
July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

COMPUTATIONAL COMPLEXITY
OF THE PERFECT MATCHING PROBLEM

IN HYPERGRAPHS WITH SUBCRITICAL DENSITY

MAREK KARPIŃSKI∗

Department of Computer Science, University of Bonn
Römerstrasse 164, 53117 Bonn, Germany

marek@cs.uni-bonn.de

ANDRZEJ RUCIŃSKI†

Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland

rucinski@amu.edu.pl

EDYTA SZYMAŃSKA‡

Faculty of Mathematics and Computer Science, Adam Mickiewicz University,
Umultowska 87, 61-614 Poznań, Poland

edka@amu.edu.pl

Received (Day Month Year)
Accepted (Day Month Year)

Communicated by (xxxxxxxxxx)

In this paper we consider the computational complexity of deciding the existence of a
perfect matching in certain classes of dense k-uniform hypergraphs. It has been known
that the perfect matching problem for the classes of hypergraphs H with minimum
((k− 1)−wise) vertex degree δ(H) at least c|V (H)| is NP-complete for c < 1

k
and trivial

for c ≥ 1
2
, leaving the status of the problem with c in the interval [1

k
, 1
2
) widely open.

In this paper we show, somehow surprisingly, that 1
2

is not the threshold for tractability
of the perfect matching problem, and prove the existence of an ε > 0 such that the
perfect matching problem for the class of hypergraphs H with δ(H) ≥ (1

2
− ε)|V (H)|

is solvable in polynomial time. This seems to be the first polynomial time algorithm
for the perfect matching problem on hypergraphs for which the existence problem is
nontrivial. In addition, we consider parallel complexity of the problem, which could be
also of independent interest.

Keywords: hypergraph; perfect matching; complexity.

1991 Mathematics Subject Classification: 05C65, 68Q25, 68Q22

∗Research supported by DFG grants and the Hausdorff Center grant EXC59-1.
†Research supported by grant N201 036 32/2546
‡Research supported by grant N206 017 32/2452

1

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

2 M. Karpiński, A. Ruciński, E. Szymańska

1. Introduction

A hypergraph H = (V,E) is a finite set of vertices V := V (H) together with a
family E := E(H) of distinct, nonempty subsets of V , called edges. In this paper
we consider k-uniform hypergraphs (or, shortly, k-graphs) in which, for a fixed k ≥ 2,
each edge is of size k.

A matching in a hypergraph H is a set M ⊆ E of disjoint edges. We often treat
M as a subhypergraph of H and identify M with E(M). The number |M | of edges
in a matching M is called the size of the matching, while the number of vertices
missing from M , that is, the number |V (H)|− |V (M)| is called the deficiency of M

in H. Note that the deficiency of any matching in H equals n modulo k. In other
words, if n ≡ q mod k, then r-deficient matchings are possible only if r = q + `k

for some ` ≥ 0, and such matchings have, of course, size bn/kc − `. A matching
is perfect if its deficiency is 0, or equivalently if its size is 1

k |V (H)|. Therefore, a
necessary condition for the existence of a perfect matching in H is that |V (H)| ≡ 0
mod k.

For a k-graph H and a set of k − 1 vertices S, let NH(S) be the set of edges of
H containing S and put degH(S) = |NH(S)|. We define δ(H) = minS degH(S) over
all S ∈ (

V
k−1

)
and refer to it as the (k − 1)-wise, collective minimum degree of H,

or simply, minimum co-degree, as we will not consider any other kinds of degrees in
hypergraphs.

Furthermore, for all integers k ≥ 2, r ≥ 0, and n ≥ k, denote by t(k, n, r)
the smallest integer t such that every k-graph H on n vertices and with δ(H) ≥ t

contains an r-deficient matching.

1.1. Three Classes of Computational Problems.

In this paper we will consider three computational problems which are defined
below.

For k ≥ 2, by PM(k) we denote the problem of deciding whether a k-graph
H contains a perfect matching. The problem PM(2) is the classical problem of
deciding the existence of a perfect matching in a graph, and is known to be in
the polynomial class P since the paper by Edmonds [3]. For all k ≥ 2, PM(k) is
equivalent to a decision problem called exact cover by k-sets, which is known to be
NP-complete for k ≥ 3, [4].

Having defined the notion of matching deficiency we can formulate a more gen-
eral problem.

Given integers k ≥ 3 and r ≥ 0, let PM(k, r) denote the problem of deciding
whether a k−graph H with |V (H)| ≡ r mod k contains an r-deficient matching.
In particular, when 0 < r < k, PM(k, r) asks for a matching in H which, although
non-perfect, is as perfect as one can get. Note also that PM(k, 0)=PM(k).

Finally, we define a special, “density sensitive”, case of the above problem. Given
integers k ≥ 3, r ≥ 0 and a real c > 0, by PM(k, r, c) we denote the same problem as
PM(k, r) but restricted to k−graphs H with minimum co-degree δ(H) ≥ c|V (H)|.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 3

When r = 0, PM(k, 0, c) can be viewed as the perfect matching problem for dense
k-graphs.

1.2. Background and motivation

In recent years hypergraphs gained a lot of interest as a natural generalization
of graphs. Many of the standard graph problems, however, became much more
complicated after translating them to hypergraphs. It is indeed the case of the
perfect matching problem considered in this paper. Hall’s theorem gives a necessary
and sufficient condition for the existence of a perfect matching in bipartite graphs.
The result has been extended to bipartite hypergraphs by Haxell [6], but turned
out to be rather computationally noneffective. Recently, Asadpour, Feige and Saberi
[1] reduced a max-min allocation problem, known as the Santa Claus Problem, to
finding a perfect matching in a class of bipartite hypergraphs but could not solve
their problem efficiently.

From the computational point of view, more satisfactory is another, Dirac-type
sufficient condition given by Rödl et al. [11]. Recall that the celebrated Dirac theo-
rem for graphs guarantees a Hamilton cycle in every n-vertex graph with minimum
degree at least 1

2n, and thus, a perfect matching when n is even. In fact, it is very
easy to show that t(2, n, 0) = 1

2n.
In [11], the authors determined exactly the value of t(k, n, 0) for all integers

k ≥ 3 and sufficiently large n. They proved there that t(k, n, 0) = 1
2n − k + ck,n,

where ck,n is an explicit constant depending on the parities of k, n and n
k , and

satisfying 3
2 ≤ ck,n ≤ 3. Hence, in particular, t(k, n, 0) ≤ 1

2n − k + 3 ≤ 1
2n. In [12]

only a slightly weaker upper bound, t(k, n, 0) ≤ 1
2n + 1

4k, but with a simpler proof,
was shown.

