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1. Introduction

For k ≥ 2, a k-uniform hypergraph (or briefly, a k-graph) is an ordered pair H = (V , E), where
V = V (H) is a finite set and E = E(H) is a subset of the set

(V
k

)
of all k-element subsets of V . If

E =
(V
k

)
, we call H complete and denote it by K (k)

n , where n = |V |. The elements of V and E are
called, respectively, the vertices and edges of H . We often identify H with E(H), writing, for instance,
|H| instead of |E(H)|. The degree of a vertex v in H , degH (v), equals the number of edges of H which
contain v. A star is a k-graph S with a vertex v contained in all the edges of S. A star is full if it consists
of all sets in

(V
k

)
containing v, that is, if degS(v) =

(n−1
k−1

)
.

For positive integers k and ℓ, a k-uniform hypergraph is called a loose path of length ℓ, and denoted
further by P (k)

ℓ , if its vertex set is {v1, v2, . . . , vℓ(k−1)+1} and the edge set is

{ei = {v(i−1)(k−1)+q : 1 ≤ q ≤ k}, i = 1, . . . , ℓ},

that is, each pair of consecutive edges intersects on a single vertex, while all other pairs of edges
are disjoint. Let H be a k-uniform hypergraph and r ≥ 2 be an integer. The multicolor Ramsey
number R(H; r) is the minimum integer n such that every r-edge-coloring of the edges of K (k)

n yields a
monochromatic copy of H .

In this paper, we study the multicolor Ramsey number R(P (k)
3 ; r) for P (k)

3 and r colors. In the graph
case, i.e. when k = 2, we have R(P (2)

3 ; r) = 2r + cr , where cr ∈ {0, 1, 2} and depends on the
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divisibility of r by three (see [16] for credits to various authors). For hypergraphs (k ≥ 3), even the
case of the shorter path P (k)

2 is nontrivial and it was only shown in [2] that R(P (3)
2 ; r) ∼

√
6r (an exact

value was determined for an infinite sequence of integers r). In the same paper, it was shown that
R(L(3)2 ; r) = r+cr , where L(k)2 is a pair of k-uniform edges sharing exactly two vertices and cr ∈ {1, 2, 3}
depending on the divisibility of r by six. For the k-graphM (k)

2 consisting of a pair of disjoint edges, there
is the celebrated result of Lovász in [9] yielding that R(M (k)

2 ; r) = r + 2k − 1 which was generalized
in [1] to R(M (k)

ℓ ; r) = (r − 1)(ℓ − 1) + ℓk, where M (k)
ℓ is a k-uniform matching with ℓ edges.

For other (than matchings) hypergraphs with more than two edges, the only known results for an
arbitrary number of colors appear in [6] and [2]. From our perspective, the most interesting among
them deals with the tight path of length three, {abc, bcd, cde}, for which the Ramsey number is shown
in [2] to be asymptotic to 2r .

We now return to the loose path of length three which, recall, has 3k − 2 vertices. Coloring the
k-element subsets of {1, . . . , r + 3k− 4} by their smallest element i if i < r , and otherwise by color r
(e.g., see [7], Proposition 3.1) shows that

R(P (k)
3 ; r) ≥ r + 3k − 3. (1)

It is conjectured that for each k ≥ 3 and all r there is equality in (1). So far, it has been verified only
for k = 3 and r = 2, 3, . . . , 10 [5,7,8,15,14]. In fact, for k = 3 and r = 2 the Ramsey number has been
determined for paths of all lengths (see [12] and [13]).

A general upper bound on R(P (k)
3 ; r), k ≥ 3, follows by a standard application of Turán numbers.

Indeed, it was proved by Füredi, Jiang, and Seiver [4] that for n ≥ n0(k) the unique largest P (k)
3 -free

k-graph on n vertices is the full star (see Lemma 3). From this, it follows that for r large enough

R(P (k)
3 ; r) ≤ kr, (2)

valid for all k ≥ 3 and r ≥ r0(k) (see [7], Proposition 3.2). For k = 3, it was improved by Łuczak and
Polcyn first to R(P (3)

; r) ≤ 2r + O(
√
r) [11] and, recently, to R(P (3)

; r) ≤ 1.98r + 7
√
r [10]. The main

goal of this paper is to show that for r large enough R(P (k)
3 ; r)/r is bounded from above by a constant

which does not depend on k.

Theorem 1. For each k ≥ 3 there exists rk such that for all r ≥ rk

R(P (k)
3 ; r) ≤ 250r.

In view of inequality (1), rk is at least linear in k, but we have not put any effort into optimizing it.
Likewise, constant 250 is probably very far from the optimal value.

