(3)}_{4}$ and reusing the remaining vertex, a matching of size
\[(t - 25\sqrt{t})/3 \geq (6s + c_0\sqrt{s} - 25\sqrt{7}t)/3 \geq 2s \]
in $C^1_{\text{red}} \cup C^2_{\text{red}}$. Thus, there is an index $i \in \{1, 2\}$ such that C^i_{red} contains $M_s^{(3)}$ as well as a copy of $C^{(3)}_{4}$.

Assume now that $V_{\text{red}} \neq \emptyset$ and, thus, S exists and $C^1_{\text{red}} = S$. We know (see Observation 7.5) that A contains a matching M_A, $V(M_A) \subset V_{\text{blue}}$, of size s but no $C^{(3)}_{4}$. As in the proof of Observation 7.2, for every vertex $x \in V_{\text{red}}$ and each edge $e \in M_A$, there exists an edge $f \in S$ so that $x \in f$ and $|e \cap f| = 2$. Hence, we can find a matching of size $|V_{\text{red}}| < s$ in S that uses exactly $2|V_{\text{red}}|$ vertices of V_{blue}. After this, we use the greedy procedure from the previous paragraph and find a matching in $S \cup C^2_{\text{red}}$ of size $|V_{\text{blue}}| - 2|V_{\text{red}}| - 25\sqrt{t}/3$. Combining these two matchings and the fact that $|V_{\text{blue}}| + |V_{\text{red}}| = |V| = t$ yields a matching in $S \cup C^2_{\text{red}}$ of size
\[|V_{\text{red}}| + (|V_{\text{blue}}| - 2|V_{\text{red}}| - 25\sqrt{t})/3 \geq (t - 25\sqrt{7}t)/3 \geq 2s, \]
as before. Consequently, either S or C^2_{red} contains $M_s^{(3)}$. Note that at least one edge of this matching comes from a copy of $C^{(3)}_{4}$ in S or C^2_{red}. Thus, in either case, we have $M_s^{(3)}$ and $C^{(3)}_{4}$ in the same red component.

Subcase 2b. Inequality (7.4) does not hold for any two red components C^1_{red} and C^2_{red}. We will first show that in this case the red components can be grouped into three large sets. To this end, we need the following simple fact. (We will only need part (b) now; part (a) will be used twice in Section 8.)

Fact 7.9. For given numbers $a_1 \geq a_2 \geq \cdots \geq a_k \geq 0$, let $N = a_1 + \cdots + a_k$.

(a) Let $d \geq 2N/3$ and $k \geq 2$. If $a_1 \leq d$, then there exists $1 \leq \ell_0 \leq k - 1$ such that
\[N - d \leq \sum_{i=1}^{\ell_0} a_i \leq d. \]
(b) Let \(N \geq 5r \) and \(k \geq 3 \). If \(a_1 + a_2 \leq N - 2r \), then there exist \(1 \leq \ell_1 < \ell_2 \leq k-1 \) such that
\[
\sum_{i=1}^{\ell_1} a_i \geq r, \quad \sum_{i=\ell_1+1}^{\ell_2} a_i \geq r, \quad \text{and} \quad \sum_{i=\ell_2+1}^{k} a_i \geq r.
\]

Proof. (a) Define \(\ell_0 = \min \{ \ell : \sum_{i=1}^{\ell} a_i \geq N - d \} \). If \(\ell_0 = 1 \) then we are done. Otherwise, \(a_{\ell_0} \leq a_1 < N - d \), and so
\[
N - d \leq \sum_{i=1}^{\ell_0} a_i \leq (N - d) + a_{\ell_0} < 2(N - d) \leq d.
\]

(b) If \(a_1 \geq a_2 \geq r \), take \(\ell_1 = 1 \) and \(\ell_2 = 2 \). If \(a_1 \geq r \) but \(a_2 < r \), take \(\ell_1 = 1 \) and define \(\ell_2 = \min \{ \ell : \sum_{i=2}^{\ell} a_i \geq r \} \). Then,
\[
\sum_{i=1}^{\ell_2} a_i = a_1 + \sum_{i=2}^{\ell_2-1} a_i + a_{\ell_2} < a_1 + r + a_2 \leq N - r,
\]
and so, \(\sum_{i=\ell_2+1}^{k} a_i \geq r \) as well. Finally, if \(a_2 \leq a_1 < r \), define \(\ell_1 = \min \{ \ell : \sum_{i=1}^{\ell} a_i \geq r \} \) and \(\ell_2 = \min \{ \ell : \sum_{i=\ell_1+1}^{\ell} a_i \geq r \} \). Then
\[
\sum_{i=1}^{\ell_1} a_i \leq \sum_{i=1}^{\ell_1-1} a_i + a_1 \leq 2r
\]
and, similarly, \(\sum_{i=\ell_1+1}^{\ell_2} a_i \leq 2r \). Hence,
\[
\sum_{i=\ell_2+1}^{k} a_i \geq N - 4r \geq r.
\]

Now we can prove the following consequence of negating (7.4).

Observation 7.10. There exists a partition \(\binom{V}{2} = F^1 \cup F^2 \cup F^3 \) such that
(i) \(F^1, F^2, F^3 \) are pairwise disjoint,
(ii) \(|F^i[V_{\text{blue}}]| \geq 3t \) for \(i = 1, 2, 3 \),
(iii) for every red component \(C_{\text{red}} \) there exists \(i \in \{1, 2, 3\} \) such that \(\partial C_{\text{red}} \subset F^i \).