For deficient matchings, i.e. the case of r > 0, a striking difference between
perfect and almost perfect matchings was observed in [11]. It was shown there that
for n ≡ r mod k and k ≥ 3, t(k, n, r) = n−r

k for r ≥ (k−2)k, and n−r
k ≤ t(k, n, r) ≤

n
k +O(log n) for 0 < r < (k− 2)k. Thus, in all cases other than the perfect one, the
threshold value of δ(H) for the existence of an r-deficient matching in H is around
n
k , while in the perfect case it is around 1

2n.
An immediate consequence of the results in [11] is that the decision problem

PM(k, 0, c) is trivial for every c ≥ 1
2 , while PM(k, r, c), r > 0, is trivial already for

c > 1
k . (By trivial we mean that the answer is YES for every instance.)

Szymańska showed in [13] by a polynomial reduction of PM(k) to PM(k, r, c)
that for all k ≥ 3, r ≥ 0, and every constant c < 1

k , PM(k, r, c) is NP-complete. It
follows that PM(k, r) is NP-complete too, although this can be derived by a direct
reduction from PM(k).

On the positive side, it was observed in [13] that the argument presented in [11]
can be transformed into a constructive one and a polynomial time algorithm for
the corresponding search problem when c > 1

k and r > 0 was provided. In [14] the
existential proof from [11] was turned into a polynomial time algorithm finding a

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

4 M. Karpiński, A. Ruciński, E. Szymańska

perfect matching when c ≥ 1
2 .

Those results have established a “phase transition” at c = 1
k for PM(k, r, c),

r > 0, but left a “hardness gap” of [1k , 1
2) for PM(k, 0, c).

Problem 1. What is the computational complexity of PM(k, 0, c) when
c ∈ [1

k , 1
2)?

By the counterexamples introduced in [11] it is apparent that there exist k-
graphs of minimum co-degree below 1

2 |V (H)| without a perfect matching, so both
answers, YES and NO are possible. This motivated us to investigate the complexity
of the existence problem for hypergraphs in the gap interval. Interestingly, it turned
out that at least in the upper end of this interval the problem is polynomial. Indeed,
in this paper we provide a polynomial time algorithm which for every hypergraph
with minimum co-degree at least (1

2 −ε)|V (H)| constructs a perfect matching if one
exists, and otherwise it exhibits a certificate for non-existence (cf. Theorem 3 and
Algorithm PerfectMatch).

Our second result concerns parallelization of the problem. Parallel algorithms
have experienced a lot of attention in the late eighties and nineties of the last cen-
tury. Many interesting algorithms were given, including several deterministic NC

algorithms for the maximal independent set as well as randomized algorithms plac-
ing the maximum matching problem in the class RNC. At the same time some
questions are still open. In particular, very small progress has been made in deter-
ministic parallelization of such natural graph problems, like the perfect matching
problem.

While the perfect matching problem in graphs can be decided and computed in
polynomial time, the parallel complexity of the decision problem remains unknown.
Apart from randomized results, only some special classes of graphs have efficient
parallel algorithms. This includes dense graphs, in particular Dirac’s graphs, that
is, graphs G with minimum degree δ ≥ 1

2 |V (G)|. Dalhaus, Hajnal and Karpiński
gave in [2] an NC2 parallel algorithm finding a perfect matching in such graphs
and showed that for the minimum degree at least c|V (G)|, c < 1

2 , the problem is
as hard as for all graphs. Recently, Särkózy [15] proved that the 1

2 -density barrier
breaks down even for the harder problem of Hamiltonian cycle, in a special class of
graphs called η−Chvátal graphs.

Motivated by the results of [2] and [15], we investigate the parallel complexity
of the perfect matching problem in dense hypergraphs. Besides being interesting
in their own right, we treat parallel algorithms as a tool providing alternative,
conceptually easier proofs of existential results. Our Theorem 6 implies that the
problem of deciding whether a given k−uniform hypergraph H, with minimum
co-degree at least c|V (H)|, c > 1

2 , contains a perfect matching admits an NC

algorithm. Along the way, we also design parallel algorithms for constructing almost
perfect matchings in graphs with restricted minimum co-degrees (cf. Theorems 4 and
5). These algorithms serve as subroutines in the main perfect matching algorithm.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 5

In Section 2 we formally state our results (Theorems 3, 4, 5 and 6, and Proposi-
tion 2). After that, in Section 3 the parallel algorithms together with their analysis,
which proves Theorems 4, 5 and 6, are presented. The last section is devoted to the
proofs of Proposition 2 and Theorem 3. A conference version of this paper appeared
as [7].

2. Our Results

One goal of this paper is an attempt to understand the complexity of PM(k, 0, c)
in the gap interval c ∈ [1

k , 1
2). Theorem 3 below shows that at least in the upper

end of the interval the decision problem PM(k, 0, c) is polynomial in time. Another
part of this paper is devoted to an alternative, constructive proof of the bound
t(k, n, 0) ≤ 1

2n+ 1
4k from [12]. In fact, we turned that proof into a parallel algorithm

(see Theorem 6 below), showing that PM(k, 0, c) is not only in P but also in the
NC class. In the next two subsections we formulate our results precisely.

2.1. Hardness Taxonomy.

Concerning the problem PM(k, 0, c), the results from [11] and [13] described in
Section 1.2 have left a hardness gap for c ∈ [1

k , 1
2).

We present two results which suggest different answers to Problem 1. To put
the first of them into a right context, recall that by [11] we know already that
PM(k, k, c) is trivial for c > 1

k . In other words, every k-graph H with δ(H) ≥
c|V (H)|, where c > 1

k and |V (H)| is divisible by k, has a k-deficient matching.

Proposition 2. For every k ≥ 3, PM(k) is NP -complete even when restricted to
k-graphs containing a k-deficient matching.

It means that knowing that a k-graph has a matching just one edge short from a
perfect one, does not help in deciding the existence of the latter. This could suggest
that PM(k, 0, c) is NP-complete for all c ∈ [1

k , 1
2). However, it turns out that it

is not so. Indeed, in Section 4 we describe an algorithm, called PerfectMatch,
which, for some c < 1

2 , but sufficiently close to 1
2 , places PM(k, 0, c) in P.

Theorem 3. For all k ≥ 3 there exists ε > 0 such that if c ≥ 1
2−ε, then PM(k, 0, c)

as well as its search version are in P.

Remark 1. Theorem 3 reveals an interesting feature: it provides a polynomial time
algorithm which, unlike the algorithms in [2], [15], [13], or those described in the
next section, takes as inputs instances which may not possess a desired matching,
and decides whether they indeed have one. If the answer is YES, the algorithm, in
fact, computes in polynomial time a perfect matching, while when the answer is NO,
it provides an evidence (in a form of a witness partition).

