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Abstract

By an r-tuplet in a permutation we mean a family of r pairwise disjoint
subsequences with the same relative order. The length of an r-tuplet is
defined as the length of any single subsequence in the family. Let tprqpnq
denote the largest k such that every permutation of length n contains an
r-tuplet of length k. We prove that tprqpnq “ O

´
n

r
2r´1

¯
and tprqpnq “

Ω
´
n

R
2R´1

¯
, where R “ `

2r´1
r

˘
. We conjecture that the upper bound brings

the correct order of magnitude of tprqpnq and support this conjecture by
proving that it holds for almost all permutations. Our work generalizes
previous studies of the case r “ 2.
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1 Introduction

By a permutation we mean any finite sequence of distinct integers. We say that
two permutations px1, . . . , xkq and py1, . . . , ykq are similar if their entries preserve
the same relative order, that is, xi ă xj if and only if yi ă yj for all pairs ti, ju
with 1 ď i ă j ď k. This is, clearly, an equivalence relation. Note that given a
permutation px1, . . . , xkq and a k-element set ty1, . . . , yku of positive integers, there
is only one permutation of this set similar to px1, . . . , xkq.

Let rns “ t1, 2, . . . , nu and π be a permutation of rns, called also an n-permutation,
and let r ě 2 be an integer. A family of r pairwise similar and disjoint sub-
permutations of π is called an r-tuplet and the length of an r-tuplet is defined as
the number of elements in just one of the sub-permutations. It is common to call
2-tuplets twins and 3-tuplets triplets.

Let tprqpπq denote the largest integer k such that π contains an r-tuplet of length
k. Further, let tprqpnq denote the minimum of tprqpπq over all permutations π of rns.
In other words, tprqpnq is the largest integer k such that every n-permutation contains
an r-tuplet of length k. Our aim is to estimate this function.

By the classical result of Erdős and Szekeres [7] concerning monotone subse-
quences, we get tprqpnq “ Ωp?

nq (all implicit constants throughout the paper are
allowed to depend on r). Indeed, in a monotone permutation any r disjoint sub-
sequences of the same length yield an r-tuplet. For r “ 2, using a probabilistic
argument, Gawron [9] proved that tp2qpnq “ Opn2{3q. He conjectured that this bound
is tight, namely, that we also have tp2qpnq “ Ωpn2{3q. A currently best result towards
this conjecture was obtained by Bukh and Rudenko [3] (see also [6]) who showed
that tp2qpnq “ Ωpn3{5q.

In the first part of this paper, we generalize both these bounds to arbitrary r ě 2,
adopting the ideas from [3, 6, 9].

Theorem 1.1. For every r ě 2, with R “ `
2r´1
r

˘
, we have

tprqpnq “ Ω
´
n

R
2R´1

¯
and tprqpnq “ O

´
n

r
2r´1

¯
.

Let Πn be a (uniformly) random permutation of rns and let tprqpΠnq be the cor-
responding random variable equal to the maximum length of an r-tuplet in Πn. We
say that a property of a random object holds asymptotically almost surely (a.a.s. for
short) if it holds with probability tending to one as the size of the object grows to
infinity. In [6] and [3] it was shown that a.a.s., tp2qpΠnq “ Θpn2{3q. Here we generalize
this result.

Theorem 1.2. For every r ě 2, a.a.s.,

tprqpΠnq “ Θ
´
n

r
2r´1

¯
.

In view of Theorem 1.2, for almost all permutations π the parameter tprqpπq reaches
the upper bound from Theorem 1.1.
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In the following two sections we give proofs of Theorems 1.1 and 1.2, while the
last section contains some related open problems.

2 Proof of Theorem 1.1

The upper bound in Theorem 1.1 follows from the upper bound in Theorem 1.2.
Therefore, here we focus exclusively on the proof of the lower bound.

2.1 Preparations

Beame and Huynh-Ngoc [2] proved that amongst any three permutations of rms there
are two with the same sub-permutation of length at least m1{3. This simple fact was
used in [3] to prove the lower bound in Theorem 1.1 for r “ 2. Here, we will need
the following extension proved by Bukh and Zhou [4] in the context of estimating
the length of r-tuplets in words over finite alphabets. Recall that R “ `

2r´1
r

˘
.

Lemma 2.1 (Theorem 24 in [4]). For every r ě 2, among any 2r ´ 1 permutations
of rms, there are r permutations with the same sub-permutation of length at least
m1{R.