Proof. The shadows of all red components, intersected by \(\binom{V_{\text{blue}}}{2} \), form a partition of \(\binom{V_{\text{blue}}}{2} \) into disjoint sets of pairs. (Each pair that is not in any red edge is in a partition class by itself.) Let \(a_1 \geq a_2 \geq \ldots \) be the sizes of these partition classes. If (7.4) does not hold for any two red components then \(a_1 + a_2 \leq \binom{V_{\text{blue}}}{2} - 6t \) and, by Fact 7.9(b) with
that for each red component U_i the corresponding three sets of pairs, forming a partition of (V_2^{blue}), be denoted by \bar{F}_i, $i = 1, 2, 3$. Then the conclusion follows with F^is being arbitrary extensions of \bar{F}_i such that for each red component C_{red} if $\partial C_{red} \cap (V_2^{blue}) \subset \bar{F}_i$, then $\partial C_{red} \subset F_i$.

For convenience, set $\bar{F}_i = F_i[V_2^{blue}]$ and $\deg_i(v) = \deg_{F_i}(v)$, $i = 1, 2, 3$, $v \in V_2^{blue}$.

Observation 7.11. For every vertex $v \in V_2^{blue}$ there is an index $i \in \{1, 2, 3\}$ so that $\deg_i(v) = 0$.

Proof. Suppose that there is a vertex $v \in V_2^{blue}$ such that $\deg_i(v) > 0$ for all $i = 1, 2, 3$, and denote by U_i the neighborhood of v in F_i, $i = 1, 2, 3$. Notice that $\bar{F}_1 \cup \bar{F}_2 \cup \bar{F}_3$ is a partition of (V_2^{blue}) (cf. Observation 7.10) and, therefore, $U_1 \cup U_2 \cup U_3 \cup \{v\}$ is a partition of V_2^{blue}.

Take any three vertices $u_i \in U_i$, $i = 1, 2, 3$. Since the pairs vu_1, vu_2, vu_3 belong to the shadows of distinct red components, all edges vu_iu_j, $1 \leq i < j \leq 3$, are blue and thus in the azure component A (because $v \in V_2^{blue}$).

Consequently, since there is no $C_4^{(3)}$ in A, the edge $u_1u_2u_3$ must be red. Thus, all pairs of vertices $u_i \in U_i$ and $u_j \in U_j$, $i \neq j$, are in the shadow of the same red component. Without loss of generality we may assume that

$$\forall u_i \in U_i, u_j \in U_j, i \neq j, \quad u_iu_j \in \bar{F}_1. \quad (7.7)$$

Take any three vertices u_i, u_i', u_j, such that $u_i, u_i' \in U_i$ and $u_j \in U_j$. Since the edges vu_iu_j and $vu_i'u_j$ are both in A and $C_4^{(3)} \not\subset A$, either vu_iu_j' is red or u_iu_j' is red. In the first case, $u_iu_j' \in \bar{F}_1$, while in the second case $u_iu_j' \in \bar{F}_1$.

The previous two paragraphs show that every pair of vertices uu', where $u, u' \in \{v\} \cup U_1 \cup U_3$ or $u \in U_1 \cup U_3$, $u' \in U_2$, is contained in $\bar{F}_1 \cup \bar{F}_3$. Since \bar{F}_2 is disjoint from $\bar{F}_1 \cup \bar{F}_3$, it follows that all pairs of \bar{F}_2 are contained in $\{v\} \cup U_2$. The same argument (see Fig. 3) yields that all pairs of \bar{F}_3 are contained in $\{v\} \cup U_3$. Each \bar{F}_i, $i = 2, 3$, can contain at most $\deg_i(v)$ pairs of the form vu_i, $u_i \in U_i$, and $|\bar{F}_i| \geq 3t > \deg_i(v)$. Hence there exist vertices $u_i, u_i' \in U_i$ such that $u_iu_i' \in \bar{F}_i$, $i = 2, 3$.

If all four edges induced by $\{u_2, u'_2, u_3, u'_3\} \subset V_2^{blue}$ were blue, we would have $C_4^{(3)}$ in A — a contradiction with (7.3). Hence, at least one of them is red, say $u_2u'_2u_3$. Since by (7.7) $u_2u'_2 \in \bar{F}_1$, we have $u_2u'_2 \in \bar{F}_1$. But then $u_2u'_2 \in \bar{F}_1 \cap \bar{F}_2 \subset \bar{F}_1 \cap \bar{F}_2$ — a contradiction with Observation 7.10(i).

For $1 \leq i < j \leq 3$, let $W_{ij} = \{v \in V_2^{blue}: \deg_i(v) > 0, \deg_j(v) > 0\}$. Next, we prove that W_{12}, W_{13}, and W_{23} have each at least two vertices.

Observation 7.12. $|W_{ij}| \geq 2$ for $1 \leq i < j \leq 3$.

Proof. By symmetry, we can restrict ourselves to the case $i = 1$ and $j = 2$. Since $|\bar{F}_i| \geq 3t$, $i = 1, 2$, there is a matching M_i of size four in \bar{F}_i. Let $u_1u'_1 \in M_1$ and $u_2u'_2 \in M_2$ be vertex disjoint. Since, by (7.3), the copy of $C_4^{(3)}$ induced by $\{u_1, u'_1, u_2, u'_2\} \subset V_2^{blue}$

$N = \binom{V_2^{blue}}{2}$ and $r = 3t$, the a_i’s can be grouped into three sums, each at least $3t$. Let the corresponding three sets of pairs, forming a partition of $\binom{V_2^{blue}}{2}$, be denoted by \bar{F}_i, $i = 1, 2, 3$. Then the conclusion follows with F^is being arbitrary extensions of \bar{F}_i such that for each red component C_{red} if $\partial C_{red} \cap \binom{V_2^{blue}}{2} \subset \bar{F}_i$, then $\partial C_{red} \subset F_i$.