2. Proof of Theorem 1

In view of (2), we may assume rk ≥ r0(k) and restrict ourselves to k ≥ 250. Our proof uses two
results on Turán numbers for loose k-paths of length two and three. The first of them was proved by
Frankl in [3].

Lemma 2. Let k ≥ 4 and H be a k-uniform hypergraph on n vertices in which no two edges intersect on
a single vertex. Then, for large n, |H| ≤

( n−2
k−2

)
.

The second result, due to Füredi, Jiang, and Seiver [4], deals with the main object of our study, P (k)
3 ,

the loose k-uniform path of length three.

Lemma 3. Let k ≥ 3 and H be a P (k)
3 -free k-uniform hypergraph on n vertices. Then, for large n,

|H| ≤
(n−1
k−1

)
. Moreover, the unique k-graph H which achieves this bound is the full star S.

Theorem 1 is a direct consequence of the following ‘stability’ version of Lemma 3 which states,
roughly, that the structure of each P (k)

3 -free dense k-graph is dominated by a giant star.
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Lemma 4. For every k ≥ 250 and n ≥ n0(k), each P (k)
3 -free k-uniform hypergraph H, has a vertex v with

degree

degH (v) ≥ |H| − 0.96k
(
n − 1
k − 1

)
.

We defer the proof of Lemma 4 to the next section. Here we show how Theorem 1 follows from it.

Proof of Theorem 1. For a given k ≥ 250 and A = 250, let r ≥ rk, where rk ≥ r0(k) is chosen so that
also 250rk ≥ n0(k) with n0(k) defined in Lemma 4. Suppose that the complete k-graph K := K (k)

Ar on
Ar vertices is colored with colors 1, 2, . . . , r in such a way that no monochromatic P (k)

3 emerges. For
every color c choose (possibly with repetitions) a vertex vc with maximum degree in this color and
let R = {vc : c = 1, 2, . . . , r}.

Consider now the complete k-graph H obtained from K by removing all vertices in R. We have
|V (H)| ≥ Ar −|R| ≥ (A−1)r and thus |H| ≥

((A−1)r
k

)
. On the other hand, by applying Lemma 4 to each

color class, we have |H| ≤ r(0.96)k
(Ar−1
k−1

)
. However, since k ≥ A = 250, we have

r(0.96)k
(
Ar − 1
k − 1

)
<

(
(A − 1)r

k

)
, (3)

a contradiction. To see (3), observe first that the two sides of (3) are asymptotic (as r is growing)
to, respectively, 0.96kAk−1rk/(k − 1)! and (A − 1)krk/k!. Thus it remains to show that (A − 1)k >
k(0.96)kAk−1, or, equivalently, (A − 1)(1 − 1/A)k−1 > k(0.96)k. Now it is enough to observe that
1 − 1/A ≥ 0.99 for A ≥ 250 and k < (99/96)k for k ≥ 167. □

3. Proof of Lemma 4

Let us start with the following two elementary observations.

Fact 5. Every hypergraph H contains a sub-hypergraph G with minimum degree greater than |E(H)|
|V (H)| .

Proof. DefineG as a subhypergraph ofH whichmaximizes the ratio |E(G)|
|V (G)| and has the smallest number

of vertices. If for some v ∈ V (G), degG(v) ≤
|E(H)|
|V (H)| , then

|E(G − v)|
|V (G − v)|

≥
|E(G)| − |E(H)|/|V (H)|

|V (G)| − 1
≥

|E(G)|
|V (G)|

,

which contradicts our choice of G. □

Fact 6. Every bipartite graph B with vertex classes V1 and V2 contains a subgraph G with degG(v) ≥

|B|/(2|Vi|) for every vertex v ∈ V (G) ∩ Vi, i = 1, 2.

Proof. Let us remove one by one the vertices with (current) degree smaller than the above bounds.
Then, by the time the degrees of all remaining vertices satisfy the required bounds, we remove fewer
than

|V1| × |B|/(2|V1|) + |V2| × |B|/(2|V2|) = |B|

edges, and so the final subgraph G is non-empty. □

Lemma 4 is a straightforward consequence of the following two propositions.

Proposition 7. For all k ≥ 3, b > 0, and sufficiently large n, the following holds. Let H be a P (k)
3 -free,

n-vertex, k-uniform hypergraph and let, for some v ∈ V (H), degH (v) ≥ b
(n−1
k−1

)
. Then,

degH (v) ≥ |H| −

(
1 −

(
b

k − 1

)1/(k−2)
)k−1(

n − 1
k − 1

)
.
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Proof. LetH(v) be the link of v inH , that is, the (k−1)-uniform, (n−1)-vertex hypergraph consisting of
all (k−1)-element subsets of V (H) which togetherwith v form edges inH . Note that |H(v)| = degH (v).
Fact 5 implies that there is a subgraph F of H(v) with minimum degree

δ(F ) ≥ δ :=
b

k − 1

(
n − 2
k − 2

)
.