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

6 M. Karpiński, A. Ruciński, E. Szymańska

2.2. Parallel Algorithms.

As the model of computation we choose the EREW version of PRAM. Recall that, as
shown in [11], the problem PM(k, 0, 1

2) is trivial, that is, for all H with δ(H) ≥ 1
2n,

H has a perfect matching. As observed in [13], the existential proof from [11] can
be turned into a polynomial time search algorithm of complexity O(nk2+2k log4 n).
Here we present a parallel algorithm which places the search version of PM(k, 0, c),
c > 1

2 , in the class NC. Recall that NC =
⋃

i≥0 NCi, and a problem is in NCi

if it admits an algorithm of running time O(logi n), using a polynomial number of
processors.

Our algorithm, par-PerfectMatch, is based on the existential proof in [12]
and uses as subroutines two other parallel algorithms of independent interest,
par-LargeDefMatch(r) and par-SmallDefMatch(r), which find r-deficient
matchings for, resp., large and small, positive values of r, under increasingly re-
strictive conditions on δ(H).

The properties of these algorithms are presented in the following theorems. The
first of them provides a parallel algorithm which finds an r-deficient matching for
large r, but relatively small δ.

Theorem 4. For every k ≥ 3 and r ≥ (k − 2)k there exists a constant n0, and a
parallel algorithm, called par-LargeDefMatch(r), which in every k-graph H on
n ≥ n0 vertices with n ≡ r mod k and δ(H) ≥ n−r

k finds an r-deficient matching
in O(log3 n) rounds using a polynomial number of processors. It follows that the
search version of PM(k, r, c) is in the class NC3 for r ≥ (k − 2)k and c ≥ 1

k .

If the degree condition is strengthened just a little, we can find in paral-
lel a matching of any smaller, but positive, deficiency r. The algorithm par-

SmallDefMatch(r), given below, uses the algorithm from Theorem 4 as a sub-
routine.

Theorem 5. For every k ≥ 3 and 0 < r < (k − 2)k there exist constants n0 and
C > 0, and a parallel algorithm, called par-SmallDefMatch(r), which in every
k-graph on n ≥ n0 vertices with n ≡ r mod k and δ(H) ≥ n

k + C log n finds an r-
deficient matching in O(log3 n) rounds using a polynomial number of processors. It
follows that the search version of PM(k, r, c) is in the class NC3 for 0 < r < (k−2)k
and c > 1

k .

Finally, if δ(H) exceeds 1
2n, then we are in position to compute in parallel a

perfect matching in H. This is the main result of this section.

Theorem 6. For every k ≥ 3 there exists constant n0, and a parallel algorithm,
called par-PerfectMatch, which in every k-graph on n ≥ n0 vertices with n

divisible by k and such that δ(H) ≥ n
2 + k

4 finds a perfect matching in O(log3 n)
rounds using a polynomial number of processors. It follows that the search version
of PM(k, 0, c) is in the class NC3 for c > 1

2 .

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 7

Table 1. The complexity of PM(k, r, c) with k ≥ 3. For every t=trivial problem there exists an
NC parallel algorithm finding an r-deficient matching.

HHHHHHr

c
c < 1

k
1
k (1

k , 1
2 − ε) [12 − ε, 1

2] c > 1
2

r ≥ (k − 2)k NP-com t t t t
0 < r < (k − 2)k NP-com ? t t t

r = 0 NP-com ? ? P t

The above three theorems will be proved in the next section. A summary of all
computational results about PM(k, r, c) is displayed in Table 1.

3. Description and Analysis of Parallel Algorithms

In this section we prove Theorems 4–6. Each proof consists of a description of the
algorithm followed by a proof of its correctness.

3.1. Proof of Theorem 4

The construction below generalizes the ideas from [2] to hypergraphs. The intersec-
tion graph of a hypergraph H has the edges of H as its vertices, and two vertices
are adjacent if the corresponding edges of H intersect. Observe that the matchings
in H map one-to-one with the independent sets of the intersection graph. When
we refer to MIS algorithm, we always mean the parallel algorithm from [9] which
places the maximal independent set problem in NC2.

In short, the idea of the construction is the following. First we compute a max-
imal matching M1 in H using MIS algorithm in the intersection graph of H. This
leaves a set W of unmatched vertices in H, which is next divided into groups of
size (k − 1)k each, with a possible remainder of a smaller size. Then, as shown in
Fig. 1, an auxiliary bipartite graph G is constructed. The vertices of G correspond
to the edges of M1 on one side and the groups of vertices on the other. We put
an edge in G connecting a vertex corresponding to an edge e ∈ M1 with a vertex
corresponding to a subset S of W if and only if there exist two disjoint edges in H,

each of them intersecting e in one vertex and containing k − 1 vertices from S. In
the next step a maximal matching M2 in G is computed. Each edge of M2 is then
used for absorbing 2(k− 1)− (k− 2) = k vertices into M1 and enlarging its size by
one. The whole process is repeated until there are r vertices remaining in W .

Algorithm par-LargeDefMatch(r), r ≥ (k − 2)k

In: k-graph H with n ≥ n0, n ≡ r mod k, and δ(H) ≥ n−r
k

Out: r-deficient matching M1

(1) Compute in parallel a maximal matching M1 in H applying MIS algorithm
to the intersection graph of H. Let W := V (H)− V (M1).

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

8 M. Karpiński, A. Ruciński, E. Szymańska

(2) Repeat while |W | > r

(a) Arbitrarily divide W into t :=
⌊

|W |
(k−1)k

⌋
disjoint sets S of size |S| = (k −

1)k. Call this family of sets S. Define an auxiliary bipartite graph G =
(V1, V2, E(G)) as follows:

• V1 = M1 and V2 = S; thus |V2| = t.

• For each e ∈ V1 and S ∈ V2 put in parallel an edge {e, S} ∈ E(G) if
and only if there are two vertices ue, ve ∈ e, ue 6= ve and two disjoint
(k − 1)−element subsets XS , YS of S such that e′e,S := XS ∪ {ue} ∈ H

and e′′e,S := YS ∪ {ve} ∈ H.

(b) Compute in parallel a maximal matching M2 in G using MIS algorithm.
(c) For every edge (e, S) ∈ M2 in parallel absorb into M1 the set of vertices

XS ∪ YS , by replacing e with e′e,S and e′′e,S , at the same time releasing from
M1 the remaining k − 2 vertices of e, i.e., M1 := (M1 − {e}) ∪ {e′e,S , e′′e,S}.
Set W := V (H)− V (M1).

(3) Return M1.

To show that the above algorithm computes a desired matching we need the
following fact.