The proof of Lemma 2.1 is quite elementary and uses the idea from the classical
proof of the Erdős-Szekeres Theorem. It boils down to assigning to each i P rms a
vector of length R, where the entries represent, for all r-tuples of permutations, the
lengths of the longest common sub-permutations that begin at i. Then it suffices to
show that this mapping is an injection.

The main technique behind the proof of the lower bound on tprqpnq is that of
concatenation of r-tuplets. Here we reveal sufficient conditions under which two r-
tuplets can be merged into one. Let pxpjq

1 , . . . , x
pjq
s q, j “ 1, . . . , r, and pypjq

1 , . . . , y
pjq
t q,

j “ 1, . . . , r, be two disjoint r-tuplets in a permutation π. Their full concatenation,
resulting in an r-tuplet of length s ` t, is possible if

• the rightmost element of the first r-tuplet is to the left of the leftmost element
of the second r-tuplet, and

• for each 1 ď i ď s and 1 ď i1 ď t,

either max
1ďjďr

y
pjq
i1 ă min

1ďjďr
x

pjq
i or min

1ďjďr
y

pjq
i1 ą max

1ďjďr
x

pjq
i .

Example 2.2. Let r “ 2, n “ 30, and

π “ p 26 , 16, 28, 29, 10 , 5, 24 , 27 , 1, 22, 11, 8 , 2, 23, 15,

19, 25 , 21, 20, 13 , 9, 30, 17 , 12 , 18 , 7, 3 , 14, 4 , 6q
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be a permutation of r30s. Here we marked by blue (single underline) and pink (single
overline) the first pair of twins of length 3 (similar to p2, 1, 3q), and by indigo (double
underline) and red (double overline) the second one (similar to p2, 3, 1q). Both above
conditions hold. Indeed, elements of the first twins are to the left of 13, the leftmost
element of the second twins. Moreover, all nine required inequalities hold, e.g., for i “
2, i1 “ 1, we have mint13, 12u “ 12 ą maxt10, 8u “ 10. Thus, their concatenation
forms a (bluish-reddish) pair of twins of length six, namely: p26, 10, 27, 13, 17, 3q and
p24, 8, 25, 12, 18, 4q, both similar to p5, 2, 6, 3, 4, 1q.

If we only knew the first twins and were after the second ones, we could, obviously,
help ourselves by searching only to the right of 25, and by eliminating from our search
all elements whose values are “squeezed” between the given twins, that is, lie between
min1ďjďr x

pjq
i and max1ďjďr x

pjq
i for any i. (In our example this step excludes only 9

(i “ 2), as 25 (i “ 1) and 26 (i “ 3) are already excluded.) But most importantly, the
second pair of twins should be “narrow” in a sense that would guarantee the second
bulleted condition above. (In our example, we chose consecutive values: 13, 12 and
17, 18 and 3, 4.)

To facilitate the idea mentioned in the above example, we introduce the notion
of narrow r-tuplets as follows. The width of a set of integers A is defined as maxA´
minA. For a positive integer w we call an r-tuplet pxp1q

1 , . . . , x
p1q
k q, . . . , pxprq

1 , . . . , x
prq
k q

w-narrow if for all i “ 1, . . . , k, the sets txpjq
i : 1 ď j ď ru have width at most w.

Throughout the paper we will sometimes use the notation ra, bs “ ta, . . . , bu,
where a ă b are integers.

2.2 Lower bound

The proof of the lower bound is similar to that for r “ 2 in [3, Proof of Theorem 1].
The main idea is to utilize Lemma 2.1 in a clever way.

Set
M “ npR´1q{p2R´1q and N “ n{M “ nR{p2R´1q.

Our goal is, for a given permutation π of rns, to gradually pick from it OpMq-narrow r-
tuplets of length ΩpN{Mq, and remove them together with all “in-between” elements
(plus some more), allowing concatenation of obtained pieces into one r-tuplet of
length ΩpNq. To achieve this goal, we need to iterate this procedure ΩpMq times,
meaning that the number of elements discarded each time should not exceed OpNq.
Now come the details.

Let A Ă ` rns
p2r´1qN

˘
, A “ ta1 ă a2 ¨ ¨ ¨ ă ap2r´1qN u, and let π be a permutation of

A. For any a P A we denote by π´1paq the position of a in π. E.g., if A “ t1, 3, 4, 6u
and π “ p3, 1, 6, 4q, we have π´1p1q “ 2, π´1p3q “ 1, π´1p4q “ 4 and π´1p6q “ 3.