For convenience, set $\bar{F}_i = F_i[\binom{V_2^{blue}}{2}]$ and $\deg_i(v) = \deg_{F_i}(v)$, $i = 1, 2, 3$, $v \in \binom{V_2^{blue}}{2}$.
cannot be blue, at least one of its edges must be red. However then at least one pair from \(u_1u_2, u_1u'_2, u'_1u_2, u'_1u'_2\) is in \(\tilde{F}^1\) or \(\tilde{F}^2\). This implies that at least one of these vertices is adjacent to an edge of \(\tilde{F}^1\) and an edge of \(\tilde{F}^2\) and, thus, belongs to \(W_{12}\). Now we remove that vertex and find another pair of disjoint edges, one from \(M_1\), the other from \(M_2\). Repeating the above reasoning, we obtain another vertex in \(W_{12}\), completing the proof.

\[\square\]

Let \(w_{12}, w'_{12} \in W_{12}, w_{13}, w'_{13} \in W_{13}, w_{23}, w'_{23} \in W_{23}\). Clearly, by Observation 7.11,

\[
\text{for all } 1 \leq i < j \leq 3 \text{ and } 1 \leq i' < j' \leq 3, \{i, j\} \neq \{i', j'\},
\]

the pairs \(w_{ij}w_{ij'}, w'_{ij}w_{ij'}, w_{ij}w'_{ij'}, w_{ij'}w'_{ij}\), are from \(F^\ell\), where

\[
\ell = \{i, j\} \cap \{i', j'\}.
\] (7.8)

We show now that the sub-hypergraph \(H\) induced in \(K\) by vertices \(w_{12}, w'_{12}, w_{13}, w'_{13}, w_{23}, w'_{23} \in V_{\text{blue}}\) contains a copy of \(C_5^{(3)}\) in the azure component \(A\).

Since \(F^1 \cap F^2 = \emptyset\), the pair \(w_{12}w'_{12}\) is either not contained in \(F^1\) or not contained in \(F^2\). (At this point, we do not know whether \(w_{12}w'_{12} \in F^1 \cup F^2\) or not.) Without loss of generality we may assume that \(w_{12}w'_{12}\) is not contained in \(F^1\). Also, at least one edge of the sub-hypergraph of \(K\) induced by vertices \(w_{12}, w'_{12}, w_{13}, w'_{13}\) must be red (otherwise we would have \(C_4^{(3)}\) in the azure component – a contradiction to (7.3)).

Edges \(w_{12}w'_{12}w_{13}\) and \(w_{12}w'_{12}w'_{13}\) must be blue because \(w_{12}w_{13}, w_{12}w'_{13} \in F^1\) by (7.8) and \(w_{12}w'_{12}\) does not belong to \(F^1\). Hence, either \(w_{12}w_{13}w'_{13}\) or \(w_{12}w_{13}w'_{13}\) is not contained in \(F^1\). The pair \(w_{13}w'_{13}\) must lie in \(F^1\). Since \(F^1\) and \(F^3\) are disjoint, \(w_{13}w'_{13}\) does not lie in \(F^3\).

Using the same argument we infer that \(w_{23}w'_{23}\) belongs to \(F^3\): to avoid a contradiction with (7.3), at least one of the edges induced by \(w_{23}, w'_{23}, w_{13}, w'_{13}\) must be red. Edges \(w_{13}w'_{13}w_{23}\) and \(w_{13}w'_{13}w'_{23}\) must be blue because, by (7.8), \(w_{13}w_{23}, w_{13}w'_{23} \in F^3\) and

Figure 3. Partitioning \(\binom{V_{\text{blue}}}{2}\) into \(\tilde{F}^1\), \(\tilde{F}^2\) and \(\tilde{F}^3\). Labels on an edge correspond to possible partition classes for this edge.
w_13w'_13 does not lie in F^3. Hence, either w_13w_23w'_23 or w'_13w_23w'_23 is red, implying that the pair w_23w'_23 is in F^3 (and, consequently, not in F^2). Similarly, we get w_12w'_12 \in F^2.

Observe now that all edges of the form v_{12}v_{13}v_{23}, where v_{ij} \in \{w_{ij}, w'_{ij}\}, are blue because, by (7.8), the pairs contained in them belong to different F^i’s and the shadow of every component is contained in a unique F^3. Moreover, the edges w_{12}w'_12w_{13}, w_{12}w'_12w'_13, w_{13}w'_13w_{23}, w_{13}w'_13w'_23, w_{23}w'_23w_{12}, and w_{23}w'_23w'_12 must be blue as well because, again, all the pairs contained in any red edge belong to the shadow of the same red component (and to a unique F^3), which is not the case here.

Therefore, all edges w_{12}w_{23}w_{13}, w_{23}w_{13}w'_13, w'_13w_{13}w'_23, w'_13w'_23w_{12}, and w'_23w_{23}w_{12} of the cycle C^{(3)} on vertices v_{12}, v_{23}, v_{13}, v'_13, v'_23 are colored blue and belong to the azure component.

\[\square \]

8. Matchings in components (the real thing)

In this section we prove Lemma 2.1. Since the hypergraph K appearing in Lemma 2.1 is almost complete, we will be guided by the proof of Theorem 6.1 presented in Section 6. However, it will be convenient to replace K with a large sub-hypergraph K_1 with a more regular structure. Its existence is guaranteed by the following simple lemma.

For a vertex x in a hypergraph H, let N_H(x) = \{y : xy \in \partial H\}. For two vertices x, y, let N_H(x, y) = \{z : xyz \in H\}. Note that if y \in N_H(x) (equivalently, x \in N_H(y)), then N_H(x, y) \neq \emptyset. We call all such pairs xy of vertices active. Thus, the active pairs in H are exactly those pairs of vertices which belong to the shadow \partial H of H.

