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a b s t r a c t

Given k ≥ 3 and 1 ≤ ℓ < k, an (ℓ, k)-cycle is one in which
consecutive edges, each of size k, overlap in exactly ℓ vertices.
We study the smallest number of edges in k-uniform n-vertex
hypergraphs which do not contain hamiltonian (ℓ, k)-cycles, but
once a new edge is added, such a cycle is promptly created.
It has been conjectured that this number is of order nℓ and
confirmed for ℓ ∈ {1, k/2, k − 1}, as well as for the upper range
0.8k ≤ ℓ ≤ k − 1. Here we extend the validity of this conjecture
to the lower–middle range (k − 1)/3 ≤ ℓ < (k − 1)/2.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

A k-uniform hypergraph H which we will be calling a k-graph, is a family of k-element subsets
edges) of a vertex set V . Given integers 1 ≤ ℓ < k, an (ℓ, k)-cycle is a k-graph which, for some s
ivisible by k − ℓ, consists of distinct vertices v1, . . . , vs and s/(k − ℓ) edges

{v1, . . . , vk}, {vk−ℓ+1, . . . , v2k−ℓ}, . . . , {vs−(k−ℓ)+1, . . . , vs, v1, . . . , vℓ}.

n (ℓ, k)-path is defined similarly. Note that the number of vertices in an (ℓ, k)-path equals ℓ modulo
− ℓ.
A k-graph H is ℓ-hamiltonian saturated (a.k.a. maximally non-ℓ-hamiltonian) if it is not ℓ-

amiltonian, but adding any new edge results in creating a hamiltonian (ℓ, k)-cycle.
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We are interested in the smallest possible number of edges, denoted by sat(n, k, ℓ), of an
-hamiltonian saturated k-graph on n vertices. For graphs, Clark and Entringer [1] proved that
at(n, 2, 1) = ⌈3n/2⌉ for all n ≥ 52.
As the problem for hypergraphs, introduced in [2,3], seems to be much harder, we are quite

satisfied with results estimating the order of magnitude of sat(n, k, ℓ). Listing the results below, we
ilently assume that n is divisible by k − ℓ. It was observed in [4], Prop. 2.1, that for all k ≥ 3 and
≤ ℓ ≤ k − 1,

sat(n, k, ℓ) = Ω(nℓ) (1)

nd conjectured that this lower bound gives the correct order of magnitude.

onjecture 1. For all k ≥ 3 and 1 ≤ ℓ ≤ k − 1

sat(n, k, ℓ) = Θ(nℓ). (2)

In [4,5] we confirmed this conjecture for ℓ = 1, ℓ = k/2, as well as for all 0.8k ≤ ℓ ≤ k − 1,
see [6] for the case ℓ = k − 1). In [7] we proved a weaker general upper bound

sat(n, k, ℓ) = O
(
n

k+ℓ
2

)
(3)

nd improved it for some pairs (k, ℓ) in the range ℓ > k/2. In this paper, our main result sets another
eneral bound on sat(n, k, ℓ) which improves (3) for every pair (k, ℓ) where (k−2)/5 < ℓ < (k−1)/2.

heorem 2. Let 2 ≤ ℓ < (k − 1)/2 and p = max {ℓ, k − 2ℓ − 1, ⌈k/2⌉ − ℓ}. Then

sat(n, k, ℓ) = O
(
np) .

Note that p < (k+ℓ)/2 when k−2ℓ−1 < (k+ℓ)/2 which is equivalent to (k−2)/5 < ℓ < ⌊k/2⌋.
The bound in Theorem 2 is strong enough to confirm Conjecture 1 for a new, wide range of ℓ.

orollary 3. If (k − 1)/3 ≤ ℓ < (k − 1)/2, then

sat(n, k, ℓ) = Θ
(
nℓ

)
.

n particular, the smallest new cases of (k, ℓ) covered by Corollary 3 include (6, 2) and (7, 2).
Our proof follows the general line of that in [5], where the case ℓ = k/2 was settled, but with

ignificant alterations. First of all, we had to carefully redefine and recalculate many parameters
nvolved in the proof. An additional technical difficulty was that now we allow also odd values of
. However, the main obstacle, compared with the construction in [5], was due to the gap between
wo consecutive disjoint edges on an (ℓ, k)-path, caused by considering ℓ < k/2. To overcome this
roblem, among others, we had to prove new properties of the crucial function ν (see Section 2.1).

. Construction

We will prove Theorem 2 by constructing, for any large N divisible by k − ℓ, an ℓ-hamiltonian
aturated k-uniform hypergraph on N vertices and with Θ (Np) edges. (From now on we use N , as
is reserved for the order of a graph which plays a crucial role in the construction). In this section,
e first define some parameters and then describe our construction. We then present a short proof
f Theorem 2, the two ingredients of which, Lemmas 10 and 11, will be proved in the last two
ections.

.1. The function ν

In our proofs a pivotal role will be played by (ℓ, k)-paths whose every edge draws at least k−ℓ+1
ertices from the same fixed, relatively small set, while the remaining vertices come from a much
arger set. To handle the maximum length of such paths we introduce the following function.
2



A. Ruciński and A. Żak European Journal of Combinatorics 109 (2023) 103659

a

o

2

l

o
A

P

Definition 4 (Function ν). Given a positive integer x, let U and W be two disjoint sets with |U | = x
nd |W | = ∞. Then

ν(x) = max
P

|V (P)|,

where the maximum is taken over all (ℓ, k)-paths P (in the complete k-graph on U ∪W ) such that

U ⊂ V (P) ⊂ U ∪ W and |e ∩ U | ≥ k − ℓ + 1 for all e ∈ P . (4)

vertex of U). Since ν(x) is monotone, for any non-negative real number z we can define

µ(z) = max {x : ν(x) ≤ z} and µ∗(z) = µ(z) + 1 = min {x : ν(x) > z} . (5)

In the Appendix we prove several properties of function ν which will be heavily used throughout
ur proof.