We split the set A into N blocks of 2r ´ 1 consecutive elements:

A “ A0 Y ¨ ¨ ¨ YAN´1, where Ai “ taip2r´1q`1, . . . , api`1qp2r´1qu, i “ 0, . . . , N ´ 1.
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A crucial observation is that if, for some 2 ď k ď N and 1 ď j1 ă j2 ď 2r ´ 1, there
exists a sequence of distinct indices pi1, . . . , ikq P t0, . . . , N ´ 1uk such that

π´1pai1p2r´1q`j1q ă ¨ ¨ ¨ ă π´1paikp2r´1q`j1q
and

π´1pai1p2r´1q`j2q ă ¨ ¨ ¨ ă π´1paikp2r´1q`j2q,
then sub-permutations pai1p2r´1q`j1 , . . . , aikp2r´1q`j1q and pai1p2r´1q`j2 , . . . , aikp2r´1q`j2q
of π form twins of length k. By the same token, if all the above is true for r indices
1 ď j1 ă j2 ă ¨ ¨ ¨ ă jr ď 2r ´ 1, then we obtain an r-tuplet of length k in π.

Example 2.3. Let A “ r30s, r “ 3, N “ 6, and, the same as before,

π “ p26, 16, 28, 29, 10, 5, 24, 27, 1, 22, 11, 8, 2, 23, 15,
19, 25, 21, 20, 13, 9, 30, 17, 12, 18, 7, 3, 14, 4, 6q.

Here A0 “ r1, 5s, A1 “ r6, 10s, A2 “ r11, 15s, A3 “ r16, 20s, A4 “ r21, 25s and
A5 “ r26, 30s. By inspection, one can see that for k “ 3, i1 “ 5, i2 “ 3, i3 “ 0, and
j1 “ 1, j2 “ 3, j3 “ 4, the above conditions are satisfied. Indeed, the first element
of A5 (26 in π) is to the left of the first element of A3 (16) which, in turn, is to the
left of the first element of A0 (1), and similar order holds for the third elements of
A5, A3, A0 (28, 18, 3), as well as, for the fourth elements (29, 19, 4). This reveals
a triplet similar to p3, 2, 1q and indicated by colors blue (underline), pink (overline),
and red (asterisk) below:

π “ p 26 , 16 , 28 , 29* , 10, 5, 24, 27, 1 , 22, 11, 8, 2, 23, 15,

19* , 25, 21, 20, 13, 9, 30, 17, 12, 18 , 7, 3 , 14, 4* , 6q.

An equivalent but somewhat easier way to see what is going on here is to define
five disjoint sub-permutations πpjq of length 6, by including in πpjq all elements of
π of the form aip2r´1q`j (in the order they appear in π): πp1q “ p26, 16, 1, 11, 21, 6q,
πp2q “ p27, 22, 2, 17, 12, 7q, . . . , etc. Next replace them by similar permutations of
t0, 1, 2, 3, 4, 5u: p5, 3, 0, 2, 4, 1q, p5, 4, 0, 3, 2, 1q, . . . , etc. Now, what we are after, are
long common sub-permutations in at least three of these permutations. We found
p5, 3, 0q as common in the 1st, 3rd, and 4th permutation, but one could have also
picked p5, 3, 1q in the 1st, 2nd, and 4th (and there is at least one more alternative).
By inspection, one may realize, however, that there are no longer common sub-
permutations in at least three of these five permutations.

In the above example, we dealt with consecutive integers in A, so the width of
each subset Ai was the same (and equal to 4), but in general this may not be the case.
To make sure that the r-tuplets generated by the above approach are OpMq-narrow,
we focus only on the subsets Ai of width at most, say, 2M . Clearly, as A Ă rns, at
least N{2 of these sets have, indeed, the width at most 2n{N “ 2M . Let

I “ t0 ď i ď N ´ 1 : Ai has width at most 2Mu.
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So, |I| ě N{2. Next, define 2r´1 disjoint sub-permutations πpjq of π, j “ 1, . . . , 2r´1,
of length |I|, by including in πpjq all elements of π of the form aip2r´1q`j , where i P I
(in the order they appear in π). To place them on a common ground, we replace each
element aip2r´1q`j by i, obtaining a set of new permutations π̄pjq, j “ 1, . . . , 2r ´ 1,
of the same set I.