Fact 7. Any maximal matching M2 in the bipartite graph G defined in the algorithm
saturates at least

⌈
n− r − k|M1|

(k − 1)k

⌉

vertices of V2.

Note that for r < (k − 1)k the above quantity is at least as large as t = |V2|, that
is, in this case V (M2) ⊇ V2.

Proof. Fix a set S ∈ V2 and divide it into k disjoint subsets of k− 1 vertices each,
T1, . . . , Tk. Next, for each e ∈ M1, let

T (e) = {e′ ∈ E(H) : |e′ ∩ e| = 1 and e′ ∩ S = Tj for some j}.

Further, let a be the number of edges e ∈ M1 with |T (e)| ≤ k, and let b = |M1| − a

denote the number of edges e ∈ M1 with |T (e)| ≥ k + 1. Note that for every e with
|T (e)| ≥ k +1, we have {e, S} ∈ E(G). Indeed, the k +1 pairs (e′ ∩ e, Tj) cannot all
involve the same vertex of e, or the same set Tj , simply because there are only k

such vertices and k such sets. Thus, the degree of S in G satisfies degG(S) ≥ b, and
it follows trivially that any maximal matching M2 of G contains at least b vertices
of V2. It remains to bound b from below.

To prove the required bound on b, we estimate the number πS of pairs (e, e′),
where e ∈ M1 and e′ ∈ T (e). On the one hand, πS ≤ ka+k2b = k|M1|+(k2−k)b; on

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 9

WM1

S1

S2

St

|Si| = k(k − 1)
V1 V2

Fig. 1. Constructing the auxiliary bipartite graph (k = 4).

the other hand, by the minimum co-degree assumption on H, πS ≥ kδ(H) ≥ n− r.
Therefore

b ≥ n− r − k|M1|
(k − 1)k

.

To see that Algorithm par-LargeDefMatch(r) finds an r-deficient match-
ing, let ui denote the number of unsaturated by M1 vertices at the start of the
ith loop of the algorithm in Step (2). Let bi be the value of b computed in the ith
loop. Note that the bound on b obtained in the proof of Fact 7 is equivalent to
bi(k − 1)k ≥ ui − r. Also, since |M2| ≥ bi, at least bik more vertices have become
saturated after step i. Thus, for each i ≥ 1,

ui+1 − r = ui − bik − r ≤ k−2
k−1 (bi − r),

and after at most O(log n) steps the quantity ui − r will vanish. At this point, M1

becomes an r-deficient matching. Hence, the time complexity is O(log3 n).
We remark that in the case of graphs discussed in [2], only one iteration in Step

(2) was sufficient, saving one logarithmic factor in time complexity.

3.2. Proof of Theorem 5

Let us begin by noting that without loss of generality we may restrict the range of
r to 0 < r ≤ k. Indeed, if r1 < r2 and ri ≡ n mod k, i = 1, 2, then any r1-deficient
matching contains an r2-deficient matching.

The algorithm par-SmallDefMatch presented below uses as subroutine par-

LargeDefMatch. In addition, following the absorbing technique introduced in

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

10 M. Karpiński, A. Ruciński, E. Szymańska

e

Fig. 2. Absorbing edge.

[11], we will need another parallel subroutine which computes a so called powerful
matching. Its success relies on the fact that if r > 0 and n ≡ r mod k then any
matching with deficiency larger than r must necessarily leave out at least k + 1
unsaturated vertices, as opposed to only k when r = 0.

We now recall the necessary definitions from [11].

Definition 8 (absorbing edge) Given a set S of k +1 vertices, an edge e ∈ H is
called S-absorbing if there are two disjoint edges e′ and e′′ in H such that |e′∩S| =
k − 1, |e′ ∩ e| = 1, |e′′ ∩ S| = 2 and |e′′ ∩ e| = k − 2. (See Fig. 2.)

Clearly, if the set S is outside a matching M which contains an S-absorbing
edge e, then M can “absorb” S by swapping e for e′ and e′′ (one vertex of e will
become unmatched).

The key feature of the absorbing edge is that if δ(H) = Θ(n), then there are
Θ(nk) of them for every set S, S ⊆ V, |S| = k + 1 (see Fact 2.2 in [11]).

For the absorbing technique to work, we need a small matching M (of size
O(log n)) containing several absorbing edges for each set S. It will be then altered in
the absorbing procedure, extending any sufficiently large matching until it becomes
r-deficient. We call such a matching M powerful and define it formally below.

Definition 9 (powerful matching) A matching M in a k-graph H is called pow-
erful if for every set S ⊂ V of size k + 1 the number of S-absorbing edges in M is
at least k − 2.

We need k − 2 absorbing edges per S, because par-LargeDefMatch finds a
matching with deficiency between k(k − 2) and k(k − 1). Therefore, in the worst
case we might need to absorb k−3 other sets before a given set S0, using possibly as
many S0-absorbing edges (an edge in a powerful matching is typically S-absorbing
for many sets S).

To construct a small, powerful matching in H, we first create an auxiliary graph
G = (X ∪ Y, E), where X is an independent set. The vertices in Y represent all
matchings in H of size k − 2, while the vertices in X represent all subsets S of
vertices of size k + 1. Let FS be the family of all matchings of size k − 2 consisting
of S-absorbing edges. The {x, y} edges of G, where x ∈ X and y ∈ Y , exhibit the
membership of the matchings in the families FS , while the {y′, y′′} edges, where
y′, y′′ ∈ Y , indicate whether the two matchings represented by y′ and y′′ have a
vertex in common. Now, our goal is to construct an independent subset D of Y

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 11

of size O(log n) which dominates all vertices of X. Then the union of the (k − 2)-
matchings represented by the vertices of D forms the desired powerful matching in
H. As we will see, this can be done efficiently in parallel if for some d > 0

degG(x) ≥ d|Y | for all x ∈ X and ∆(G[Y]) = o
(

1
log n |Y |

)
. (1)

Algorithm par-IndDomSet

In: graph G = (X ∪ Y,E), G[X] = ∅, satisfying (1)
Out: independent subset D ⊆ Y dominating X, |D| = O(log n)

(1) Repeat until X = ∅:
(a) For all y ∈ Y compute in parallel degG(y, X); set y0 for the lexicographi-

cally first y for which degG(y, X) ≥ d
2 |X|;

(b) Set D := D ∪ {y0}; X := X − {x : {x, y0} ∈ E},
Y := Y − ({y0} ∪ {y ∈ Y : {y, y0} ∈ E})

(2) Return D.

One can see that at every step, X decreases by at least a d
2 -fraction, and so, it

becomes empty after at most O(log n) steps. Thus, throughout the algorithm the
total number of vertices removed from Y is O(log n)∆(G[Y]) = o(|Y |). This implies
that for each x ∈ X, degG(x) ≥ d

2 |Y |, which, in turn, guarantees the existence of
y0 in the next step unless X = ∅.