.2. Parameters setting

In this subsection we define parameters and sets to be used in our construction. Set

N0 := 100k10, (6)

et N ≥ N0 be an integer divisible by k − ℓ, and

n :=

⌊
N

11k5

⌋
. (7)

It can be easily deduced from (6) and (7) that

11k5 ≤
N
n

≤ 11.5k5 and n ≥ N/(11k5) − 1 ≥ 9k5. (8)

Further, recall definitions in (5) and set

z :=
N + 4k3

n
− (3k − 4ℓ),

x := µ (z) + 2⌊k/2⌋, (9)
x∗

:= µ∗ (z) + 2⌊k/2⌋ + (k − 2ℓ) = x + (k − 2ℓ) + 1.

The following tight estimates of N lie at the heart of our construction, which will become evident
nly at the conclusions of the proofs of the crucial Lemmas 10 and 11. The proof is deferred to the
ppendix

roposition 5. There exist xi ∈ {x, x∗
}, i = 1, . . . , n, such that for each I ⊂ {1, . . . , n} with |I| = n−1,

(3k − 4ℓ)n +

∑
i∈I

ν(xi − 2⌊k/2⌋) + 8k4 < N < (3k − 4ℓ)n +

n∑
i=1

ν(xi − 2⌊k/2⌋) − 4k3. (10)

Finally, we are ready to define the vertex set of the hypergraphs to be constructed. Let {Ai, Bi :

i = 1, . . . , 2n} be a family of 4n pairwise disjoint sets of sizes

|Ai| =

{
2 ⌊k/2⌋ + ℓ, i = 1, . . . , n
2k − 2ℓ − 3, i = n + 1, . . . , 2n,

(11)

and

|Bi| =

{
xi − 2 ⌊k/2⌋ − ℓ, i = 1, . . . , n

(12)

bi i = n + 1, . . . , 2n,

3
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where the xi’s are defined via Proposition 5, while the bi’s differ from each other by at most one
nd are chosen in such a way that

2n∑
i=1

(|Ai| + |Bi|) = N. (13)

he argument that the bi’s are well defined along with some bounds on them, as well as on the xi’s
is given in Appendix.

2.3. Main construction

Let G1 be a maximally non-hamiltonian graph with V (G1) = [n] = {1, . . . , n} and ∆(G1) ≤ 5.
he existence of such a graph can be deduced for each n ≥ 52 from the results in [8,9] (see Cor.

2.6 in [4]). Our construction is based on the graph G obtained from G1 by attaching n vertices
n + 1, . . . , 2n and n edges {i, n + i}, i = 1, . . . , n, so that each new vertex has degree one.

Fix 2 ≤ ℓ < (k − 1)/2. The desired k-graph H will be defined on an N-vertex set

V =

2n⋃
i=1

Ui, where Ui = Ai ∪ Bi (14)

and Ai, Bi are given in the previous subsection (cf. (13)).
Before defining the edge set of H , we need some more terminology and notation. For a graph

F and a set S ⊂ V (F ), denote by F [S] the subgraph of F induced by S. For two k-graphs F1 and F2
with V (F1) = V (F2), we denote by F1 ∪ F2 the k-graph on the same vertex set whose edge set is the
union of the edge sets of F1 and F2.

For S ⊂ V , set

tr(S) = {i : S ∩ Ui ̸= ∅} , tr1(S) = tr(S) ∩ [n], and min(S) = min {i ∈ tr(S)} .

Note that tr1(S) ⊂ V (G1). The set tr(S) is sometimes called the trace of S.
Further, let c(S) be the number of connected components of G3

[tr(S)], where G3 is the third
power of G, that is, the graph with the same vertex set as G and with edges joining all pairs of
distinct vertices which are at distance at most three in G.

We define the desired k-graph H in terms of three other k-graphs, H1, H2, and H3. Let

H1
1 =

{
e ∈

(
V
k

)
: ∃{i, j} ∈ G1, tr1(e) = {i, j}, |Ai ∩ e| ≥ ⌊k/2⌋ and |Aj ∩ e| ≥ ⌊k/2⌋

}
,

H2
1 =

{
e ∈

(
V
k

)
: for some i ∈ [n], tr(e) = {i, n + i}, |Ai ∩ e| = ℓ + 1, |An+i ∩ e| = k − ℓ − 1

}
,

nd

H1 = H1
1 ∪ H2

1 .

emark 6. Note that when k is odd, for an edge e ∈ H1
1 one may actually have tr(e) = {i, j, r},

here {i, j} ∈ G1, |Ai ∩ e| = ⌊k/2⌋, |Aj ∩ e| = ⌊k/2⌋, and r ∈ {n + 1, . . . , 2n}, |Ur ∩ e| = 1. Note also
hat for an edge e ∈ H2

1 , we have tr(e) = {i, n + i} ∈ G − G1. It follows that H1
1 ∩ H2

1 = ∅.

Further, let

H2 =

{
e ∈

(
V
k

)
:
⏐⏐e ∩ Umin(e)

⏐⏐ ≥ k − ℓ + 1
}

.

Note that H ∩ H = ∅. Indeed, if e ∈ H , then |e ∩ U | ≤ ⌈k/2⌉ < k − ℓ + 1.
1 2 1 min(e)

4
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Fig. 1. Illustration of definitions of H1
1 , H2

1 , and H2 for k = 7 and ℓ = 3: e1, e2 ∈ H1
1 , e4 ∈ H2

1 , e3, e5 ∈ H2 , while
ẽ6, ẽ7 ̸∈ H1 ∪ H2 .