We apply Lemma 2.1 to permutations π̄pjq, j “ 1, . . . , 2r ´ 1, and, as a result,
find r of them with a common sub-permutation of length at least

|I|1{R ě pN{2q1{R “ 2´1{Rn1{p2R´1q ě 2´1{3 N
M

,

where the latter inequality follows from R “ `
2r´1
r

˘ ě `
3
2

˘ “ 3. Let π̄pj1q, . . . , π̄pjrq,
where 1 ď j1 ă ¨ ¨ ¨ ă jr ď 2r ´ 1, be these r permutations and let I0 Ă I Ă
t0, . . . , N ´ 1u be the set of the elements of a common sub-permutation in π̄pj1q, . . . ,
π̄pjrq of length k “ |I0| “ r2´1{3 N

M
s. Upon returning to permutations πpj1q, . . . , πpjrq,

it can be seen, guided by the above example, that I0 generates in their union, and
thus in π, a 2M-narrow r-tuplet of length k.

It remains to incorporate the above procedure into an iteration loop and make
sure that the obtained r-tuplets can be concatenated into a long one. Let π be a
permutation of rns. In the first step of the procedure, take A1 to be the set of the
first p2r´1qN elements of π and let π1 be the sub-permutation of π consisting of the
first |A1| elements. By the above described argument we find a 2M-narrow r-tuplet
pxpjq

1 , . . . , x
pjq
k q, j “ 1, . . . , r of length k in π1. We then remove from rns the set

A1 Y
kď

i“1

r min
1ďjďr

x
pjq
i , min

1ďjďr
x

pjq
i ` 2M ´ 1s.

Note that this set has size at most p2r ´ 1qN ` kp2Mq ď p2r ` 1qN .
Now, we consider the truncation of π to the remaining elements and the set A2 of

its leftmost p2r´1qN elements. Repeating the above procedure mutatis mutandis, we
obtain another 2M-narrow r-tuplet pyp1q

1 , . . . , y
prq
k q, which, owing to the truncation,

satisfies the conditions for proper concatenation with pxpjq
1 , . . . , x

pjq
k q, j “ 1, . . . , r,

spelled out in Subsection 2.1. This procedure can be continued as long as there are
at least p2r ´ 1qN elements left. Thus, it can be repeated at least n

p2r`1qN “ M
2r`1

times, yielding at the conclusion an r-tuplet in π of length a least
M

2r ` 1
ˆ k ě M

2r ` 1
ˆ 2´1{3 N

M
ě N

3r ` 1
.

(For r ě 3, the last bound can be improved to N
3r

.)

3 Proof of Theorem 1.2

3.1 Upper bound

For the upper bound we use the first moment method. Let Π “ Πn be a random
permutation chosen uniformly from the set of all n! permutations of rns. Let k be
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a fixed positive integer and let Xk be a random variable counting all r-tuplets of
length k in Π. Furthermore, for a family of r pairwise disjoint subsets A1, . . . , Ar

of rns, each of length k, let XA1,...,Ar be an indicator random variable equal to 1
if there is an r-tuplet in Π on positions determined by the subsets A1, . . . , Ar. So,
Xk “ ř

A1,...,Ar
XA1,...,Ar and by the linearity of expectation

EXk “
ÿ

A1,...,Ar

EXA1,...,Ar “
ÿ

A1,...,Ar

PpXA1,...,Ar “ 1q.

Since

PpXA1,...,Ar “ 1q “
`
n
k

˘`
n´k
k

˘ ¨ ¨ ¨ `
n´pr´2qk

k

˘ ¨ pn ´ pr ´ 1qkq! ¨ 1
n!

“ 1

k!r´1

and the number of unordered r-tuples tA1, . . . , Aru in rns isˆ
n

rk

˙prkq!
k!rr!

“ n!

k!rr!pn ´ rkq! ,

it follows that

EXk “ n!

k!rr!pn ´ rkq! ˆ 1

k!r´1
“ npn ´ 1q . . . pn ´ rk ` 1q

r!pk!q2r´1
.

Using the inequality k! ą kk

ek
we obtain

EXk ă nrkep2r´1qk

r!kp2r´1qk ă
ˆ
nre2r´1

k2r´1

˙k

.

It follows that for k ě 2enr{p2r´1q,

PpXk ě 1q ď EXk ă 2´p2r´1qk Ñ 0

as n Ñ 8. This completes the proof of the upper bound.