Finally, note that in our application |X| =
(

n
k+1

)
= Θ(nk+1). By Fact 2.2 in

[11] we have degG(x) = Θ(n(k−2)k). Moreover, |Y | = Θ(n(k−2)k) and degG(y, Y) ≤
n(k−2)k−1, and therefore both conditions in (1) are satisfied. Since D dominates X,

for every set S of k + 1 vertices there will be an S-absorbing matching contained in
the union of matchings of size k−2 represented by D. Algorithm par-IndDomSet

runs in O(log2 n) steps.
Now, we are in position to describe our algorithm for small deficient matchings. It

will start by constructing a powerful matching M0 in H using the above procedure.
Next we remove M0 from H to get a subhypergraph H ′, with still large minimum
co-degree, in which a (k(k − 2) + r)-deficient matching M1 is computed. Out of
the remaining k(k − 2) + r vertices, all but r are then sequentially (in k − 2 steps)
absorbed into M1 using absorbing edges from M0.

Algorithm par-SmallDefMatch(r), 0 < r ≤ k

In: k-graph H with δ(H) ≥ n
k + C log n and n ≥ n0, n ≡ r mod k.

Out: r-deficient matching M

(1) Compute a powerful matching M0 (|M0| ≤ 1
kC log n), as in Definition 9, apply-

ing par-IndDomSet to the auxiliary graph G described above.
(2) H ′ := H − V (M0) [notice that δ(H ′) ≥ 1

k |V (H ′)|].
(3) Compute a (k(k − 2) + r)−deficient matching M1 using algorithm

par-LargeDefMatch(k(k − 2) + r) in H ′.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

12 M. Karpiński, A. Ruciński, E. Szymańska

e1

e3

e2

u

f2

f3

f1

w

f4

Fig. 3. Absorbing configuration E = {e1, e2, e3}, (k = 5), F = {f1, f2, f3, f4}.

(4) T := V (H)− (V (M1) ∪ V (M0)) [notice that |T | = k(k − 2) + r].
(5) Repeat until |T | = r: [k − 2 sequential iterations]

(a) for an arbitrary set S ⊆ T, |S| = k + 1, find an S−absorbing edge e ∈ M0

by checking all edges of M0 in parallel;
(b) set M0 := M0 − {e} ∪ {e′, e′′}, where e′, e′′ are as in Definition 8;
(c) T := V (H)− V (M0 ∪M1).

(6) Return M := M0 ∪M1.

It is clear that the above algorithm returns an r-deficient matching. Its time
complexity is dominated by the complexity of par-LargeDefMatch and so, it is
also O(log3 n).

3.3. Proof of Theorem 6

Our goal now is to build a perfect matching in a k-uniform hypergraph on n ≥ n0

vertices with n divisible by k and such that δ(H) ≥ n
2 + k

4 . In our construction we
will apply an absorbing configuration motivated by the proof in [12].

Definition 10 (absorbing configuration) Given a set S of k vertices, a set of
vertex disjoint edges E ⊆ H − S is called S-absorbing configuration if there is
another set of disjoint edges F ⊆ H such that

⋃
f∈F f =

⋃
e∈E e ∪ S. (See Fig. 3.)

Observe that if S is outside a matching M which contains an S-absorbing con-
figuration E then M can “swallow” S by swapping E for F. Note also that it follows
from Definition 10 that |F | = |E|+ 1.

The algorithm will first use the previous procedure from Theorem 5 to construct
a k-deficient matching M1. Then it will search for an absorbing set of edges in M1

of size 1, 2, or 3, to absorb the remaining vertices into a perfect matching M. It
will follow from the proof in [12] that such a configuration exists.

Algorithm par-PerfectMatch

In: k-graph H with δ(H) ≥ n
k + k

4 and n ≥ n0, n ≡ 0 mod k.

Out: perfect matching M

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 13

(1) Compute a k-deficient matching M1 using the parallel algorithm
par-SmallDefMatch(k) in H.

(2) S := V (H)− V (M1). If S ∈ H, M := M1 ∪ {S} and go to (5)
(3) For every set of edges E ⊂ M1, |E| ≤ 3, in parallel check if it forms an

S-absorbing configuration as in Definition 10.
(4) Use the absorbing configuration found in Step (3) to absorb the vertices of S

and obtain a perfect matching M := (M1 − E) ∪ F.

(5) Return M.

It remains to show that an S-absorbing configuration searched for in Step (3)
does exist. If it does, it then can be found in parallel in constant time with processors
assigned to all sets E ⊂ M1, |E| ≤ 3.

For every u ∈ V (M1), let eu denote the edge of M1 containing u. For every
v ∈ V (H) define the set TM1(v) := {u ∈ V (M1) : eu − {u} ∪ {v} ∈ H} and set
tM1(v) := |TM1(v)|. Further, set S = {x1, . . . , xk}. By Observation 1 in [12], if
tM1(xi) > n

2 − 5
4k for some 1 ≤ i ≤ k, then, since S /∈ H,

|N(x1, . . . , xi−1, xi+1, . . . , xk) ∩ TM1(xi)| > (n
2 + k

4) + (n
2 − 5

4k)− (n− k) = 0.

Thus, there exists a vertex y ∈ V (M1) such that

f1 = {y, x1, . . . , xi−1, xi+1, . . . , xk} ∈ H and f2 = ey − {y} ∪ {xi} ∈ H.

Consequently, E = {ey} is an S-absorbing configuration with F = {f1, f2}.
If tM1(xi) ≤ n

2 − 5
4k for all i = 1, . . . , k, then, by Observation 2 in [12], there is

a vertex w ∈ V (M1) with tM1(w) > n
2 − k

4 . Hence, by Observation 3 therein, there
exists e1 = {v1, v2, . . . , vk} ∈ M1 − {ew} such that f1 = ew ∪ {v1} − {w} ∈ H and
f2 = {x1, . . . , xk−1, v2} ∈ H. Set e2 := ew and M ′ = M1 ∪ {f1, f2} − {e1, e2}, and
observe that w 6∈ V (M ′) and tM ′(w) > n

2− 5
4k. Again by Observation 1 in [12], there

is u ∈ N(v3, . . . , vk, xk) ∩ TM ′(w). If u ∈ f1 then E = {e1, e2} is S-absorbing with
F consisting of f2, f3 = {u, v3, . . . , vk, xk} and f1 ∪ {w} − {u}. The case u ∈ f2 is
similar. Finally, if u /∈ f1∪f2, then the edge containing u in M ′ is the same as in M1,

that is eu. So, {e1, e2, e3} is an S-absorbing configuration with F = {f1, f2, f3, f4},
where e3 := eu and f4 := e3 ∪ {w} − {u}. This last case is depicted in Fig. 3.

