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1. Introduction 1

Since its discovery in
∧
the late 1970s, the Szemerédi Regularity Lemma has been a powerful tool in modern graph theory. 2

Roughly speaking, this deep result from [1] provides a decomposition of every large graph into bipartite subgraphs most of 3

which are ε-regular pairs. Thus, naturally, there has been a growing interest in studying the properties of such graphs (see, 4

e.g., [2–9]). 5

The goal of this paper is two-fold. First, in Section 3 we broaden our knowledge on ε-regular pairs by determining the 6

minimum degree of vertices that guarantees small diameter. It is quite easy to show (cf. Observation 3.1) that in an ε- 7

regular pair of order 2n and density d ≥ ε every two vertices of degree at least εn are connected by a short path. However, 8

our main result in this direction (Theorem 3.5) shows that this bound can be replaced by a quantity of order (ε2/d)n, which 9

is essentially optimal. 10

The other result proved in this paper deals with graph decomposition into subgraphs of small diameter. Such 11

decompositions have a potential application in distributed computing (see, e.g., [10]). Here we approximate a given graph 12

by a union of subgraphs with small diameter. It is easy to prove (cf. Proposition 4.1), that for every γ > 0, the set of all but 13

at most γ n2 edges of every n-vertex graph G can be split into no more than 1/γ subgraphs with diameter bounded from 14

above by 3/γ . In Theorem 4.5, using the Szemerédi Regularity Lemma, we push the diameter down to four
∧
at the cost of an 15

increase in the number of parts of the decomposition. 16

Similar results for quasi-random 3-uniform hypergraphs have been proved in [11]. 17

2. Preliminaries 18

Let G = (V , E) be a graph. For E0 ⊆ E we denote by G[E0] = (V0, E0), where V0 =
⋃
e∈E0
e, the subgraph of G induced by 19

E0. Note that G[E0] does not need to be an (vertex) induced subgraph in the usual sense. 20

By distG(x, y)we denote the distance of vertices x, y ∈ V , that is, the length of a shortest path connecting them, if such a 21

path exists. Otherwise we set distG(x, y) = ∞. By the diameter of Gwe mean diam(G) = maxx,y∈V distG(x, y). In particular, 22

if G is not connected, then diam(G) = ∞. 23
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For A ⊆ V , let N(A) be the set of all vertices adjacent in G to at least one vertex in A. In particular, if A = {v} we write1

N(v). The number deg(v) = |N(v)| is the degree of vertex v in graph G. The minimum vertex degree is denoted by δG. In2

Section 4 we will use the inequality3

diam(G) <
3|V |
δG

, (1)4

valid for all connected graphs G. To verify (1), note that if P = v0v1 · · · vk is the shortest path between two vertices of5

distance diam(G) = k then the vertices v0, v3, . . . have disjoint neighborhoods.6

For two disjoint, nonempty subsets U ,W of V , we define7

eG(U,W ) = |{{u, w} : u ∈ U, w ∈ W , {u, w} ∈ E}|8

and9

dG(U,W ) =
eG(U,W )
|U||W |

.10

The number dG(U,W ) is called the density of the graph G between U andW , or simply, the density of the pair (U,W ).11

In the remainder of this section let G denote a bipartite graphwith bipartition V = V1∪V2. A simple averaging argument12

yields the following fact.13

Fact 2.1. If dG(V1, V2) < d (resp., dG(V1, V2) > d), then for all natural numbers `1 ≤ |V1| and `2 ≤ |V2| there exist subsets14

U ⊂ V1, |U| = `1 and W ⊂ V2, |W | = `2 with dG(U,W ) < d (resp., dG(U,W ) > d). �15

Now we define a central notion of our paper.16

Definition 2.2. Given ε > 0, G is called ε-regular if there exists d > 0 such that for every pair of subsets U ⊆ V1 and17

W ⊆ V2, where |U| ≥ ε|V1|, |W | ≥ ε|V2|, the inequalities18

d− ε < dG(U,W ) < d+ ε (2)19

hold. We will then also say that G, or the pair (V1, V2), is (d, ε)-regular.20

Note that each ε-regular graph is ε′-regular for all ε′ ≥ ε.21

The last definition of this section deals with pairs of subsets of vertices with no edge in between.22

Definition 2.3. A pair of sets U ⊆ V1 andW ⊆ V2 with eG(U,W ) = 0 is called a hole or a (|U|, |W |)-hole in G. A bipartite23

graph G is called {`1, `2}-holeless if there is neither an (`1, `2)-hole nor an (`2, `1)-hole in G.24