3.2 Lower bound

The proof of the lower bound presented here is similar to that in [6] (see also [3] for
its continuous version). Set

a “ r!1{p2r´1qnpr´1q{p2r´1q, (3.1)

assume for convenience that a is an integer and divides n, and partition rns into n{a
consecutive blocks of equal size, that is, set

rns “ A1 Y ¨ ¨ ¨ Y An{a,

where A1 “ t1, . . . , au, A2 “ ta ` 1, . . . , 2au, etc.
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For fixed 1 ď i, j ď n{a, let X “ Xij be the number of elements from the
set Aj which Π puts on the positions belonging to the set Ai. We construct an
auxiliary n{a ˆ n{a bipartite graph B with vertex classes U “ t1, . . . , n{au and
V “ t1, . . . , n{au, where ij P B if, and only if, Xij ě r.

Let M “ ti1j1, . . . , imjmu, i1 ă ¨ ¨ ¨ ă im, be a matching in B of size |M | “
m. For every ij P M , let s

piq
1 , s

piq
2 , . . . , s

piq
r be some r elements of Ai such that

Πpspiq
1 q, . . . ,Πpspiq

r q P Aj. Then, sub-permutations

pΠpspi1q
1 q, . . . ,Πpspimq

1 qq, pΠpspi1q
2 q, . . . ,Πpspimq

2 qq, . . . , pΠpspi1q
r q, . . . ,Πpspimq

r qq
form an r-tuplet. Indeed, if, say, Πpspi1q

1 q ă Πpspi2q
1 q, then j1 ă j2, and so, Πpspi1q

t q ă
Πpspi2q

t q for each t “ 2, . . . , r, as Πpspi1q
t q P Aj1, while Πpspi2q

t q P Aj2 .
Hence, it remains to show that a.a.s. there is a matching in B of size Ω

`
nr{p2r´1q˘.

To this end, we are going to use the obvious fact, coming from the greedy algorithm,
that in every graph G there is a matching of size at least |EpGq|{p2ΔpGqq, where
ΔpGq is the maximum vertex degree in G.

In fact, we apply this bound to a suitably chosen subgraph B1 of B. Let νpBq be
the size of a largest matching in B. Note that ΔpBq ď Δ0 :“ ta{ru. Further, let Zk

be the number of vertices of degree k in B, k “ 0, . . . ,Δ0. Then, for the subgraph
B1 of B obtained by deleting all vertices of degree at least 7, we get

|EpB1q| ě |EpBq| ´
Δ0ÿ
k“7

kZk

and

νpBq ě νpB1q ě |EpB1q|
2ΔpB1q ě |EpBq| ´ řΔ0

k“7 kZk

12
. (3.2)

Further, for each i P U Y V , let

Yi “
n{aÿ
j“1

IpXij ě rq

be the degree of vertex i in B. Then,

|EpBq| “ 1

2

ÿ
iPU

EYi

and
Zk “

ÿ
iPUYV

IpYi “ kq,

and so
Er|EpBq|s “ n

a
EY1

and
EZk “ 2n

a
PpY1 “ kq.
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Taking the expectation on the outer sides of (3.2), we arrive at

ErνpBqs ě n

12a

˜
EY1 ´ 2

Δ0ÿ
k“7

kPpY1 “ kq
¸

(3.3)

and it remains to estimate EY1 and PpY1 “ kq.
We have

EY1 “
n{aÿ
j“1

PpX1j ě rq ě n

a
PpX11 “ rq

“ n

a
¨

`
n´a
a´r

˘`
a
r

˘2
r!pa ´ rq!pn ´ aq!

n!

„ a2r´1

r!nr´1
ě 1

2
,

for sufficiently large n, as a2 “ opnq and, by (3.1), a2r´1

nr´1 “ r!.
Now we estimate PpY1 “ kq for k P t7, . . . ,Δ0u. Observe that, by using inequali-

ties
`
m
p

˘ ď mp

p!
and n

n´rk
ď exptrk{pn ´ rkqu,

PpY1 “ kq ď
ˆ

n
a

k

˙ˆ
a

r

˙kˆ
a

rk

˙prkq!pn ´ rkq!
n!

ď a2rk´keprkq2{pn´rkq

r!knrk´kk!
.

Consequently, since prkq2 ď a2 “ opnq, k ´ 1 ě 6, pk ´ 1q! ą `
k´1
3

˘k´1, and by (3.1),

kPpY1 “ kq ď a2rk´kp1 ` op1qq
r!knrk´kpk ´ 1q! ď 2a2rk´k

r!knrk´kppk ´ 1q{3qk

ď 2a2r´1

r!nr´1

ˆ
3a2r´1

r!pk ´ 1qnr´1

˙k´1

ď 4 ¨ 2´k.