Claim 8. The number of vertices |V (F )| of F is bounded from below by

|V (F )| ≥

(
b

k − 1

)1/(k−2)

(n − 1).

Proof. Since(
|V (F )|
k − 1

)
≥ |F | ≥ |V (F )|

b
(k − 1)2

(
n − 2
k − 2

)
,

it follows that(
|V (F )| − 1

k − 2

)
≥

b
k − 1

(
n − 2
k − 2

)
,

so, using the shorthand notation (x)t = x(x − 1) · · · (x − t + 1),

1 ≥
b

k − 1
(n − 2)k−2

(|V (F )| − 1)k−2
>

b
k − 1

(
n − 1
|V (F )|

)k−2

,

which implies the required bound for |V (F )|. □

Claim 9. Let n be sufficiently large. For every edge e ∈ H, either v ∈ e or e ∩ V (F ) = ∅.

Proof. Suppose there exists an edge e ∈ H such that v ̸∈ e and e ∩ V (F ) ̸= ∅. Let w ∈ e ∩ V (F ).
Since degF (w) ≥ δ = Ω(nk−2) while the number of edges of F intersecting e on at least two vertices
is O(nk−3), there is an edge f ′

∈ F such that e ∩ f ′
= {w}. Further, since degH (v) ≥ b

(n−1
k−1

)
while the

number of edges of H containing v and intersecting e ∪ f ′ is O(nk−2), there is an edge h ∈ H such that
v ∈ h and h ∩ (e ∪ f ′) = ∅. The edges e, f ′

∪ {v}, and h form a copy of P (k)
3 in H , a contradiction. □

In view of Claim 9, to complete the proof of Proposition 7, we bound from above the number
of edges of H which do not contain v by |H − (V (F ) ∪ {v})|, where H − (V (F ) ∪ {v}) is the
induced subhypergraph of H obtained by deleting vertex v and all vertices of F . Since H , and thus
H − (V (F ) ∪ {v}), is P (k)

3 -free, we can bound |H − (V (F ) ∪ {v})| by the Turán number for P (k)
3 given in

Lemma 3. Using the bound for |V (F )| given by Claim 8, we thus get

|H − (V (F ) ∪ {v})| ≤

(
n − |V (F )| − 2

k − 1

)
≤

(
n − (n − 1)(b/(k − 1))1/(k−2)

− 2
k − 1

)
<

(
(n − 1)(1 − (b/(k − 1))1/(k−2))

k − 1

)
≤

(
1 −

(
b

k − 1

)1/(k−2)
)k−1(

n − 1
k − 1

)
.

As |H| = degH (v) + |H − (V (F ) ∪ {v})|, this completes the proof of Proposition 7. □

Proposition 10. For all k ≥ 250 and sufficiently large n the following holds. If H is a P (k)
3 -free k-graph on

n vertices and |H| ≥ 0.96k
(n−1
k−1

)
, then ∆(H) ≥ 0.9k

(n−1
k−1

)
.
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Proof. Let H be a P (k)
3 -free k-graph on n vertices and with |H| ≥ 0.96k

(n−1
k−1

)
. By F we denote the

shadow of H , i.e.

F = {f ∈ [n]k−1
: f ⊂ e for some e ∈ H} .

Let us now suppose that ∆(H) < 0.9k
(n−1
k−1

)
. We shall show that this assumption leads to a

contradiction.
The main idea of the argument goes roughly as follows. First, we deal with the case when F is

small (Claim 11). Then there are many vertices v with large links. Consequently, it is enough to find
in F a loose (k − 1)-path of length two, say f1, f2 (and for that, due to Lemma 2 we only require that
|F | = Ω(nk−3)) and find another f3 in F so that (f1 ∪ f2) ∩ f3 = ∅. Then, for some v1, v2 ∈ V (H), the
edges {v1} ∪ f1, {v2} ∪ f2, and {v2} ∪ f3 form a P (k)

3 in H .
In the case when F is large we select three large, disjoint subsets of vertices, W1, W2 and W3, and

three large, disjoint subsets of F , S1, S2, and S3, such that for each i = 1, 2, 3, and every f ∈ Si, there
is a vertex v ∈ Wi with f ∪ {v} ∈ H and, moreover, f ∩ (W1 ∪ W2 ∪ W3) = ∅. The sets Si are so large
that we are able to find a copy of P (k−1)

3 consisting of some sets fi ∈ Si, i = 1, 2, 3. This path, in turn,
can be easily extended to a copy of P (k)

3 by enlarging each fi to fi ∪ {vi} ∈ H , where vi ∈ Wi.
In order to make the above outline precise, let us start with the following observation.