Note that it follows from the definition of ε-regularity that if ε ≤ d and |V1| = |V2| = n then each (d, ε)-regular graph is25

{dεne, dεne}-holeless. However, it is proved in [12], that even much smaller holes are forbidden.26

Lemma 2.4 ([12], Theorem 2.1). For all 0 < d < 1 there exists ε0 such that for all 0 < ε < ε0 and 0 < β < 2ε(
√
εd−ε)
d−ε < α27

there exists n0 such that for all n ≥ n028

(i) every (d, ε)-regular bipartite graph G with |V1| = |V2| = n is {bαnc, bαnc}-holeless.29

(ii) there exists a (d, ε)-regular graph G0 with |V1| = |V2| = n containing a (dβne, dβne)-hole.30

3. Short paths between vertices of sufficiently large degrees31

This section is devoted to the problem of what minimum degree of vertices in an ε-regular graph guarantees a small32

diameter. As a starting point recall an old result from [13]which says that almost all balanced bipartite graphswith density d33

have diameter three. Although an ε-regular pair resembles a randombipartite graph, in general nothing can be said about its34

diameter, because itmay contain isolated vertices. On the other hand, the absence of (dεne, dεne)-holes implies immediately35

the following observation.36

Observation 3.1. For all ε ≤ d, in every (d, ε)-regular balanced bipartite graph of order 2n every two vertices of degree at least37

εn are connected by a path of length at most four. �38

Below we first improve Observation 3.1 by relaxing the degree assumption to, roughly, (2ε3/2/
√
d)n (Corollary 3.4), and39

then we show that degrees at least, roughly, (ε2/d)n yield paths of length at most five (Theorem 3.5). Moreover, both these40

results are, in a sense, sharp.41

We first examine the relation between the existence of short paths and the absence of large holes in bipartite graphs. In42

what follows we consider only balanced bipartite graphs G = (V1 ∪ V2, E) in which |V1| = |V2| = n for some n, but similar43

results can be also obtained for unbalanced graphs (see [12]).44
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Fig. 1. A path from v tow of length three.

Fig. 2. A path from v tow of length four.

Fig. 3. The path from v tow of length five.

Proposition 3.2. Let `, `′ ≥ 1 and G be an {`, `′}-holeless balanced bipartite graph. If deg(v) ≥ ` and deg(w) ≥ `′, then 1

distG(v,w) ≤ 4. 2

Proof. Without loss of generality we may assume that v ∈ V1. Consider first the case when w ∈ V2. By the assumption we 3

have |N(v)| ≥ ` and |N(w)| ≥ `′, and therefore, due to the absence of (`′, `)-holes, there exists an edge e = {x, y} with 4

x ∈ N(v) and y ∈ N(w). Thus, vertices v, x, y, w form in G a path from v tow of length three (see Fig. 1). 5

Assumenow thatw ∈ V1. If `+`′ > n then there exists u ∈ N(v)∩N(w) and vuw is a path of length two. Otherwise, since 6

G is {`, `′}-holeless, |N(N(v))| > n−`′ and similarly |N(N(w))| > n−`. Consequently, there exists u ∈ N(N(v))∩N(N(w)), 7

and there is a path of length at most four between v andw (see Fig. 2). � 8

∧
At the cost of increasing the upper bound on the lengths of the paths by just one, we may forbid holes with just one side 9

large, while keeping the degree threshold at the level of the smaller side of the forbidden hole. 10

Proposition 3.3. Let 1 ≤ ` ≤ n/2 and G be an {`, dn/2e}-holeless balanced bipartite graph. If deg(v) ≥ ` and deg(w) ≥ `, 11

then distG(v,w) ≤ 5. 12

Proof. Since G is {`, dn/2e}-holeless, 13

min {|N(N(v))|, |N(N(w))|} > n− dn/2e = bn/2c. 14

Consider first the case when v ∈ V1 andw ∈ V2. Since ` ≤ dn/2e, there must be an edge between these two sets yielding a 15

path of length at most five (see Fig. 3). 16

When v,w ∈ V1, we have N(N(v)) ∩ N(N(w)) 6= ∅, and consequently there is a path of length at most four between v 17

andw (see Fig. 2). � 18

Now we turn to the consequences of Propositions 3.2 and 3.3 for quasi-random graphs. In both, Corollary 3.4 and 19