Lemma 8.1. Fix \(\delta > 0 \) and set \(\delta_1 = 10\delta^{3/6} \). Let K be a 3-uniform hypergraph with t vertices and at least \((1 - \delta)\binom{t}{3} \) edges. Then K contains a sub-hypergraph K_1 with \(t_1 \geq (1 - \delta_1)t \) vertices such that every vertex x of K_1 is in an active pair and for all active pairs xy we have \(|N_{K_1}(x, y)| \geq (1 - \delta_1)t_1 \).

A (fairly standard) proof of Lemma 8.1 can be found in [11] (see Lemma 4.1 therein).

Proof of Lemma 2.1 We may assume that \(\eta < 1 \). Given \(0 < \eta < 1 \), define \(\delta = \eta^810^{-24} \). For any hypergraph K on t = (4 + \eta)s vertices and with at least \((1 - \delta)\binom{t}{3} \) edges, let K_1 be the sub-hypergraph of K satisfying the conclusions of Lemma 8.1 with \(\delta_1 = 10\delta^{3/6} = \eta/1000 \). In particular, using the bound \(t < 5s \), we get

\[t_1 = |V(K_1)| \geq (1 - \delta_1)t \geq t - 5\delta_1s = t - (\eta/200)s > (4 + \eta/2)s. \]

Since every monochromatic component of K_1 is contained in a monochromatic component of K, it is enough to show the conclusion of Lemma 2.1 for K_1. For the clarity of our presentation we will reset \(K := K_1, \delta := \delta_1 \) and \(\eta := 2\eta \). Equivalently, we will assume that K has t = (4 + \eta)s vertices, 0 < \eta < 1/2, every vertex x of K is in an active pair, and for all active pairs xy

\[|N_K(x, y)| \geq (1 - \delta)t, \tag{8.1} \]

where \(\delta = \eta/500 \).
Since every \(x \) is in an active pair, it follows from (8.1) that for all \(x \in V(K) \),
\[
|N_K(x)| = |\{y : xy \in \partial K\}| \geq (1 - \delta)t + 1.
\] (8.2)

Let \(V = V(K) \) and fix a coloring \(K = K_{\text{red}} \cup K_{\text{blue}} \). Our ultimate goal is to show that either in \(K_{\text{red}} \) or in \(K_{\text{blue}} \) there is an externally connected matching \(M^{(3)} \). We begin with some preliminary results. Our first observation establishes for every \(x \in V \) the existence of a dominant monochromatic component \(C_x \) the shadow of which contains most pairs of vertices \(xy \). (For the complete hypergraph \(K \) this was done in Observation 6.2.)

Observation 8.2. For every vertex \(x \in V \) there exists a monochromatic component \(C_x \) such that
\[
|\{y \in V : xy \in \partial C_x\}| \geq (1 - \delta)t.
\] (8.3)

The observation will follow from a simple graph theoretic result.

Fact 8.3. Let \(G \) be a graph with \(n \) vertices and minimum degree \(d \). If \(n > d \geq 3n/4 \), then for every red-blue coloring of the edges of \(G \) there is a monochromatic component with at least \(d + 1 \) vertices.

Proof. Let \(G = G_{\text{red}} \cup G_{\text{blue}} \) be a red-blue coloring of the edges of \(G \). Suppose that no component of \(G_{\text{red}} \) has more than \(d \) vertices. Then, by Fact 7.9(a) in Section 7 there is a partition \(V(G) = V_1 \cup V_2 \), where
\[
n - d \leq |V_1| \leq \frac{n}{2} \leq |V_2| \leq d \quad \text{and} \quad E_{G_{\text{red}}}(V_1, V_2) = \emptyset.
\]
Observe that in \(G_{\text{blue}} \) every vertex of \(V_2 \) has a neighbor in \(V_1 \) and every vertex of \(V_1 \) has more than \(|V_2|/2 \) neighbors in \(V_2 \). Thus, the graph \(G_{\text{blue}} \) is connected, and so there is a blue component on all \(n \geq d + 1 \) vertices.

Proof of Observation 8.2 Note that \(\delta < 1/4 \) and that, by (8.1), for every vertex \(x \in V \) the graph \(K(x) = \{yz : xyz \in K\} \) has minimum degree at least \((1 - \delta)t \geq 3t/4\) (and at most \(t \) vertices). The coloring \(K = K_{\text{red}} \cup K_{\text{blue}} \) induces a coloring \(K(x) = K_{\text{red}}(x) \cup K_{\text{blue}}(x) \) which, by Fact 8.3, contains a monochromatic component with at least \((1 - \delta)t \) vertices. Consequently, there is a monochromatic component \(C \) in \(K \) such that \(\partial C \) contains at least \((1 - \delta)t \) pairs \(xy \).

For each \(x \in V \) let us choose arbitrarily one component satisfying the condition in Observation 8.2 and denote it by \(C_x \). Let
\[
V_{\text{red}} = \{x \in V : C_x \text{ is red}\} \quad \text{and} \quad V_{\text{blue}} = \{x \in V : C_x \text{ is blue}\}.
\]
Observation 8.2 tells us that \(V = V_{\text{red}} \cup V_{\text{blue}} \) and this union is disjoint by the definition of \(V_{\text{red}} \) and \(V_{\text{blue}} \).

Our next result says that for most \(x \in V_{\text{red}} \), as well as for most \(x \in V_{\text{blue}} \), the components \(C_x \) are the same. (For the complete hypergraph \(K \) this is Observation 6.3.)
Observation 8.4. If $|V_{\text{red}}| \geq 6\delta t$ ($|V_{\text{blue}}| \geq 6\delta t$, respectively) then there is a red component C_{red} (a blue component C_{blue}) so that $C_x = C_{\text{red}}$ ($C_x = C_{\text{blue}}$) for all but at most $2\delta t$ vertices $x \in V_{\text{red}}$ ($x \in V_{\text{blue}}$).