Example 7. To illustrate these definitions, let us look at Fig. 1 and the fate of the various edges
depicted there. We have k = 7 and ℓ = 3. Assume that {1, 2} is an edge of G1. As tr1(e1) =

tr(e1) = {1, 2} and |e1 ∩ A1| ≥ |e1 ∩ A2| = 3 = ⌊7/2⌋, e1 ∈ H1
1 . Further, tr(e2) = {1, 2, 2n}, but

tr1(e2) = {1, 2}. What is more, |e2 ∩ A1| = |e2 ∩ A2| = 3 = ⌊7/2⌋, so e2 ∈ H1
1 too.

Since |e3 ∩ U1| = 5 = k−ℓ+1 and min(e3) = 1, we have e3 ∈ H2. Similarly, e5 ∈ H2. Furthermore,
tr(e4) = {3, n + 3}, |e4 ∩ A3| = 4 = ℓ + 1, and |e4 ∩ An+3| = 3 = k − ℓ − 1, so e4 ∈ H2

1 . Finally,
|ẽ6 ∩ U3| = 5 ≥ k − ℓ + 1, but min(e6) = 2 and |ẽ6 ∩ U2| = 2. Hence ẽ6 ̸∈ H1 ∪ H2. Similarly,
ẽ7 ̸∈ H1 ∪ H2.

Recall that

p = max{ℓ, k − 2ℓ − 1, ⌈k/2⌉ − ℓ}. (15)

The third element of the construction is

H3 =

{
e ∈

(
V
k

)
: c(e) ≤ p

}
.

Fact 8. We have H1 ∪ H2 ⊆ H3.

Proof. If e ∈ H1, then |tr(e)| ≤ 3 and tr(e) contains an edge of G. Thus, c(e) ≤ 2 ≤ ℓ ≤ p and
e ∈ H3. If e ∈ H2, then |e ∩ Umin(e)| ≥ k − ℓ + 1 and, consequently, |tr(e)| ≤ 1 + (ℓ − 1) = ℓ ≤ p.
Clearly, c(e) ≤ |tr(e)|, hence e ∈ H3 also in this case. □

We are going to show (cf. Lemma 10 in Section 3) that H1 ∪ H2 is non-ℓ-hamiltonian. For each
e ∈

(V
k

)
\ H , let H + e be the hypergraph obtained from H by adding e to its edge set. Taking

Lemma 10 for granted and in view of Fact 8, we define H as a non-ℓ-hamiltonian k-graph satisfying
5
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the containments

H1 ∪ H2 ⊆ H ⊆ H3

and such that H + e is ℓ-hamiltonian for every e ∈ H3 \H . (If H3 is non-ℓ-hamiltonian itself, we set
= H3.)

.4. Proof of Theorem 2

In [4] (cf. Fact 2.2), we proved the following simple result. Let comp(F ) denote the number of
onnected components of a graph F .

laim 9 ([4]). Let r, p, and ∆ be constants. If ∆(G) ≤ ∆, then the number of r-element subsets T ⊆ V (G)
ith comp(G[T ]) ≤ p is O(np). □

Theorem 2 is a consequence of Claim 9, the construction of H presented in the previous
subsection, and the following two lemmas the proofs of which are deferred to Sections 3 and 4.
Lemma 10 guarantees that the definition of H is meaningful.

Lemma 10. H1 ∪ H2 is non-ℓ-hamiltonian.

On the other hand, Lemma 11 implies quickly that H is indeed ℓ-hamiltonian saturated (see the
proof of Theorem 2 below.)

Lemma 11. For every e ∈
(V
k

)
\ H3, the k-graph H1 ∪ H2 + e is ℓ-hamiltonian.

Proof of Theorem 2. As stated in (1), sat(N, k, ℓ) = Ω(Nℓ). In order to prove the upper bound, we
begin by showing that |H| = O(Np). Observe that

H3 =

⋃
T⊂V (G)

{
e ∈

(
V
k

)
: tr(e) = T

}
,

where the sum is over all subsets T of V (G) of size at most k with comp(G3
[T ]) ≤ p. Since ∆(G1) ≤ 5,

we have ∆(G) ≤ ∆1 + 1 ≤ 6 and ∆(G3) ≤ (∆1 + 1)∆2
1 ≤ 150. Thus, by Claim 9 with r ≤ k, the

umber of such subsets T is O(np). Moreover, by (9), (60), (11)–(12) and (63),

|Ui| = |Ai| + |Bi| ≤

{
xi ≤ x + k ≤ 12k5 + k ≤ 13k5 i = 1, . . . , n
bi + 2k ≤ 12k5 + 2k ≤ 13k5 i = n + 1, . . . , 2n.

(16)

ence, given T ,⏐⏐⏐⏐⏐
{
e ∈

(
V
k

)
: tr(e) = T

} ⏐⏐⏐⏐⏐ ≤

(∑
i∈T |Ui|

k

)
≤ (|T | · 13k5)k = O(1).

Consequently, |H3| = O(np) = O(Np) and, thus, also |H| = O(Np).
It remains to show that H is ℓ-hamiltonian saturated. Recall that, by construction (and Lemma 10)

H is non-ℓ-hamiltonian. Let e ∈
(V
k

)
\H . If e ∈ H3 then, by the definition of H , H+e is ℓ-hamiltonian.

On the other hand, if e ∈
(V
k

)
\ H3, then H + e ⊇ H1 ∪ H2 + e is ℓ-hamiltonian by Lemma 11. This

shows that H is, indeed, ℓ-hamiltonian saturated and the proof of Theorem 2 is completed. □

3. Proof of Lemma 10

3.1. (ℓ, k)-paths in H1 ∪ H2

Before turning to the actual proof, we first establish some facts about (ℓ, k)-paths in H1 ∪ H2.