Theorem 3.5 below, we silently assume that ε is sufficiently small with respect to d and n is a sufficiently large integer. 20
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In other words, we suppress the assumptions stated explicitly in Lemma 2.4 above. Note that part (ii) of each of the two1

results asymptotically matches the bound given in part (i). Since the proofs of these results are quite similar, we only sketch2

how Corollary 3.4 follows from Lemma 2.4. On the other hand, we give a
∧
self-contained proof of Theorem 3.5.3

Corollary 3.4. Let 0 < β < 2ε(
√
εd−ε)
d−ε < α.4

(i) Let G be a (d, ε)-regular balanced bipartite graph with 2n vertices. If5

min {deg(v), deg(w)} ≥ bαnc6

then distG(v,w) ≤ 4. In particular, if δG ≥ bαnc then diam(G) ≤ 4.7

(ii) On the other hand, there exists a (d, ε)-regular balanced bipartite graph G0 with 2n vertices containing two vertices v,w ∈ V ,8

deg(v) = deg(w) = dβne, with dist(v,w) ≥ 5.9

Proof. Part (i) follows immediately from Lemma 2.4 and Proposition 3.2 (with ` = `′ = bαnc). To prove Part (ii), note that,10

by Lemma 2.4 (ii), there exists a (d, ε + o(1))-regular graph with |V1| = |V2| = n − 1 containing an (dβne, dβne)-hole11

between sets A ⊂ V1 and B ⊂ V2. We add two vertices, v andw, and all the edges connecting v with the vertices of B andw12

with the vertices of A. This way we obtain a new graph G0 with the desired property. �13

It turns out that based on Proposition 3.3 one can decrease the bound on vertex degrees in Corollary 3.4(i) down to,14

roughly, 2ε2n/(d+ ε) and still get quite short paths. Again, the obtained bound is nearly optimal, namely there exist (d, ε)-15

regular graphs containing a vertex with degree only slightly smaller than 2ε2n/(d + ε), which is disconnected from all16

vertices other than its neighbors.17

Theorem 3.5. Let 0 < β < 2ε2
d+ε < α.18

(i) Let G be a (d, ε)-regular balanced bipartite graph with 2n vertices. If19

min {deg(v), deg(w)} ≥ bαnc20

then distG(v,w) ≤ 5. In particular, if δG ≥ bαnc, then diam(G) ≤ 5.21

(ii) On the other hand, there exists a (d, ε)-regular balanced bipartite graph G0 with
∧
2n vertices containing two vertices v,w ∈ V ,22

deg(v) = deg(w) ≥ dβne, with dist(v,w) = ∞.23

Proof. To prove the first statement, we will show that every graph G satisfying the assumptions is {bαnc, dεne}-holeless,24

much more than we need. This, by Proposition 3.3, will imply the thesis.25

Suppose, for a contradiction, that there exist in G two subsets, A ⊂ V1 and B ⊂ V2, with |B| = dεne, |A| = d2ε|B|/(d+ε)e26

and such that eG(A, B) = 0. Note that, for large n,27

|V1 \ A| = n− |A| ≥ εn,28

and by the (d, ε)-regularity of Gwe have dG(V1 \ A, B) < d+ ε. Consequently, by Fact 2.1, one can find a subsetW ⊂ V1 \ A29

of size |W | = |B| − |A| and such that dG(W , B) < d+ ε. Hence,30

dG(A ∪W , B) =
|W ||B|dG(W , B)

|B|2
<
(|B| − |A|)(d+ ε)

|B|
≤ d+ ε − 2ε = d− ε,31

a contradiction with the (d, ε)-regularity of G.32

To prove the second statement of Theorem 3.5, we will construct the graph G0 in two steps. First, we set33

γ =
2ε2

d+ ε
− β34

and note that 0 < γ ≤ ε−β . Let G′ = (V ′1∪V
′

2, E) be a (d+ε−γ , γ /2)-regular graph, where |V
′

1| = n−dβne, |V
′

2| = n−135

and n is sufficiently large. The existence of such graphs can be proved easily using random graphs (see [12]).36

Then, we add to V ′1 a set A of dβne vertices and a vertex w to V
′

2, adjacent to all vertices of A, obtaining from G
′ a new37

graph G0. We claim that the graph G0 = (V1 ∪ V2, E), where V1 = V ′1 ∪ A and V2 = V
′