Proof. Consider a graph G defined on V_{red} by putting an edge between x and y whenever $xy \in \partial C_x \cap \partial C_y$ (note that by (6.1) this means that $C_x = C_y$). By Observation 8.2 every vertex “spoils” at most δt edges, and thus $|E(G)| \geq \binom{v}{2} - v\delta t$, where $v = |V_{\text{red}}|$. Our goal is to show that G has a component of order at least $v - 2\delta t$. Suppose this is not true. Then, by Fact 7.9(a) in Section 7 with $d = v - 2\delta t$, there is a partition $V_{\text{red}} = V_1 \cup V_2$ with $2\delta t \leq |V_1|, |V_2| \leq v - 2\delta t$ and $E_G(V_1, V_2) = \emptyset$, which yields at least $2\delta t(v - 2\delta t) > v\delta t$ edges in the complement of G – a contradiction.

If $|V_{\text{red}}| \geq 6\delta t$, we define the scarlet component S as the (unique) red component C_{red} guaranteed by Observation 8.4 and set

$$V'_{\text{red}} = \{x \in V_{\text{red}} : C_x = S\}.$$

Then

$$|V'_{\text{red}}| \geq |V_{\text{red}}| - 2\delta t \geq 4\delta t.$$

If $|V_{\text{red}}| < 6\delta t$, then we say that the scarlet component does not exist and $V'_{\text{red}} = \emptyset$. Similarly, when $|V_{\text{blue}}| \geq 6\delta t$, we define the azure component A and the set

$$V'_{\text{blue}} = \{x \in V_{\text{blue}} : C_x = A\}.$$

Then

$$|V'_{\text{blue}}| \geq |V_{\text{blue}}| - 2\delta t \geq 4\delta t,$$

and $V'_{\text{blue}} = \emptyset$ if $|V_{\text{blue}}| < 6\delta t$. We also set

$$V' = V'_{\text{red}} \cup V'_{\text{blue}}.$$

Since $\delta < 1/12$,

$$|V'| = |V'_{\text{red}}| + |V'_{\text{blue}}| \geq t - 8\delta t. \quad (\text{8.4})$$

For each $x \in V'_{\text{red}}$, set

$$\partial S(x) = |\{y \in V : xy \in \partial S\}|,$$

and for each $x \in V'_{\text{blue}}$, set

$$\partial A(x) = |\{y \in V : xy \in \partial A\}|.$$

By Observation 8.2 and the definitions of S and A we have

$$|\partial S(x)|, |\partial A(x)| \geq (1 - \delta)t. \quad (\text{8.5})$$

Our last preliminary result is the Mirror Lemma (cf. Lemma 6.7) adjusted to non-complete hypergraphs.
Lemma 8.5 (The Blurred Mirror Lemma). Let M be a largest matching in a red component C_{red} and let $P \subset V$, where $P \cap V(M) = \emptyset$ and $|P| \geq |M| + 30\delta t$. Assume further that for some blue component C_{blue} and for every $e \in M$, the bipartite induced subgraph $\partial C_{\text{blue}}[e, P]$ of ∂C_{blue} contains $K_{2,|P| - 9\delta t - 1}$. Then there exists a matching $M' \subset C_{\text{blue}}$ such that

(i) $|M'| \geq |M|$ and
(ii) $|V(M') \cap P| \leq |M| + 4\delta t$.

Proof. Let $M'' \subset C_{\text{blue}}$ be a largest matching such that

- $|V(M'') \cap P| \leq |M''|$ and
- $V(M'')$ intersects at most $|M''|$ edges of M.

We first claim that $|M''| \geq |M| - 4\delta t$. Indeed, suppose $|M''| \leq |M| - 4\delta t$. We will show that there exist $e_1, e_2 \in M$ and $a, b, c \in P'' := P \backslash V(M'')$ such that $(e_1 \cup e_2) \cap V(M'') = \emptyset$ and the set $X = e_1 \cup e_2 \cup \{a, b, c\}$ satisfies the assumptions of Claim 6.5 (see Remark 6.6).

From the second part of (8.6) and our supposed bound on $|M''|$, it follows that there exist at least $4\delta t$ edges of M disjoint from $V(M'')$. Let $e_1 = uw \in M$ be any such edge. Below we suppress the dependence on K and write $N(x)$ for the neighborhood of x in the shadow of K, and $N(x, y)$ for the neighborhood of x, y in K. By (8.2),

$$|V \setminus (N(u) \cap N(v) \cap N(w))| \leq 3t - |N(u)| - |N(v)| - |N(w)| \leq 3\delta t$$

and so, there exists $e_2 = xyz \in M \setminus e_1$ such that $e_2 \cap V(M'') = \emptyset$ and every pair of vertices $p, q \in e_1 \cup e_2 = \{u, v, w, x, y, z\}$ is active.

By the first part of (8.6) and our bounds on $|P|$ and $|M''|$, we have

$$|P''| = |P| - |P \cap V(M'')| \geq |M| + 30\delta t - (|M| - 4\delta t) = 34\delta t.$$

Among the vertices of P'' at most $18\delta t + 2$ do not belong to the bipartite cliques $K_{2,|P| - 9\delta t - 1}$ between e_i, $i = 1, 2$, and P, guaranteed by the assumptions. Also, by (8.1),

$$|P'' \cap \bigcap_{p, q} N(p, q)| \leq \binom{6}{2} \delta t = 15\delta t,$$

where the intersection is taken over all pairs of vertices $p, q \in e_1 \cup e_2$. Since $(34 - 18 - 15)\delta t - 2 \geq 3$, one can choose $a, b, c \in P''$ so that

(a) $\partial C_{\text{blue}}[e_i, \{a, b, c\}] \supset K_{2,3}$ for $i = 1, 2$, and
(b) all triples of vertices having two vertices in $\{u, v, w, x, y, z\}$ and one in $\{a, b, c\}$ are edges of K.