Fact 12. If P is an (ℓ, k)-path in H2, then P has at most two edges.
1

6
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Proof. Suppose there is an (ℓ, k)-path P = (e1, e2, e3) in H2
1 . Then tr(e1) ∩ tr(e2) ̸= ∅ and

r(e2) ∩ tr(e3) ̸= ∅. But then, for some j, tr(e1) = tr(e2) = tr(e3) = {j, n + j}. Since e1 ∩ e3 = ∅, it
ollows that, in particular, |An+j ∩ e1| = |An+j ∩ e3| = k − ℓ − 1 which together exceed the size of
n+j set by the second part of (11). □

act 13. If P is an (ℓ, k)-path in H2, then there is an index j ∈ [2n] such that min(f ) = j for every
∈ P, that is, every edge of P draws at least k − ℓ + 1 vertices from the same Uj.

roof. Let e, e′
∈ P with |e ∩ e′

| = ℓ. Let j = min(e). Since |e ∩ Uj| ≥ k − ℓ + 1, we have
e′

∩ Uj| ≥ 1. Hence, j ∈ tr(e′) and so min(e′) ≤ min(e). By symmetry, min(e) ≤ min(e′). Thus
in(e′) = min(e) = j. By transitivity, min(f ) = j for every f ∈ P . □

laim 14. Let s ≥ 1 and let P = (e, e1, . . . , es, e′) be an (ℓ, k)-path such that e, e′
∈ H1 and

1, . . . , es ∈ H2. Then

(i) min(e1) = · · · = min(es) ∈ tr1(e) ∩ tr1(e′);
(ii) |{e, e′

} ∩ H2
1 | ≤ 1.

roof. By Fact 13, min(ei) = j for some j ∈ [2n] and every i = 1, . . . , s. Since, by definition of
2, |e1 ∩ Uj| ≥ k − ℓ + 1 and |es ∩ Uj| ≥ k − ℓ + 1, we have |e ∩ Uj| ≥ 1 and |e′

∩ Uj| ≥ 1 and
o, j ∈ tr(e) ∩ tr(e′). If, say, e ∈ H1

1 , then tr(e) ⊂ [n], unless k is odd and |tr(e)| = 3. But then, for
he unique element r ∈ tr(e) ∩ {n + 1, . . . , 2n}, we have |e ∩ Ur | = 1 (cf. Remark 6), while, in fact,
e ∩ e1| ≥ 2. This means that there is i ∈ tr1(e) and so, j ≤ i ≤ n as well.

If, on the other hand, e, e′
∈ H2

1 , then, as tr(e) ∩ tr(e′) ̸= ∅, for some i ∈ [n], we have
tr(e) = tr(e′) = {i, n + i} ∋ j. Thus, by the definition of H2

1 , |An+j ∩ e| = |An+j ∩ e′
| = k − ℓ − 1

which together exceed the size of An+j set by the second part of (11). This is a contradiction which
excludes this case and simultaneously completes the proof of both parts, (i) and (ii). □

Proposition 15. Let s ≥ 1 and P = (e, e1, . . . , es, e′) be an (ℓ, k)-path in H1 ∪ H2 such that
P ∩ H1

1 = {e, e′
}. Then the following hold:

(a) P ∩ H2
1 ⊂ {e1, es};

(b) If P ∩ H2
1 = {e1, es}, then s = 2;

(c) For i = 1, . . . , s, we have min(ei) ∈ tr1(e) ∩ tr1(e′).

Proof. Since s ≥ 1 and ℓ < k/2, we have e ∩ e′
= ∅. If P ∩ H2

1 = ∅, then the statements (a) and (b)
are vacuous, while (c) follows from Claim 14(i).

Assume that P ∩ H2
1 = {f1, . . . , ft}, t ≥ 1, where fi, i = 1, . . . , t , are listed in the order of

appearance in P . By Claim 14(ii), f1, . . . , ft are consecutive edges of P , while by Fact 12, t ≤ 2.
Recall the definition of H2

1 and let tr(f1) = {j, n + j} for some j ∈ [n].
When t = 2, noticing that tr(f1)∩tr(f2) ̸= ∅ and remembering the structure of G, we have, in fact,

tr(f1) = tr(f2) = {j, n+j}. If e∩f1 ̸= ∅, then j ∈ tr(e). Indeed, otherwise
⏐⏐e ∩ Un+j

⏐⏐ = |e ∩ f1| = ℓ ≥ 2,
which is not possible by the definition of H1

1 , cf. Remark 6. If e∩ f1 = ∅, then, by Claim 14(i) applied
to the sub-path of P stretching between e and f1, we have j ∈ tr(e) too. Similar argument holds for
f2 and e′ implying that j ∈ tr(e′). Thus, j ∈ tr(e)∩ tr(e′). Since j ≤ n, it means that j ∈ tr1(e)∩ tr1(e′).

To prove (a), suppose that ei ∈ H2
1 for some 2 ≤ i ≤ s − 1. Then, the edges e, ei, e′ are

pairwise disjoint. Moreover, by the definitions of H1
1 and H2

1 , |Aj ∩ e| ≥ ⌊k/2⌋, |Aj ∩ e′
| ≥ ⌊k/2⌋,

and |Aj ∩ ei| = ℓ + 1, which together exceed the size of Aj set by the first part of (11).
To prove (b), suppose that e1, es ∈ H2

1 and s ≥ 3. Then e1 ∩ es = ∅ and, again by the definition of
H2

1 , |An+j ∩ e1| = |An+j ∩ es| = k − ℓ − 1, which together exceed the size of An+j set by the second
part of (11).