4. Toward Understanding the Hardness Gap

4.1. Proof of Proposition 2

In this section an effective reduction proving Proposition 2 is presented. Given a
k-graph H with |V (H)| = n divisible by k, we construct a gadget H ′ = (V ′, E′) as
follows. Let M be a matching of size n/k disjoint from H. We let V ′ = V ∪ V (M)
and E′ = E(H)∪E(M)∪E∗, where E∗ = E(M∗) is the edge set of a suitably chosen
matching of size 2n/k−1 whose each edge intersects both, V (H) and V (M) (see Fig.
4). More specifically, let M = {e1, . . . , en/k} and ei = {v1

i , . . . , vk
i }, i = 1, . . . , n/k.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

14 M. Karpiński, A. Ruciński, E. Szymańska

f1

f2n/k−1

f2

f3

e2 e3

e4

e5

e1

en
k

V (H)

vk−1
1

Fig. 4. Gadget for k-deficient matchings (k = 5).

Further, let V (H) = {u1, . . . , un}. Then M∗ consists of edges

f1 = {u1, v
k
1 , v1

2 , . . . , vk−2
2 }, f2 = {u2, . . . , uk, vk−1

2 },
f3 = {uk+1, v

k
2 , v1

3 , . . . , vk−2
3 }, . . . , f2n/k−1 = {un−k+1, v

k
n/k, v1

1 , . . . , vk−2
1 }.

Note that vertex vk−1
1 is the only vertex of M not belonging to M∗. Moreover, M∗

is a k-deficient matching in H ′, so that H ′ is a legal input of the restricted problem.
Clearly, if H has a perfect matching MH then MH ∪M is a perfect matching of

H ′. Conversely, if H ′ has a perfect matching M ′ then, because of vk−1
1 , e1 ∈ M ′.

Consequently, f1, which intersects e1, is not in M ′, and thus, e2 ∈ M ′. Iterating
this argument, we conclude that M = {e1, . . . , en/k} ⊂ M ′, which implies that
M ′ − M is a perfect matching of H. This shows that the NP-complete problem
PM(k) reduces polynomially to its restricted version.

4.2. Proof of Theorem 3

Here we give a detailed sketch of the proof of Theorem 3. We will only describe
a decision algorithm PerfectMatch, leaving out the additional, quite involved
procedure which finds a perfect matching every time the answer is YES. (However,
in the course of analysis of the algorithm, at least in some cases we will provide
hints to how a perfect matching can be actually found.) The algorithm is based
on a modification of the proof from [11], where under the assumption that δ(H) ≥
t(k, n, 0) = n

2 + O(1) two cases were studied separately: when H is close, in some
sense, to a critical k-graph and when it is far from it. In the former case, H is
almost complete in a bipartite sense and this fact is used to build a perfect matching
“manually”. In the latter case, some absorbing configurations are utilized.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 15

First let us recall some definitions and facts from [11]. Given (not necessarily
disjoint) sets N1, . . . , Nk ⊆ V (H), denote by
EH(N1, . . . , Nk) the set of ordered k-tuples of distinct vertices (v1, . . . , vk) such that
vi ∈ Ni, i = 1, . . . , k, and {v1, . . . , vk} ∈ H. For γ > 0, let

Λ(γ) = {(v1, . . . , vk−1) : degH(v1 . . . , vk−1) > (1
2 + 2γ)n}.

Consider the following pair of conditions.

(i) For all choices of (k − 1)-element sets S1, . . . , Sk ⊆ V (H), we have
|EH(NH(S1), . . . , NH(Sk))| ≥ nk

log3 n
;

(ii) |Λ(γ)| ≥ nk−1

log n .

Claim 5.2 in [11] asserts that if H is a k-graph on n > n0 vertices, n divisible
by k, δ(H) ≥ (1

2 − γ)n, and at least one of the above conditions holds, then H has
a perfect matching. In [11], γ was chosen to be 1

log n , but it was also observed that
the proof goes through for a sufficiently small constant γ > 0. As mentioned earlier,
Szymańska [14] showed how to turn that proof into an algorithm finding a perfect
matching.

Given a k-graph H and a partition V (H) = A ∪ B, we define for each r =
0, 1, . . . , k, the set Er := Er(A,B) of all edges of H intersecting A in precisely
r vertices (and B in k − r vertices). A k-graph, which consists of all k-element
subsets of A∪B intersecting A in r vertices is denoted by Kr := Kr(A,B). Further,
for a given γ′ we say that a partition V (H) = A ∪ B is γ′-even-complete [γ′-odd-
complete] if for all even [odd] r, |Kr −Er| < γ′nk. A partition is γ′-complete if it is
γ′-even-complete or γ′-odd-complete.

It follows from the proof of Claim 5.1 in [11] that if neither (i) nor (ii) hold then
one can find a partition V (H) = A ∪ B which is γ′-complete for some γ′ = γ′(γ),
where γ′(γ) is a decreasing function. Having such a partition we will follow the
lines of the proof from Section 4 of [11]. It is based on four facts, Facts 4.1-4.4,
which require that γ′ is small enough. In addition, Fact 4.4(b) assumes that δ(H) ≥
n
2 −O(1), but this can be relaxed to δ(H) ≥ (1

2 − ε′)n for sufficiently small ε′.
Let γ0 be such that γ′(γ0) is small enough for Facts 4.1-4.4 in [11] to hold. We

will prove our Theorem 3 with ε = min(γ, γ0, ε
′).

Algorithm PerfectMatch

In: k-graph H with δ(H) ≥ (1
2 − ε)n and n ≥ n0, n ≡ 0 mod k.

Out: YES if H has a perfect matching, NO otherwise.

(1) For all S ⊂ V, |S| = k − 1, compute degH(S) and check condition (ii). If (ii)
holds, return YES.

(2) Otherwise, for all (S1, . . . , Sk), Si ⊂ V, |Si| = k − 1, i = 1, . . . , k, compute
|EH(NH(S1), . . . , NH(Sk))| and check condition (i). If (i) holds, return YES.

(3) Otherwise, set A := NH(S1), B := V − A, where (S1, . . . , Sk) is a k-tuple
violating condition (i).

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

16 M. Karpiński, A. Ruciński, E. Szymańska

(4) Decide if H has a perfect matching using algorithm
PerfectMatchInComplete(H, A, B, γ′).

For the description of PerfectMatchInComplete we need one more no-
tation. Given a partition V = A ∪ B, a vertex v ∈ V is called α-small in
Er, 0 ≤ r ≤ k, 0 < α < 1, if degEr (v) ≤ α · degKr (v), and is called α-large
otherwise.