Thus,
Δ0ÿ
k“7

kPpY1 “ kq ď 4
8ÿ
k“7

2´k “ 1

16
.

Returning to (3.3), we conclude that

ErνpBqs ě n

12a

ˆ
1

2
´ 2 ¨ 1

16

˙
“ 1

32
¨ n
a

“ Θ
`
nr{p2r´1q˘ .

Since tprqpΠnq ě νpBq, to complete the proof of Theorem 1.2 it remains to show that
the random variable hpΠq “ νpBq is highly concentrated about its mean. To this
end, we are going to use the Azuma-Hoeffding inequality for random permutations
(see, e.g., Lemma 11 in [8] or Section 3.2 in [11]):

Theorem 3.1. Let hpπq be a function of n-permutations such that, for some constant
c ą 0, if permutation π2 is obtained from permutation π1 by swapping two elements,
then |hpπ1q ´ hpπ2q| ď c. Then, for every η ą 0,

Pp|hpΠnq ´ ErhpΠnqs| ě ηq ď 2 expp´η2{p2c2nqq.
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To apply it to hpΠq “ νpBq, first note that if π2 is obtained from a permutation
π1 by swapping some two of its elements, then at most two edges of B can be
destroyed, and at most two edges can be created, so |hpπ1q´hpπ2q| ď 2. Consequently,
Theorem 3.1 applied with c “ 2 and η “ n2r{p4r´1q implies that

P
`|hpΠnq ´ ErhpΠnqs| ě n2r{p4r´1q˘ “ op1q.

As, crucially, n2r{p4r´1q “ opnr{p2r´1qq, this completes the proof of the lower bound in
Theorem 1.2.

4 Concluding Remarks

We conclude the paper with two conjectures and two comments related to the con-
tents of this paper. The first one is a natural generalization of Gawron’s conjecture
[9] concerning the asymptotic order of the function tp2qpnq.
Conjecture 4.1. For every r ě 2, we have tprqpnq “ Θpnr{p2r´1qq.

This means that we believe that every permutation contains an r-tuplet of length
Ωpnr{p2r´1qq. While this statement is wide open for every r ě 2, notice that, as r
tends to 8, the difference of the exponents in the upper and lower bounds in Theorem
1.1 tends to 0 (since both converge to 1{2).

Throughout the paper we have kept r fixed, that is, independent of n. However,
in the next conjecture we allow r “ rpnq. We call an r-tuplet of length r an r-square.
The question is how large a square is contained in every permutation. Let spπq denote
the largest integer r such that π contains an r-square and let spnq be the minimum
of spπq over all n-permutations.

Conjecture 4.2. We have n ´ pspnqq2 “ opnq.
In other words, we believe that every permutation is almost entirely filled by a

square. Notice that a repeated application of the Erdős-Szekeres Theorem ([7]) im-
plies that every n-permutation contains an Ωp?

nq-square. Clearly, the components
of this square are monotone. It is, therefore, natural to expect even larger squares
with components of an arbitrary pattern.

Next, let us mention r-tuplets with forbidden patterns. For a given permutation
τ we say that a permutation π is τ -free if no subsequence of π is similar to τ . For
r ě 2, let tprqpn, τq denote the longest length of a τ -free r-tuplet guaranteed in every
n-permutation. In [6] we showed that tp2qpn, τq “ Θp?

nq for any non-monotone
pattern τ . It turns out that, somewhat surprisingly, the same threshold remains
valid for any r ě 2 (with only the constant hidden in Θ possibly depending on r).
We omit the details.

Finally, it should be remarked that there has been an extensive research on twins
in other discrete structures, like graphs and words over finite alphabets (see [6]



A. DUDEK ET AL. /AUSTRALAS. J. COMBIN. 87 (3) (2023), 440–451 450

for more details and references). Here we would like to point to one of the most
interesting results in this area. In 2012, Axenovich, Person, and Puzynina proved in
[1] that every binary sequence of length n contains r disjoint identical subsequences,
each of length n{r ´ opnq. Equally interesting is their method of proof: they proved
and then utilized a special version of the regularity lemma for words, an analog of
the celebrated Szemerédi’s Regularity Lemma for graphs.

In the context of the results presented in this paper we wonder if a similar tool
would help to improve bounds on tprqpnq and ultimately prove Conjecture 4.1. We
are only aware of a regularity lemma for permutations developed by Cooper in [5]
(see also [10]), but it seems unsuitable for tackling the problem of twins.
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