Thus, we can apply Claim 6.5 (see Remark 6.6) to the set $X = e_1 \cup e_2 \cup \{a, b, c\}$. But then we can either enlarge M in C_{red} (if (1) of Claim 6.5 occurs) or M'' in C_{blue} with conditions (8.6) preserved (if (2) or (3) of Claim 6.5 occurs), yielding a contradiction with the choice of M or M'', respectively.

Hence $|M''| \geq |M| - 4\delta t$. If $|M''| \geq |M|$, we are done. Otherwise, we repeat the following procedure which keeps enlarging M'' by increments of two until its size reaches
\(|M|\) (for convenience, we assume that \(|M| - |M'|\) is even). Let the current matching be denoted by \(M'\), \(|M'| < |M|\). It is important that in each step we will

- not delete any edge of \(M'\), that is, \(M'' \subseteq M'\),
- add to \(V(M')\) at most four vertices of \(P\), and
- maintain the second part of (8.6).

Since there are \((|M| - |M''|)/2\) steps, for the final \(M'\) we have

\[
|V(M') \cap P| \leq |M''| + 2(|M| - |M''|) = |M| + (|M| - |M''|) \leq |M| + 4\delta t,
\]

so (ii) holds. Now we describe a single step of the procedure. Let \(e = xyz \in M\) be such that \(e \cap V(M') = \emptyset\). Denote by \(P_0\) the set of at most \(9\delta t + 1\) vertices of \(P\) which do not belong to the bipartite clique \(K_{2, |P| - 9\delta t - 1}\) between \(e\) and \(P\), guaranteed by the assumptions.

Set \(P' = P \setminus (V(M') \cup P_0)\). Similarly to the above,

\[
|P'| \geq |M| + 30\delta t - (|M| + 4\delta t) - |P_0| \geq 16\delta t.
\]

Set \(N_1 = P' \cap N(x,y) \cap N(x,z) \cap N(y,z)\). By (8.1), \(|N_1| > (16 - 3)\delta t = 13\delta t\). Let \(a \in N_1\) and set \(N_2 = N_1 \cap N(a,x) \cap N(a,y) \cap N(a,z)\). We have, again by (8.1), \(|N_2| > 10\delta t\). Similarly, for every \(b \in N_2\) and every \(c \in N_3 = N_2 \cap N(b,x) \cap N(b,y) \cap N(b,z)\), we have

\[
|N_3 \cap N(c,x) \cap N(c,y) \cap N(c,z)| > 4\delta t \geq 1.
\]

Thus, one can choose \(a, b, c, d \in P'\) so that

(a) \(\partial C_{\text{blue}}[e, \{a, b, c\}] \supset K_{2,3}\)

(b) all triples of vertices within \(\{x, y, z, a, b, c, d\}\) intersecting simultaneously \(\{x, y, z\}\) and \(\{a, b, c, d\}\) are edges of \(K\).

We apply Claim 6.4 (see Remark 6.6) to the set \(X = e \cup \{a, b, c, d\}\). By the maximality of \(M\) in \(C_{\text{red}}\) and the maximality of \(M''\) with respect to (8.6) in \(C_{\text{blue}}\) (note that \(V(M'') \cap X = \emptyset\)), conclusions (1) and (2) of Claim 6.4 cannot hold. Thus, (3) holds, which allows us to enlarge \(M'\) by adding the edges \(e_1\) and \(e_2\) guaranteed by Claim 6.4(3). Note that, indeed, in a single step we have used four vertices of \(P\) and one edge of \(M\).

We are now ready to complete the proof of Lemma 2.1. Since \(\delta < 1/12\), in view of Observation 8.4, either the scarlet component \(S\) or the azure component \(A\) (or both) does exist.

Let \(M\) be a matching of maximum size in \(K\) among all matchings that lie in \(S\) or \(A\). Without loss of generality we assume that \(\emptyset \neq M \subseteq S\). This implies that \(|V'_{\text{red}}| \geq 4\delta t\), but \(V'_{\text{blue}}\) might be empty, that is, the azure component \(A\) might not exist. Suppose that

\[
1 \leq m = |M| \leq s - 1
\]

and set

\[
R = V'_{\text{red}} \setminus V(M) \quad \text{and} \quad B = V'_{\text{blue}} \setminus V(M). \quad (8.7)
\]

According to this definition, if \(B \neq \emptyset\), then \(V'_{\text{blue}} \neq \emptyset\), and consequently, the azure
component A does exist. Note that $R \cap B = \emptyset$ and
\[t = (4 + \eta)s = 3m + |R \cup B| + |V \setminus V'|, \]
and, using $m < s$ and (8.4),
\[|R \cup B| \geq (4 + \eta)s - 3m - |V \setminus V'| \geq (1 + \eta)s - 3\delta t. \]
Observe that by (8.9) and our choice of δ, whenever one of the sets R or B has size at most $5\delta t$ then the other one has size at least
\[(1 + \eta)s - 13\delta t \geq m + 30\delta t. \]

We first show the following variant of Observation 6.8.

Observation 8.6. If $|R| \geq 2\delta t$, then all edges $xyz \in K[R \cup B]$ with $x \in R$ and $xy \in \partial S$ belong to the same blue component C_{blue}. Furthermore, if also $|B| \geq 2\delta t$, then $C_{\text{blue}} = A$.