It remains to prove part (c). It was already shown above that for every edge f ∈ P ∩H2
1 we have

j = min(f ) ∈ tr1(e)∩ tr1(e′). Assume now that P ∩H2 ̸= ∅. Then, in view of (a) and (b), without loss
7
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Fig. 2. The structure of phantom C .

of generality we may further assume that e1 ∈ H2
1 , while e2, . . . , es ∈ H2. By Claim 14(i) applied to

the path from e1 to e′, we conclude that for each f ∈ P ∩H2, we have min(f ) ∈ tr1(e1) = {j}, as well
as, min(f ) ∈ tr1(e′). Hence, min(f ) = j ∈ tr1(e) ∩ tr1(e′) and (c) holds, indeed, for all inner edges of
P . □

3.2. Proof of Lemma 10 — the structure of phantom C.

Suppose C is a hamiltonian (ℓ, k)-cycle in H1 ∪H2. We are going to show that |V (C)| < N which
will be a contradiction. Our proof at some point (cf. proof of Claim 17) relies on the assumption
that the graph G1 is not hamiltonian.

We first consider the case when C ∩ H1
1 = ∅. Then, by Fact 12 and Claim 14(ii), C consists of at

most two intersecting edges from H2
1 and a path P ⊂ H2. By Fact 13, the bound (16) on |Uj|, and

Definition 4 of function ν with U = Uj, we have, using also Proposition 23(b) and formula (6),

|V (C)| ≤ 2k − 3ℓ + ν(13k5) ≤ 2k + 13k6 < N0 ≤ N.

From now on we may thus assume that C ∩ H1
1 ̸= ∅. Let M = {e1, . . . , em}, m ≥ 1, be a

maximal set of pairwise disjoint edges of C ∩ H1
1 , listed in the order of appearance on C . Further,

for i = 1, . . . ,m, let Pi be the (ℓ, k)-path in C joining the last ℓ vertices of ei with the first ℓ vertices
of ei+1, where em+1 := e1. Notice that

C \ M =

m⋃
i=1

Pi, (17)

where all Pi’s are vertex disjoint (see Fig. 2).
Let li be the first edge of Pi and ri be the last edge of Pi (note that they may coincide). We also

define P ′ to be the (ℓ, k)-path arising from P by removing l and r . Observe that, by the definition
i i i i

8
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of M ,

P ′

i ⊂ H2
1 ∪ H2, (18)

lso, P ′

i = ∅ if li = ri, and then the number of vertices between ei and ei+1 is k − 2ℓ. Since for a
on-empty P ′

i the number of vertices between ei and the beginning of P ′

i , as well as, between the
nd of P ′

i−1 and ei, is exactly k − 2ℓ, by (17) we have

|V (C)|≤m(3k − 4ℓ) +

m∑
i=1

|V (P ′

i )|. (19)

In view of this, in order to show that |V (C)| < N , our plan is to utilize the left inequality in (10).
This, in turn, will require us to set strong bounds on m and |V (P ′

i )|.
Beginning with the former task, recall that for each e ∈ H1

1 , tr1(e) consists of exactly one edge of
G1. These edges may, however, repeat for various e’s, so that

Tr(M) := {tr1(e) : e ∈ M}

is a multigraph of size m on vertex set [n]. Since, for each e ∈ M and j ∈ tr1(e), |e ∩ Aj| ≥ ⌊k/2⌋, it
ollows by the first part of (11) that

∆(Tr(M)) ≤ 2, (20)

nd, in particular,

m ≤ n. (21)

o improve this bound, we distinguish between nice and problematic paths Pi. Observe that each
dge e ∈

(
H1

1 ∩ C
)

\ M intersects some ei ∈ M , so e = li or e = ri−1. We call an edge li or ri bad
if it belongs to H1

1 , |Pi| ≥ 2, and, resp., tr1(li) ̸= tr1(ei) or tr1(ri) ̸= tr1(ei+1). We call Pi problematic
if either li or ri is bad, or P ′

i ∩ H2
1 ̸= ∅. Otherwise, we call Pi nice. In particular, if Pi is problematic,

hen |Pi| ≥ 2 and li ̸= ri. Let q be the number of problematic (ℓ, k)-paths among P1, . . . , Pm.
We next show that the presence of problematic paths makes the number of edges in Tr(M)

maller.

laim 16.

m ≤ n −
1
2

⌈q
k

⌉
(22)

Proof. Recall (20). We are going to show that problematic paths cause some vertices to have degrees
smaller than 2 which will lead to the improvement (22) over (21). Let P := Pi be problematic
and assume first that there is a bad edge, say li, in P . Then tr1(li) ̸= tr1(ei) and, consequently, by
considering separately the cases when tr1(li)∩tr1(ei) = ∅ and when |tr1(li) ∩ tr1(ei)| = 1, there exists
vertex j := ji ∈ tr1(li) such that j ̸∈ tr(ei) (recall Remark 6 that one might have |tr(ei)| = 3). Thus,
by the definition of H1

1 , we have
⏐⏐(li ∩ Aj

)
\ ei

⏐⏐ ≥ ⌊k/2⌋. Since also |P| ≥ 2, we have li ∩ ei+1 = ∅.
And, obviously, by construction, li is disjoint from all other edges in M . Thus, in fact,⏐⏐(li ∩ Aj

)
\ (e1 ∪ · · · ∪ em)

⏐⏐ ≥ ⌊k/2⌋ . (23)

By symmetry, (23) holds if ri is a bad edge of P .
Another reason for Pi being problematic might be that P ′

i contains an edge f := fi ∈ H2
1 . Then, by

the definition of H2
1 , there exists a vertex j := ji ∈ tr1(f ) such that

⏐⏐f ∩ Aj
⏐⏐ = ℓ+1. Since in this case

f does not intersect any edge of M , f ∪ li ∪ ri ⊂ V (Pi), we may conclude that, for each i = 1, . . . ,m
for which Pi is problematic, there exists ji ∈ tr1(V (Pi)) such that⏐⏐ ⏐⏐
(V (Pi) ∩ Aji ) \ (e1 ∪ · · · ∪ em) ≥ ℓ + 1. (24)