2 ∪ {w}, has the desired property. Since38

G0[A ∪ {w}] is an isolated star in G0, we have dist(v,w) = ∞ for all v ∈ V \ (A ∪ {w}). Note that deg(w) = |A| = dβne,39

while, provided G0 is (d, ε)-regular, the degrees of most vertices v of G0 are at least (d− ε)n > dβne.40

It remains to show that G0 is indeed (d, ε)-regular. Let U ⊂ V1,W ⊂ V2, |U|, |W | ≥ εn. Set U ′ = U \A andW ′ = W \{w}41

and observe that |U ′| ≥ εn − dβne > (γ /2)|V ′1|, and, for large n, |W
′
| > (γ /2)|V ′2| (see Fig. 4). By the (d + ε − γ , γ /2)-42

regularity of G′, for sufficiently large n, we have43

dG0(U,W ) ≤
eG′(U ′,W ′)+ |A|
|U||W |

≤
eG′(U ′,W ′)+ |A|
|U ′||W ′|

44

= dG′(U ′,W ′)+ O(n−1) < d+ ε −
1
2
γ + O(n−1) < d+ ε,45

Please cite this article in press as: J. Polcyn, A. Ruciński, Short paths in ε-regular pairs and small diameter decompositions of dense graphs, Discrete
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Fig. 4. Illustration of the proof of Theorem 3.5, part two.

and 1

dG0(U,W ) ≥ dG′(U
′,W ′)

(
1−
|A|
|U|

)(
1−

1
|W |

)
2

>

(
d+ ε −

3
2
γ

)(
1−

β

ε

)
− O(n−1) > (d+ ε − 2γ )

(
1−

2ε
d+ ε

+
γ

ε

)
3

= d− ε + γ
(d+ ε)
ε
− γ

(
2−

4ε
d+ ε

+
2γ
ε

)
> d− ε, 4

because 5

2−
4ε
d+ ε

+
2γ
ε
< 2 ≤

(d+ ε)
ε

. � 6

Note that the minimum degree of the graph G0 constructed in the second part of the proof is just one. However, there 7

exists an alternative construction of a disconnected (d, ε)-regular graph with minimum degree equal, roughly, to ε2n/(2d). 8

4. An approximate decomposition into few subgraphs with small diameter 9

This section provides two results about approximating a given graph by a union of subgraphs with small diameter. As a 10

consequence of Proposition 4.1 below, for a given γ > 0, we can split the set of all but at most γ |V (G)|2 edges of G into no 11

more than 1/γ subgraphs with diameter bounded from above by 3/γ . Then in Theorem 4.5, using the celebrated Szemerédi 12

Regularity Lemma, we decrease the bound on the diameter to four, at the price of increasing the number of subgraphs in 13

the partition. Thus, in a sense, every graph can be decomposed into a bounded number of subgraphs with small diameter, 14

provided a small set of edges and/or vertices can be ignored. The next result, which, in fact, yields a partition into vertex- 15

disjoint subgraphs, follows easily by removing sequentially the vertices of small degrees and applying (1) to each connected 16

component of the obtained subgraph. 17

Proposition 4.1. Let 0 < γ < 1. The set of edges of every graph G = (V , E)with |V | = n can be partitioned into k+ 1 subsets, 18

E = E0 ∪ E1 ∪ · · · ∪ Ek, where k ≤ 1/γ and |E0| ≤ γ n2, in such a way that for each 1 ≤ s ≤ k we have diam(G[Es]) ≤ 3/γ . 19

� 20

In Proposition 4.1 both bounds, on the diameter and on the number of subgraphs G[Es], depend linearly on 1/γ , and 21

thus grow to infinity when the precision of approximation, γ , tends to zero. However, one can compromise on one of 22

these bounds, improving the other to the extent that it becomes independent of γ . Indeed, using the Szemerédi Regularity 23

Lemma [1] and Corollary 3.4(ii), we will put the cap of four on the diameter, at the cost of letting the number of subgraphs 24

in the partition
∧
be an enormous constant. Before we make this precise, let us quote the Regularity Lemma. 25

Definition 4.2. Let 0 < ε < 1, t be a positive integer, and let G = (V , E) be a graph.We call a partition V = V0∪V1∪· · ·∪Vt 26

ε-regular, if |V1| = |V2| = · · · = |Vt |, |V0| < t , and all but at most ε
( t
2