Proof. First note that any red edge $xyz \in K[R \cup B]$ with $xy \in \partial S$ would be in S and disjoint from $V(M)$, and thus it could be added to M, contradicting the maximality of M. Hence, every such edge is blue. Let $x, y, z \in R \cup B$ and xy and xz be two pairs in ∂S. Since $|B \cup R| \geq 2\delta t$ and the pairs xy and xz are active, by (8.1) there is $w \in R \cup B$ such that $xwy \in K$ and $xzw \in K$. Hence, both edges are blue and in the same blue component. Now, by (8.5), the subgraph $\partial S[R]$ has minimum degree at least $|R| - \delta t \geq |R|/2$ and, thus, is connected. This implies that all pairs $xy \in \partial S$ such that $x \in R$ and $y \in R \cup B$ are in the shadow of the same blue component C_{blue}.

To prove the second part, notice that if both $|R|, |B| \geq 2\delta t$ then, again by (8.5), the number of edges of ∂S with one endpoint in R and the other in B is more than $|R||B|/2$, and the same is true for the edges of ∂A. Hence, there is a pair $x \in R$ and $y \in B$ such that $xy \in \partial S \cap \partial A$. It follows that $C_{\text{blue}} = A$. \[\square \]

For the rest of the proof of Lemma 2.1 we distinguish three cases analogous to the three cases considered in the proof of Theorem 6.1.

Case 1: $|B| \leq 5\delta t$

Denote by C_{blue} the blue component guaranteed by Observation 8.6.

Observation 8.7. For every edge $e \in M$, the bipartite induced subgraph $\partial C_{\text{blue}}[e, R]$ of ∂C_{blue} contains $K_{2, |R| - 3\delta t - 1}$ as a subgraph.

Proof. Let $e = xyz \in M$. By (8.2), at least $|R| - 3\delta t$ vertices $a \in R$ are such that all three pairs xa, ya and za are active. Let the set of such vertices be denoted by R_e.

Suppose that $\partial C_{\text{blue}}[e, R_e]$ contains no copy of $K_{2, |R_e| - 1}$. Then there exist two vertices $a, b \in R_e$ such that, say, $ya, zb \notin \partial C_{\text{blue}}$. Since $|R| \geq 2\delta t + 5$, by (8.5) and (8.1) there are $c, d, a \in R \setminus \{a, b\}$ such that $ac, bd \in \partial S$ and $zac, zbd, uac, ubd \in K$. By Observation 8.6, $zac, ubd \notin C_{\text{blue}}$ and thus $ac, bd \notin \partial C_{\text{blue}}$. Hence, the edges zac and zbd must be red. Consequently, $zac, zbd \in S$ and $(M \setminus \{xyz\}) \cup \{zac, zbd\}$ is a matching in S larger than $M - a$ contradiction. \[\square \]
Now we apply Lemma 8.5 with $C_{\text{red}} = S$, $C_{\text{blue}} = A$ and $P = B$ (recall that $|B| \geq m + 30\delta t$), obtaining a matching $M' \subset C_{\text{blue}}$ of size $|M'| = m' \geq m$ and with $|V(M') \cap B| \leq m + 4\delta t$.

If $m' \geq s$, we are done. Otherwise, by (8.9) and (8.4), we have

$$|R \setminus V(M')| \geq (4 + \eta)s - 3m - 13\delta t - (m + 4\delta t) \geq 3(s - m') + 3\delta t.$$

This allows us to enlarge M' to size s by adding blue edges contained in $R \setminus V(M')$. Indeed, by (8.1) and (8.5), we can greedily find $s - m'$ disjoint edges $xyz \in K[R]$ with $xy \in \partial S$. Since all such edges belong to C_{blue} (cf. Observation 8.6), we can add them to M' obtaining a matching of size s in a blue component.

Case 2: $|R| \leq 5\delta t$

By our assumptions and (8.9), $B \neq \emptyset$ and thus the azure component A exists.

Observation 8.8. For every edge $e \in M$, the bipartite induced subgraph $\partial A[e, B]$ of ∂A contains $K_{2,|B|−9\delta t−1}$ as a subgraph.

Proof. Fix an edge $xyz \in M$. By (8.1), at least $|B| - 3\delta t$ vertices $a \in B$ are such that all three pairs xa, ya and za are active. Let the set of such vertices be denoted by B_c. Call a vertex $a \in B_c$ friendly to x if $xa \in \partial S \cup \partial A$ and let B_x be the subset of B_c containing all unfriendly vertices to x.

Claim 8.9. $|B_x| < 2\delta t$

Proof. Suppose that $|B_x| \geq 2\delta t$, recall that $|V'_{\text{red}}| \geq 4\delta t$ (since S exists), and consider the bipartite induced subgraphs G_S and G_A of ∂S and ∂A, respectively, with vertex set $B_x \cup V'_{\text{red}}$. Assume for simplicity that $|B_x| = 2\delta t$ and $|V'_{\text{red}}| = 4\delta t$, taking subsets if necessary. Recalling that $B_x \subset V'_{\text{blue}}$, by (8.5), $|G_S| \geq 4(\delta t)^2$ and $|G_A| \geq 6(\delta t)^2$, and consequently, $|G_S \cap G_A| \geq 2(\delta t)^2$. Let $a \in B_x$ have degree at least δt in $G_S \cap G_A$. Then, by (8.1) and the definition of B_x, one can find a vertex $e \in V'_{\text{red}}$ such that $eau \in K$ and $au \in G_S \cap G_A \subset \partial S \cap \partial A$, which contradicts the assumption that a is unfriendly to x, no matter how eau is colored.