9
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As |Aji | = 2 ⌊k/2⌋ + ℓ, inequality (24) and the definition of H1
1 imply that degTr(M)(ji) ≤ 1. The ji’s

eed not be different. However, at most

|Aj|

ℓ + 1
≤

2 ⌊k/2⌋ + ℓ

ℓ + 1
≤ 1 + 2 ⌊k/2⌋ − 1 ≤ k

roblematic paths Pi’s may yield the same j for which Aj satisfies (24). Thus, at least ⌈q/k⌉ different
ertices j ∈ [n] have degTr(M)(ji) ≤ 1. Therefore,

n∑
i=1

degTr(M)(i) ≤ 2n −

⌈q
k

⌉
and, consequently,

m = |Tr(M)| ≤ n −
1
2

⌈q
k

⌉
. □

In view of Claim 16, we have m ≤ n− 1 for q ≥ 1. Now we will get a similar improvement over
≤ n in the case when no problematic paths are present (unless, for some i, P ′

i = ∅, which is,
nyhow, to our advantage).

laim 17. Suppose that P ′

i ̸= ∅ for every i = 1, . . . ,m. Then

m ≤ n − 1. (25)

Proof. If q ≥ 1, then (25) follows by Claim 16. Assume that q = 0 and suppose that |Tr(M)| = m =

n. Then, by (20), Tr(M) is a 2-regular spanning subgraph of G1, with possibly some parallel edge of
multiplicity 2. We aim at showing that Tr(M) is connected. Since q = 0, each Pi is nice and so, by
(18), P ′

i ⊂ H2.
Let j be an index guaranteed by Fact 13 applied to P ′

i . Further, let P̄i be the shortest extension of
the path P ′

i within C whose both end-edges belong to H1
1 . Then, by Proposition 15(c) applied to P̄i,

the traces of its end-edges contain j ∈ [n]. So, if ei is one of these end-edges, we then have j ∈ tr1(ei).
Otherwise, that is, when li ∈ H1

1 and, thus, li is an end-edge of P̄i, we have j ∈ tr1(li). However, since
Pi is nice, li is not bad and so, tr1(ei) = tr1(li). Hence, j ∈ tr1(ei), anyway. By symmetry, j ∈ tr1(ei+1),
too. This means, however, that Tr(M) is connected and, consequently, Tr(M) is a hamiltonian cycle
in G1, a contradiction with the choice of G1. □

3.3. Proof of Lemma 10 — the length of phantom C.

So far we have expressed the presumed hamiltonian (ℓ, k)-cycle C in the form (17) and set
bounds on m = |M| (see Claims 16 and 17). In order to take advantage of (19), we also need to
estimate

⏐⏐V (P ′

i )
⏐⏐. We do it separately for nice and problematic paths. Recall Definition 4 of function

ν from Section 2.1.

Claim 18. If Pi is nice, then for some j := ji ∈ [n],⏐⏐V (P ′

i )
⏐⏐ ≤ ν

(
xj − 2 ⌊k/2⌋

)
.

Proof. Since Pi is nice, P ′

i ⊂ H2 by (18). If P ′

i = ∅, then the claim trivially holds. Let f ∈ P ′

i and
= min(f ). Similarly, as in the proof of Claim 17, we infer that j ∈ tr1(ei) and j ∈ tr1(ei+1). Thus,

|Aj ∩ ei| ≥ ⌊k/2⌋ and |Aj ∩ ei+1| ≥ ⌊k/2⌋, which implies that
⏐⏐V (P ′

i ) ∩ Uj
⏐⏐ ≤ xj − 2 ⌊k/2⌋. Therefore,

the claim follows by Fact 13 and Definition 4 of ν with U = V (P ′

i ) ∩ Uj. □

Claim 19. If Pi is problematic, then for some j := ji ∈ [n],⏐⏐V (P ′)
⏐⏐ ≤ ν(x ) + k/2.
i j

10



A. Ruciński and A. Żak European Journal of Combinatorics 109 (2023) 103659

M
a
b
e

I∑

4

4

a
a
o

v

Proof. Let P ′′

i be the shortest subpath of Pi with both end-edges belonging to H1
1 . By the choice of

, P ′′

i exists and satisfies P ′

i ⊂ P ′′

i ⊂ Pi. By Proposition 15(a,b) applied to P ′′

i , |P
′′

i | ≤ 4 or P ′′

i contains
t most one edge of H2

1 . In the former case the claimed inequality holds, because |V (P ′

i )| < 4k, while,
y (59), ν(xj) ≥ xj ≥ 10k4. In the latter, P ′

i contains at most one edge of H2
1 , as well. Moreover, this

dge, if exists, is either the first or the last edge of P ′

i . Say, it is the first. Then the rest of P ′

i (i.e., P
′

i
minus the first or the last ℓ ≤ k/2 vertices) is contained in H2 and either ri ∈ H1

1 , or ri ∈ H2 (recall
that since Pi is problematic, ri ̸= li). Hence, by Claim 14(i), applied to an appropriate extension of
P ′

i , there exists j ∈ [n] such that j = min(f ) for all f ∈ P ′

i ∩H2. Thus,
⏐⏐V (P ′

i ) ∩ Uj
⏐⏐ ≤ |Uj| = xj and the

claim follows again by Fact 13 and Definition 4. □

We are now in the position to finish the proof of Lemma 10. Suppose that there are exactly q
problematic paths among the Pi’s. Let I ⊂ [1,m] be the set of those indices i for which P ′

i ̸= ∅.
Further, let I ′ ⊂ I be the set of those indices i for which Pi is problematic, and I ′′ = I \ I ′. By (19),
Claims 18 and 19, and (49),

|V (C)|≤m(3k − 4ℓ) +

∑
i∈I

|V (P ′

i )|

≤ m(3k − 4ℓ) +

∑
i∈I ′

(ν(xji ) + k/2) +

∑
i∈I ′′

ν(xji − 2⌊k/2⌋)