Claim 11. |F | ≥
1
4 |H|.

Proof. Let us consider an auxiliary bipartite graph B, with vertex classes V (H) and F , andwith edge set

{{v, f } : {v} ∪ f ∈ H} .

Clearly, |B| = k|H|. Further, define

F ′
= {f ∈ F : |{e ∈ H : f ⊂ e}| ≥ 2k}

and observe that |F ′
| ≤

(n−1
k−2

)
. Indeed, otherwise, by the Turán number for P (k−1)

3 , F ′ would contain a
copy of P (k−1)

3 which could be easily extended to a copy of P (k)
3 in H .

Let B′ be the subgraph of B consisting of all edges with one endpoint in F ′. We have

|B| =

∑
f

degB(f ) ≤ |B′
| + (|F | − |F ′

|)2k,

so

|F | ≥ |F | − |F ′
| ≥

1
2k

(|B| − |B′
|).

Thus, recalling that |B| = k|H|, to complete the proof of Claim 11, it suffices to show that

|B′
| ≤ |B|/2. (4)

Suppose that |B′
| ≥ |B|/2. Then,

|B′
| ≥

k
2
|H| ≥

k
2
(0.96)k

(
n − 1
k − 1

)
.

We apply Fact 6 to B′, obtaining a subgraph B′′ with vertex sets V1 ⊂ V (H) and F ′′
⊂ F ′ such that, for

n ≥ k(k − 1), each vertex v ∈ V1 has in B′′ degree at least

k(0.96)k
(n−1
k−1

)
4n

≥
1
4
(0.96)k

(
n − 1
k − 2

)
and each f ∈ F ′′ has in B′′ degree at least

k(0.96)k
(n−1
k−1

)
4
(n−1
k−2

) ≥
1
4
(0.96)kn.
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Since, for large n, |F ′′
| ≥

1
4 (0.96)

k
(n−1
k−2

)
>
( n−2
k−3

)
, by Lemma 2, F ′′ contains two (k−1)-sets f1, f2 such

that |f1∩f2| = 1. LetNi be the neighborhood of fi in B′′, i = 1, 2. If therewas an edge (v, f ) ∈ B′′ with v ∈

N1∪N2 (say, v ∈ N2) and (f1∪f2)∩f = ∅, then the k-sets {v1}∪f1, {v}∪f2, and {v}∪f , where v1 ∈ N1, v1 ̸=

v, would form a copy of P (k)
3 inH , a contradiction. Thus, in B′′, all neighbors f of vertices inN1∪N2 must

intersect f1∪f2. Since |N1∪N2| ≥ |N1| ≥
1
4 (0.96)

kn, the number of edges of B′′ leavingN1∪N2 is at least

1
4
(0.96)kn ×

1
4
0.96k

(
n − 1
k − 2

)
=

1
16

(0.96)2kn
(
n − 1
k − 2

)
.

Each of these edges of B′′ represents an edge of H which intersects f1 ∪ f2, a set of size smaller than 2k.
Hence, by averaging, there exists a vertex in f1 ∪ f2 belonging to at least

1
32k

(0.96)2kn
(
n − 1
k − 2

)
> 0.9k

(
n − 1
k − 1

)
of these edges (note that the last inequality is valid for k ≥ 250). This contradicts our assumption on
∆(H) and, therefore, completes the proof of Claim 11. □

To continue with the proof of Proposition 10, for every f ∈ F we choose just one vertex vf such
that {vf } ∪ f ∈ H . Observe that by our assumption on ∆(H), for each v ∈ V (H),

|{f ∈ F : v = vf }| < 0.9k
(
n − 1
k − 1

)
. (5)

Further, we split the vertex set V (H) randomly into two parts, U1 and U2, where each vertex belongs
to U1 independently with probability 1/k. We call a set f ∈ F proper if vf ∈ U1 and f ⊆ U2.

Let X count the number of proper sets. Since

P(f is proper) =
1
k

·

(
k − 1
k

)k−1

≥
1
k

·
1
e

>
1
3k

,

by Claim 11,

EX =

∑
f∈F

P(f is proper) = |F | · P(f is proper) ≥
0.96k

12k

(
n − 1
k − 1

)
.