Set $B'_x = B_x \setminus (B_x \cup B_y \cup B_z)$. It is sufficient to show that $\partial A[e, B'_x]$ contains a copy of $K_{2,|B'_x|−1}$. Suppose it does not. Then there exist two vertices $a, b \in B'_x$ such that, say, $ya, zb \notin \partial A$ (and thus, they must be in ∂S). Since $|B| \geq 2\delta t + 4$, by (8.5) and (8.1), there are $c, d \in B \setminus \{a, b\}$ such that $ac, bd \in \partial A$ and $yac, zbd \in K$. Hence, the edges yac and zbd must be red. Consequently, $yac, zbd \in S$ and $(M \setminus \{xyz\}) \cup \{yac, zbd\}$ is a matching in S larger than M — a contradiction.

We apply Lemma 8.5 with $C_{\text{red}} = S$, $C_{\text{blue}} = A$ and $P = B$ (recall that $|B| \geq m + 30\delta t$) and obtain a matching $M' \subset A$ of size $|M'| = m$ and $|V(M') \cap B| \leq m + 4\delta t$. (A matching larger than m in the azure component A is impossible by our choice of M.)

We claim that $R' := V'_{\text{red}} \setminus V(M') = \emptyset$. Indeed, suppose that $d \in R'$.

Since $|B \setminus V(M')| \geq s + 18\delta t - (m + 4\delta t) \geq 14\delta t \geq 2\delta t + 3$,

The Ramsey number for 3-uniform tight hypergraph cycles 37
by (8.5) and (8.1) we can find vertices \(a, b, c \in B \setminus V(M')\) such that \(ad \in \partial S\), \(ab \in \partial A\), and \(abd, abc \in K\). Then both \(abc\) and \(abd\) are red (or we can enlarge \(M'\)). But \(ad \in \partial S\), therefore \(abd \in S\) and, consequently, \(abc \in S\). Since \(\{a, b, c\} \cap V(M) = \emptyset\), we can enlarge \(M\) in \(S\), which is a contradiction.

Thus \(|R'| = 0\) and we are back in Case 1 with the colors red and blue interchanged and \(M\) replaced by \(M'\).

Case 3: \(|B|, |R| \geq 5\delta t\)

Set \(P = R \cup B\). In this case not only the azure component \(A\) exists, but also the blue component \(C_{blue}\) guaranteed by Lemma 8.6 is \(A\).

Observation 8.10. For every edge \(e \in M\), the bipartite induced subgraph \(\partial A[e, B]\) of \(\partial A\) contains \(K_{2,|P|−9\delta t−1}\) as a subgraph.

Proof. The proof follows the lines of the proof of Observation 8.8. Fix an edge \(xyz \in M\). By (8.2), at least \(|P| - 3\delta t\) vertices \(a \in P\) are such that all three pairs \(xa, ya\) and \(za\) are active. Let the set of such vertices be denoted by \(P_x\).

Recall that a vertex \(a \in P_x \cap B\) is friendly to \(x\) if \(xa \in \partial S \cup \partial A\) and let \(B_x\) be the subset of unfriendly vertices of \(P_x \cap B\). We have shown in Claim 8.9 that \(|B_x| \leq 2\delta t|P_x|\). Set \(P'_x = P_x \setminus (B_x \cup B_y \cup B_z)\) and suppose that \(\partial A[e, P'_x]\) contains no copy of \(K_{2,|P'_x|−1}\).

Thus, there exist two vertices \(a, b \in P'_x\) such that, say, \(ya, zb \notin \partial A\). But then, combining arguments from the proofs of Observations 8.7 and 8.8 (each of \(a\) and \(b\) can be in \(R\) or \(B\)), one can show that there exist vertices \(c, d \in P\) such that \(yc, zb \in S\). Consequently, \((M \setminus \{xyz\}) \cup \{yc, zb\}\) is a red matching in \(S\) larger than \(M\) — a contradiction.

We apply Lemma 8.5 with \(C_{red} = S\), \(C_{blue} = A\) and \(P = (R \cup B) \setminus \{a, b\}\) where \(a \in R, b \in B\) and \(ab\) is an active pair. Let \(M'\) be a matching in \(A\) satisfying conclusions (i) and (ii) of Lemma 8.5. By the maximality of \(M\), we have \(|M'| = m\) and, by (ii) and (8.9),

\[|P \setminus V(M')| \geq s + 30\delta t - 8\delta t - (m + 4\delta t) \geq 18\delta t.\]

By (8.1) and (8.5), we can choose \(c \in P \setminus V(M')\) so that \(ac \in \partial S\), \(bc \in \partial A\) and \(abc \in K\). Consequently, \(abc \in S\) if it is red and \(abc \in A\) if it is blue. Also \(abc\) is disjoint from both \(V(M)\) and \(V(M')\). Thus, either we obtain a matching of size \(m + 1\) in \(S\), or a matching of size \(|M'| + 1 = m + 1\) in \(A\), contradicting the maximality of \(M\) among all matchings contained in \(S\) or \(A\).

9. Acknowledgment

This work was initiated as a group project of the authors, as part of a Focused Research Group meeting at the Banff International Research Station in May 2003.

The first author was partially supported by NSERC, the fourth author by NSF grants DMS-0300529 and DMS-0800077, the fifth author by The Polish Ministry grant N201036 32/2546, and the sixth author by NSF grant INT-0305793, NSA grant H98230-04-1-0035, and by FAPESP/CNPq grants (Proj. Temático–ProNEx Proc. FAPESP 2003/09925–5 and Proc. FAPESP 2004/15397–4).
The Ramsey number for 3-uniform tight hypergraph cycles

We thank Joanna Polcyn for her help in preparing Section 4 and an anonymous referee for many helpful suggestions on the presentation of this paper.

References