Algorithm PerfectMatchInComplete

In: k-graph H with δ(H) ≥ (1
2 − ε)n and n ≥ n0, n ≡ 0 mod k and an γ′-complete

partition V (H) = A ∪B.

Out: YES if H has a perfect matching, NO otherwise.

(1) If k is odd and (A,B) is γ′-odd-complete, swap A and B around;
(2) If (A,B) is γ′-even-complete, set k′ = k− 1 if k is odd and k′ = k− 2 otherwise

and do:

(a) Identify the set S of all 0.3-small vertices of Ek′ and move them to the other
side, that is, reset A := A4 S and B := B 4 S.

(b) If |A| is even or
⋃

r odd Er 6= ∅, return YES
(c) Return NO

(3) If (A,B) is γ′-odd-complete (and so k is even) set k′ = k
2 +1 if k is divisible by

4 and k′ = k
2 otherwise and do:

(a) Identify the set S of all 0.3-small vertices of Ek′ ; reset A := A 4 S and
B := B 4 S.

(b) If |A| ≡ n
k mod 2 or

⋃
r even Er 6= ∅, return YES.

(c) Return NO.

First, let us verify the correctness and complexity of PerfectMatch.
Our algorithm first checks if either (i) or (ii) holds. (Note that in [11], all k-

tuples of sets N1, . . . , Nk of size |Ni| ≥ (1
2 − γ)n were checked to verify (i); here, in

order to be efficient, we look only at the neighborhood sets which is sufficient.) If
(i) or (ii) holds, then, by Claim 5.2 in [11] with constant γ > 0 the answer is YES.
Otherwise, we have found sets Ni = NH(Si), i = 1, . . . , k, where Si’s violate (i),
and we know that |Λ(γ)| ≤ nk−1

log n . It can be deduced from the proof of Claim 5.1 in
[11] that then, for all i, |Ni| < n/2+2γn and, taking, say, A = N1 and B = V −N1,
we obtain a γ′-complete partition. The most time consuming Step is (2), where we
have to compute |EH(NH(S1), . . . , NH(Sk))| for, roughly,

(
n

k−1

)k instances.
We now verify the correctness of PerfectMatchInComplete. The answers

NO are easy to explain, because they are accompanied by a witness in the form
of an (A,B) partition which prevents the existence of a perfect matching in H.
In Step 2(c) |A| is odd, while all edges of H intersect A in an even number of
vertices. In Step 3(c), |A| 6≡ n

k mod 2 and every edge of H intersects A in an odd
number of vertices. If there existed a perfect matching M in H, then every edge of

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 17

M would saturate an odd number of vertices of A, and so |V (M)∩A| ≡ n
k mod 2,

a contradiction.
Next we will move to the explanation of the answer YES in Steps 2(b) and 3(b).

To do this we will follow a modified proof from Section 4 of [11]. This modification
is necessary, because in [11] there was a stronger assumption δ(H) ≥ t(k, n, 0)
under which all k-graphs H do have a perfect matching. We need another notion,
strongly related to that of an α-small vertex. We say that v ∈ V is α-deficient in
Er, 0 ≤ r ≤ k, 0 < α < 1, if degEr

(v) ≤ degKr
(v)− αmk−1.

Assume first that (A,B) is γ′-even-complete and k is odd. If |A| is odd but
there exists in H an edge e0 such that |e0 ∩ A| is odd, then reset A := A − {e0},
B := B − {e0} to get the size of A even. If |A| is even, one can build a perfect
matching M in H from the following ingredients. One of them is the edge e0 if it
was indeed needed. Let N be the set of all

√
γ′-deficient vertices in E0, Ek−3 or Ek−1.

By Fact 4.2 in [11], |N | ≤ 3
√

γ′ ·kn, and by Fact 4.4 therein, all vertices of Ek−1 are
0.2-large, so we may apply Fact 4.3 to N , obtaining a matching M1 ⊂ Ek−1 of size
|N | which matches all vertices of N . Reset A := A− V (M1) and B := B − V (M1).
Let a = |A|, b = |B| and a + b = sk. Note that 0 ≤ n− sk ≤ 3

√
γ′ · k2n + k.

The rest of M will be composed of partial matchings M2 ⊂ E0, M3 ⊂ Ek−3, and
M4 ⊂ Ek−1. Their existence is guaranteed by Fact 4.1 from [11] which we quote
here in a suitable form.

Fact 11 (Fact 4.1, [11]) Let α < (2k)−2k. If |A| = 0 mod r, |B| = 0 mod k −
r, |A| + |B| = 0 mod k and no vertex is α-deficient in Er, then Er has a perfect
matching.

We are in position to apply Fact 11 because after removing V (M1), there are no
3
√

γ′-deficient vertices in E0, Ek−3 or Ek−1. (We write 3
√

γ′ instead of
√

γ′, because
we apply Fact 11 to smaller and smaller sets V.)

To obtain M2, M3 and M4 we just need to find the right proportions of these
three matchings. This, however, boils down to solving a system of equations. Let
x = |M2|, y = |M3|, and z = |M4|. Then, we must have (k− 3)y + (k− 1)z = a and
kx + 3y + 2z = b. Expressing y, z in terms of x, we obtain the solution

y =
k − 1

2
(s− x)− 1

2
a, z =

1
2
a− k − 3

2
(s− x).

For y and z to be nonnegative, we need to choose a nonnegative integer x so that
a

k − 1
≤ s− x ≤ a

k − 3
.

This is feasible, because s is close to 2a/k (and thus much bigger than a/(k − 1)).
Note that y and z are integer too. This checks that for k odd the answer YES in
2(b) is correct.

For k even, Step 2(b) is very similar. This time we let N be the set of all
√

γ′-
deficient vertices in E0, Ek−4 or Ek−2, and build M of e0 (if needed), M1 ⊂ Ek−2,
M2 ⊂ E0, M3 ⊂ Ek−4, and M4 ⊂ Ek−2. The system of equations is (k− 4)y + (k−

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

18 M. Karpiński, A. Ruciński, E. Szymańska

2)z = a and kx + 4y + 2z = b and has a positive, integer solution

y =
(

k

2
− 1

)
(s− x)− a

2
, z =

a

2

(
k

2
− 2

)
(s− x),

where
a

k − 2
≤ s− x ≤ a

k − 4
.