Thus, there exists a partition (U1,U2) such that the number of proper sets f is at least 0.96k
12k

(n−1
k−1

)
. For

each v ∈ U1, set

Fv = {f ∈ F : v = vf and f ⊂ U2} and φv =
|Fv|(n−1
k−1

) .
By the above lower bound on the number of proper sets f , we have

∑
v∈U1

φv > 0.96k/(12k) and,
by (5), for each v, we have also φv < 0.9k. We partition the set {v ∈ U1 : Fv ̸= ∅} into three subsets
W1,W2,W3 so that the sums Si :=

∑
v∈Wi

φv , i = 1, 2, 3, are as close to each other as possible. This
can be done, for instance, by a greedy algorithm which places the vertices one after another into the
set with the current minimum total of φv ’s. Then, assuming that S1 ≤ S2 ≤ S3, we have

S1 > S3 − 0.9k
≥

1
3
(S1 + S2 + S3) − 0.9k

≥
1
4
(S1 + S2 + S3),

provided

0.9k <
1
12

×
1

12k
0.96k

=
1

144k
0.96k

≤
1
12

(S1 + S2 + S3),

which is valid for k ≥ 250. Hence, for each i = 1, 2, 3,(
n − 1
k − 1

)
Si =

∑
v∈Wi

|Fv| ≥
0.96k

48k

(
n − 1
k − 1

)
.
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The sets W1,W2,W3 generate a corresponding partition of the proper sets f into ‘colors’ Ci =⋃
v∈Wi

Fv. In order to complete the proof of Proposition 10, it suffices to show that such a 3-coloring
contains a (k− 1)-path of length three whose edges are colored with different colors. Such a path can
be extended to a copy of P (k)

3 in H , yielding a contradiction.
However, all setsWi are so dense that the existence of such a path is an easy consequence of Fact 5.

Indeed, recall that in each color there are at least 0.96k/(48k)
(n−1
k−1

)
edges. Therefore, by Fact 5, in each

color Ci, i = 1, 2, 3, viewed as a (k − 1)-graph, one can find a sub-hypergraph Gi with

δ(Gi) ≥
0.96k

48k2

(
n − 2
k − 2

)
.

Moreover, |V (Gi)| ≥ 0.9n, since otherwise for each vertex v ∈ V (Gi),

degGi (v) ≤

(
0.9n
k − 2

)
<

0.9k−2nk−2

(k − 2)!
<

0.96k

48k2

(
n − 2
k − 2

)
≤ δGi ,

where the penultimate inequality holds for k ≥ 250. Consequently, the intersection of the vertex sets
of these three graphs, U := V (G1) ∩ V (G2) ∩ V (G3), has size |U | ≥ 0.7n.

Fix a vertex v ∈ U . Since degG1 (v) ≥ 0.96k/(48k2)
(n−2
k−2

)
and the number of edges of G1 with

f ∩ U = {v} is at most
(0.3n
k−2

)
, there exists an edge f1 ∈ G1 and a vertex w ∈ U , w ̸= v, such that

{v, w} ⊂ f1 ∩ U . Moreover, since the number of edges of G2 containing v and another vertex of f1
is O(nk−3), we can find f2 ∈ G2 such that f1 ∩ f2 = {v}. Similarly, there exists f3 ∈ G3 such that
f3 ∩ (f1 ∪ f2) = {w}. Then the edges f2, f1, and f3 form a desired copy of P (k−1) in F . Finally, the edges
{vfi} ∪ fi, i = 1, 2, 3, create a k-path P (k)

3 in H , a contradiction. □

Proof of Lemma 4. If |H| < 0.96k
(n−1
k−1

)
then the assertion obviously holds. Let us assume that

|H| ≥ 0.96k
(n−1
k−1

)
. Then, by Proposition 10, there exists a vertex v ∈ V (H) with

degH (v) ≥ 0.9k
(
n − 1
k − 1

)
.

Therefore, by Proposition 7 with b = 0.9k,

degH (v) ≥ |H| −

⎛⎝1 −

(
0.9k

k − 1

) 1
k−2

⎞⎠k−1 (
n − 1
k − 1

)
.

Thus, all we need to verify is that⎛⎝1 −

(
0.9k

k − 1

) 1
k−2

⎞⎠k−1

< 0.96k.

To this end, observe that

0.96k/(k−1) > 0.962 > 0.9,

while

1 −

(
0.9k

k − 1

) 1
k−2

< 0.9

is equivalent to

0.1k−2(k − 1) < 0.9k

which holds for k ≥ 3. □
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