≤ m(3k − 4ℓ) +

∑
i∈I ′

(ν(xji − 2⌊k/2⌋) + k2 + k/2) +

∑
i∈I ′′

ν(xji − 2⌊k/2⌋)

= m(3k − 4ℓ) +

∑
i∈I

ν(xji − 2⌊k/2⌋) + (k2 + k/2)q.

f q = 0, then, by Claim 17, either m ≤ n − 1 or |I| ≤ n − 1, so we have |V (C)| ≤ m(3k − 4ℓ) +

i∈I ν(xji −2⌊k/2⌋). If q ≥ 1, then, by Claim 16, m ≤ n−
1
2

⌈ q
k

⌉
. So, every increase of q by 2k forces

a decrease of m by 1. However, since by (59), ν(xji − 2 ⌊k/2⌋) ≥ xji − 2 ⌊k/2⌋ > 10k4 − k > 9k4, the
maximum is attained when m is as large as possible, that is, for m = n − 1 and q = 2k. Hence, in
either case,

|V (C)| ≤ n(3k − 4ℓ) +

∑
i∈I

ν(xji − 2⌊k/2⌋) + 2k(k2 + k/2), (26)

where I ⊂ [1, n] with |I| ≤ n − 1. Combined with the left inequality in (10), this yields, with some
margin, that |V (C)| < N , and so C cannot be a hamiltonian (ℓ, k)-cycle, a contradiction. □

. Proof of Lemma 11

.1. The idea of the proof

In the proof of Lemma 10 we supposed that there was a hamiltonian (ℓ, k)-cycle C in H1 ∪ H2
nd got a contradiction by showing that it would be too short to cover all N vertices. Now, we have
t disposal just one more edge e which, however, will make all the difference. In fact, despite the
pposite goals these two proofs bear some similarities.
In the former proof we represented C as a concatenation of several paths in H2 joint together

ia short paths centered at edges of H1
1 . A crucial ingredient of that proof was to show that there

are no more than n − 1 disjoint edges in H1
1 ∩ C , causing the whole cycle to be too short.

Now, we will turn that idea around and construct a hamiltonian (ℓ, k)-cycle in H1 ∪ H2 + e, by
constructing n disjoint (ℓ, k)-paths P1, . . . Pn in H2 and joining them by disjoint sequences of vertices
Q0, . . . ,Qn−1 (let us call them bridges from now on), built around edges of H1. In fact, for technical
reasons, in the forthcoming proof we will first build the bridges Q0, . . . ,Qn−1 and only then the
paths P1, . . . , Pn. The reason there were less than n bridges in the proof of Lemma 10 was that G1
was not hamiltonian. On the other hand, G1 is maximally non-hamiltonian and the new edge e ̸∈ H
will bring about the missing bridge (Q ). This will be done by a clever choice of two vertices of tr(e).
0

11
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4.2. The choice of i and j

Let us fix e ∈
(V
k

)
\ H3. Recall that, by the definition of H3, c(e) ≥ p + 1, where p was defined

n (15). We are going to choose carefully two vertices, i and j, in tr(e). They have to come from
ifferent components of G3

[tr(e)]. In particular, ij ̸∈ G. Even more, if i = n + i′ or j = n + j′ for
ome 1 ≤ i′, j′ ≤ n, then also, respectively, ij′, i′j, i′j′ ̸∈ G1. (This is, in fact, why we considered
omponents in G3

[tr(e)], and not just in G[tr(e)].) The bottom line is that, due to being maximally
on-hamiltonian, G1 possesses a hamiltonian path connecting i (or its unique neighbor) with j (or
ts unique neighbor). We will ultimately build a hamiltonian (ℓ, k)-cycle in H1 ∪H2 + e by following
his path in G1.

Let C1, . . . , Cr be connected components of G3
[tr(e)]. Further, let

ρ(Ct ) = max{|e ∩ Uv| : v ∈ V (Ct )}, t = 1, . . . , r.

ithout loss of generality we may assume that

ρ(C1) ≥ ρ(C2) ≥ · · · ≥ ρ(Cr ).

We now choose i and j. If ρ(C1) ≤ ℓ, then i = min(e). Otherwise, let i ∈ V (C1) be such that

|e ∩ Ui| = ρ(C1) ≥ ℓ + 1.

et X be the vertex set of this component of G3
[tr(e)] which contains vertex i (e.g., X = V (C1) in

he latter case) and let Y = tr(e) \ X . Set

eX = e ∩

⋃
v∈X

Uv and eY = e ∩

⋃
v∈Y

Uv.

learly,

e = eX ∪ eY . (27)

urther, if ρ(C2) ≤ ℓ, then j = min(eY ). Otherwise, let j ∈ V (C2) be such that

|e ∩ Uj| = ρ(C2) ≥ ℓ + 1.

ote that in the latter case X = V (C1), so, indeed, i and j always belong to different components of
3
[tr(e)].
Now we establish upper bounds on the cardinalities of some parts of e. Since c(e) ≥ p + 1,

|e ∩ Ut | ≤ k − p for every t ∈ tr(e), (28)

and, in particular,

|eX | ≤ k − p. (29)

Note that, by (27) and (29), we also have e(Y ) ≥ p. Inequality (28) can be improved in most cases.

Fact 20. If t ∈ tr(e) \ {i, j}, then

|e ∩ Ut | ≤ ℓ.

Proof. If ρ(C1) ≤ ℓ then the claim is obvious. Suppose ρ(C1) ≥ ℓ + 1. Thus, |e ∩ Ui| ≥ ℓ + 1. If
∈ X \ {i}, then, by (15) and (29),

|e ∩ Ut | ≤ k − p − |e ∩ Ui| ≤ k − p − (ℓ + 1) ≤ ℓ.

et t ∈ tr(e) \ X = Y . If ρ(C2) ≤ ℓ, then, again, the claim is obvious. So, suppose ρ(C2) ≥ ℓ + 1.
ence, |e ∩ Uj| ≥ ℓ + 1. Note that since |tr(e)| ≥ c(e) ≥ p+ 1, we have |tr(e) \ {i, j, t}| ≥ p− 2, and

so
|e ∩ (Ui ∪ Uj ∪ Ut )| ≤ k − p + 2.