Slightly more involved is Step 3(b), where we assume that (A,B) is γ′-odd-
complete. By Step (1) we know that k must be even, since otherwise, swapping A

and B around would result in a γ′-even-complete partition.
If |A| 6≡ n

k mod 2, but there exists in H an edge e0 such that r := |e0 ∩ A| is
even, then reset A := A − {e0}, B := B − {e0}. Note that after removing e0, n/k

has decreased by one, while a has decreased by r, an even number. Thus, for this
new set A and with n := n− k, we have |A| ≡ n

k mod 2.
Assume first that k is divisible by 4. Define N to be the set of all

√
γ′-deficient

vertices in Ek/2−1 or Ek/2+1, and build M of e0 (if needed), M1 ⊂ Ek/2−1, M2 ⊂
Ek/2−1, and M3 ⊂ Ek/2+1. Denoting x = |M2|, y = |M3|, and k = 2` = 4t, we thus
have a system of equations (`− 1)x + (` + 1)y = a and (` + 1)x + (`− 1)y = b with
the solution

x =
1
2

(
s +

b− a

2

)
= ts +

s− a

2
, y =

1
2

(
s +

a− b

2

)
=

s + a

2
− ts.

Note that removing an edge of E`−1 changes the parity of both, a and s, and hence
we do have the congruence a ≡ s mod 2. Consequently, x and y are integer, and
also nonnegative, because |a− b| is small.

If k ≡ 2 mod 4, we need to consider two further subcases: a ≥ b and a < b.
If a ≥ b, let N be the set of all

√
γ′-deficient vertices in Ek/2 or Ek/2+2. Build

M1 ⊆ Ek/2 as before and note that, again, a ≡ s mod 2. We find M2 ⊂ Ek/2+2 by
Fact 4.3 from [11] and then M3 ⊂ Ek/2 using Fact 11 with

x =
a + b

k
− y, y =

a− b

4
.

Since 4|(a − b) and a ≤ b(k + 4)/(k − 4), both x and y are nonnegative integers.
(We could not apply Fact 11 to obtain M2 because y is too small.)

Finally, if a < b, we replace Ek/2+2 with Ek/2−2 but otherwise proceed as before.
Now, x = (a+b)/k−y and y = (b−a)/4, both, again, nonnegative integers, because
b ≤ a(k + 4)/(k − 4).

Concluding remarks

Remark 2. We have not tried to optimize the value of ε for which Theorem 3
remains true. Certainly, it decreases with k, but even for k = 3 our analysis forces
ε to be quite small. Note that if for k = 3 we could push ε up to 1

6 , then we would
completely cover the gap and show that PM(k, 0, c) is in P for all c > 1/k.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

Computational Complexity of The Perfect Matching Problem in Hypergraphs 19

Remark 3. One can formulate a problem similar to PM(k, 0, c), but with δ(H)
replaced by other versions of minimum hypergraph degrees. For 1 ≤ l ≤ k − 1, let
δl(H) be the largest integer d such that every l-element subset of vertices is contained
in at least d edges of H. Recently, it was proved in [5] that if δ1(H) > (5

9 + ε)
(
n
2

)
,

then H contains a perfect matching. This was complemented in [14], where it was
shown that the problem of deciding if a k-graph H with δ1(H) ≥ c

(|V (H)|
2

)
contains

a perfect matching is NP-complete for c < 5
9 . So, unlike for PM(k, 0, c), there is no

hardness gap left here. Also, this could be related to the fact that there are 3-graphs
H with δ1(H) ∼ 5

9

(
n
2

)
with no r-deficient matching for any r = o(n).

Remark 4. There are similar results regarding the complexity of the problem
HAM(k, c) deciding the existence of a Hamilton cycle (as defined in, e.g., [10])
in a k-graph with δ(H) ≥ c|V (H)|. It was shown in [10] that for all k ≥ 3, c > 1

2 ,
and sufficiently large n, every k-graph H with |V (H)| = n and δ(H) ≥ cn contains
a Hamilton cycle. Hence, HAM(k, c) is trivial for all c > 1

2 . On the other hand,
for c < 1

k we were able to prove recently (cf. [8]) that HAM(k, c) is NP-complete.
Interestingly, it leaves a similar hardness gap (1

k , 1
2) as for the problem PM(k, 0, c).

Note that this gap collapses for graphs (k = 2), see [2].

References

[1] A. Asadpour, U. Feige and A. Saberi. Santa Claus Meets Hypergraph Matchings,
APPROX-RANDOM 2008 10–20.

[2] E. Dahlhaus, P. Hajnal, M. Karpiński, On the parallel complexity of Hamiltonian
cycle and matching problem on dense graphs, J. Algorithms 15(3) (1993) 367-384.

[3] J. Edmonds, Paths, trees and flowers, Canad J. Math. 17 (1965) 449-467.
[4] M.R. Garey, D.S. Johnson, Computers and intractability, Freeman, 1979
[5] H. Han, Y. Person, and M. Schacht, On perfect matchings in uniform hypergraphs

with large minimum vertex degree, SIAM Journal on Discrete Mathematics 23(2)
(2009) 732-748.

[6] P.E. Haxell. A Condition for Matchability in Hypergraphs, Graphs and Combinatorics
11 (1995) 245-248.

[7] M. Karpiński, A. Ruciński, and E. Szymańska, The Complexity of Perfect Matching
Problems on Dense Hypergraphs, ISAAC 2009 LNCS 5878 626–636.

[8] M. Karpiński, A. Ruciński, and E. Szymańska, Computational Complexity of the
Hamiltonian Cycle Problem in Dense Hypergraphs, LATIN 2010 662-673.

[9] M. Luby, A simple parallel algorithm for the maximal independent set problem, SIAM
J. Comput. 15(4) (1986) 1036-1053.

[10] V. Rödl, A. Ruciński and E. Szemerédi, An approximate Dirac-type theorem for
k-uniform hypergraphs, Combinatorica 28 (2) (2008) 229-260.

[11] V. Rödl, A. Ruciński, E. Szemerédi, Perfect matchings in large uniform hypergraphs
with large minimum collective degree, JCT A 116(3) (2009) 613-636.

[12] V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, A note on perfect matchings in
uniform hypergraphs with large minimum collective degree, Commen. Math. Univ.
Carol. 49(4) (2008) 633-636

[13] E. Szymańska, The Complexity of Almost Perfect Matchings in Uniform Hypergraphs
with High Codegree, IWOCA 2009 LNCS 5874 438–449.

July 29, 2010 9:55 WSPC/INSTRUCTION FILE hm-ijfcs˙final

20 M. Karpiński, A. Ruciński, E. Szymańska

[14] E. Szymańska, The Complexity of Almost Perfect Matchings and Other Packing
Problems in Uniform Hypergraphs with High Codegree, submitted

[15] G. Särkózy, A fast parallel algorithm for finding Hamiltonian cycles in dense graphs.
Discrete Mathematics 309 (2009) 1611–1622.