)
pairs (Vi, Vj), 1 ≤ i < j ≤ t , are ε-regular. 27

Theorem 4.3 (Szemerédi Regularity Lemma, [1]). Let 0 < ε < 1 and let t0 be a positive integer. There exist integers N = N(ε, t0) 28

and T = T (ε, t0) such that every graph G = (V , E) with |V | ≥ N vertices admits an ε-regular partition V = V0 ∪ V1 ∪ · · · ∪ Vt 29

with t0 ≤ t ≤ T . 30

In the proof of Theorem 4.5, we will also need a simple observation that for ε ≤ d/3, every (d, ε)-regular graph can be 31

approximated by a subgraph of diameter at most four. It can be easily proved by removing the vertices of degrees at most 32

2εn and applying Observation 3.1 to the resulting subgraph. 33
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Fact 4.4. If 0 < 3ε ≤ d < 1 then every (d, ε)-regular balanced bipartite graph G with 2n vertices contains an induced subgraph1

G′ such that |E(G) \ E(G′)| ≤ 2εn2 and diam(G′) ≤ 4. �2

Now we are ready to prove the main result of this section.3

Theorem 4.5. Let 0 < γ < 1. There exist positive integers K and N such that the set of edges of every graph G = (V , E) with4

|V | = n ≥ N can be partitioned into k+ 1 subsets, E = E0 ∪ E1 ∪ . . . ∪ Ek, where k ≤ K and |E0| ≤ γ n2, in such a way that for5

each 1 ≤ s ≤ k we have diam(G[Es]) ≤ 4.6

Proof. Let ε = γ /5 and t0 = d1/εe, and let N ′ = N ′(ε, t0) and T = T (ε, t0) be given by the Szemerédi Regularity Lemma7

(Theorem 4.3).8

Set K =
(
T
2

)
and N = max{T/ε,N ′} and let G = (V , E) be a graph with |V | = n ≥ N . Apply Theorem 4.3 to G obtaining9

an ε-regular partition V = V0 ∪ V1 ∪ V2 ∪ · · · ∪ Vt , where t0 ≤ t ≤ T .10

Let F1 be the set of all edges of G intersecting V0. Then11

|F1| < tn ≤ Tn ≤ εNn ≤
γ

5
n2.12

Let F2 be the set of all edges of G contained in one of the sets Vi, i = 1, 2, . . . , t . We have13

|F2| ≤ t
(
bn/tc
2

)
<
n2

2t
≤
n2

2t0
≤
γ

10
n2.14

Further, let F3 be the set of all edges belonging to the pairs (Vi, Vj) which are not ε-regular. By the ε-regularity of the15

partition,16

|F3| ≤ ε
(
t
2

)(n
t

)2
<
ε

2
n2 =

γ

10
n2.17

Finally, let F4 be the set of all edges belonging to the pairs (Vi, Vj)with density dG(Vi, Vj) ≤ 4ε. Then18

|F4| ≤
(
t
2

)
4ε
(n
t

)2
< 2εn2 =

2γ
5
n2.19

Consequently, setting E ′0 = F1 ∪ F2 ∪ F3 ∪ F4, we have20

|E ′0| <
γ

5
n2 +

γ

10
n2 +

γ

10
n2 +

2γ
5
n2 =

4
5
γ n2.21

Denote by E ′s, 1 ≤ s ≤
( t
2

)
, the sets of edges EG(Vi, Vj) \ E ′0 which are nonempty. Without loss of generality we may assume22

that these are the sets E ′1, . . . , E
′

k, where k ≤
( t
2

)
≤ K . Note that the subgraphs G[E ′s] are (d, ε)-regular for some d ≥ 3ε,23

and thus, according to Fact 4.4, one can remove from each of them a set E0s of edges,24

|E0s | ≤ 2ε
(n
t

)2
=
2
5
γ
(n
t

)2
,25

such that diam(G[E ′s \ E
0
s ]) ≤ 4. Altogether we have deleted a set E

′′

0 =
⋃k
s=1 E

0
s of at most26 (

t
2

)
2
5
γ
(n
t

)2
<
1
5
γ n227

edges. Since28

|E ′0 ∪ E
′′

0 | <
4
5
γ n2 +

1
5
γ n2 = γ n2,29

we obtain the desired partition by setting E0 = E ′0 ∪ E
′′

0 , and Es = E
′
s \ E

0
s , 1 ≤ s ≤ k ≤ K . �30

Note that the proofs of Proposition 4.1 and Theorem 4.5 both yield algorithms of complexity O(n2) which construct the31

respective partitions. The latter is based on
∧
an O(n2)-time algorithm found in [14] which builds an ε-regular partition in32

every n-vertex graph.33
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