12
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Thus, again by (15),

|e ∩ Ut | ≤ k − p + 2 − |e ∩ Ui| − |e ∩ Uj| ≤ k − p + 2 − 2(ℓ + 1) ≤ 1 < ℓ. □

.3. Construction of bridge Q0

The construction of Q0 is based on the extra edge e and the choice of i and j from tr(e). Let us
rder the vertices of e so that, going from left to right, it begins with all vertices of e∩Uj, followed
y all remaining vertices of e(Y ). Symmetrically, going from right to left, it begins with all vertices
f e ∩ Ui, followed by the remaining vertices of e(X).
We first we construct an (ℓ, k)-path Q ′

0 which is the main part of Q0. We consider four cases
ith respect to i and j, which, owing to symmetry, reduce to just two (with two further subcases

n one of them).
Notation for diagrams. The forthcoming constructions will be illustrated by diagrams in which

he following notation is applied. Recall that for each s = 1, . . . , 2n, Us = As ∪ Bs. Any vertex of
s will be represented by the symbol as. Similarly, bs will stand for any vertex of Bs, while us for
ny vertex of Us. The asterisk ∗ will fill in for any vertex of V =

⋃2n
s=1 Us, or, on one occasion, of

2n
s=n+1 Bs. Moreover, all vertices appearing in the diagrams will be distinct.
Suppose first that i, j ∈ {1, . . . , n}. Let Q ′

0 be a 3-edge (ℓ, k)-path with the edge e in the middle
nd two edges e′ and e′′ from H2. The first edge e′ of Q ′

0 begins with k − ℓ vertices of Bj and ends
ith the first ℓ vertices of e, while the last (third) edge e′′ of Q ′

0 begins with the last ℓ vertices of e
nd ends with k − ℓ vertices of Bi (see diagram (30) below).

Q ′

0 = bj . . . bj  
k−ℓ

eY  
uj ∗ ∗

eX
∗ui  

e

bi . . . bi  
k−ℓ

. (30)

Recall that either j = min(eY ) or |Uj ∩ e| ≥ ℓ + 1. Consequently, in each case min(e′) = j and
e′

∩ Uj| ≥ k − ℓ + 1, so e′
∈ H2. Similarly, e′′

∈ H2.
If i = n+ i′, then we modify the right end of Q ′

0 as follows. If |e ∩ Ai| ≤ k−ℓ−2, then we replace
the last ℓ vertices of e′′ with k− ℓ − 1 vertices of Ai, followed by ℓ + 1 vertices of Ai′ (see the R-H-S
of diagram (31)).

Q ′

0 = bj . . . bj  
k−ℓ

eY  
uj ∗ ∗

eX
∗ui  

e

bi . . . bi  
k−2ℓ

ai . . . ai  
k−ℓ−1

ai′ . . . ai′  
ℓ+1

. (31)

This way, edge e′′ is replaced by edges e′′

1 ∈ H2 and e′′

2 ∈ H2
1 . Since |e ∩ Ai| ≤ k − ℓ − 2, we have,

ndeed, at least (2k − 2ℓ − 3) − (k − ℓ − 2) = k − ℓ − 1 vertices of Ai available. (As for Ai′ , by (11),
|Ai′ | ≥ k − 1 + ℓ, and only at most k − 2 vertices of Ai′ may belong to e.)

If |e ∩ Ai| ≥ k − ℓ − 1, we modify Q ′

0 as indicated in the R-H-S of diagram (32).

Q ′

0 = bj . . . bj  
k−ℓ

eY  
uj ∗ ∗

eX  
∗ai . . . ai  
e

ai . . . ai  
k−2ℓ−1

ai′ . . . ai′  
ℓ+1

. (32)

Note that now, again, we have just one edge to the right of e and this is an edge of H2
1 . Furthermore,

by (15) and (28),

|Q ′

0 ∩ Ai| ≤ k − p + k − 2ℓ − 1 ≤ 2k − 2ℓ − 3,

so, this construction is feasible.
The case j = n+ j′ is analogous. In summary, depending on the case, the path Q ′

0 consists of three
o five edges, all contained in H1 ∪H2 + e. To simplify further notation, from now on, let us assume
w.l.o.g.) that i ∈ {1, n + 1} and j ∈ {n, 2n}. In fact, we may arbitrarily renumber vertices 1, . . . , n
and, accordingly, vertices n + 1, . . . , 2n. Since in the rest of the construction we are going to use
only edges e′ of H that intersect exactly one of the sets U with 1 ≤ i ≤ n, such a renumbering
2 i

13
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will not affect the sets Umin(e′) (which are crucial for the edges of H2), regardless of how may sets
i with n + 1 ≤ i ≤ 2n are intersected by e′.
We complete the construction of Q0 by adding k− 2ℓ new vertices from Bn on the left of Q ′

0 and
k − 2ℓ new vertices from B1 on the right of Q ′

0, that is,

Q0 = bn . . . bn  
k−2ℓ

Q ′

0 b1 . . . b1  
k−2ℓ

. (33)

Note that k − 2ℓ ≥ 1 and that Q0 always begins with at least k − ℓ + 1 vertices from Un and ends
ith at least k − ℓ + 1 vertices from U1. Also, technically, Q0 is not an (ℓ, k)-path as at either end

it is, on purpose, ‘‘unfinished’’.
Before continuing with the construction, let us summarize how many vertices have been taken

by Q0 from each set At , t ∈ [n]. To this end, let us partition the set [n] into two subsets

T1 = {t ∈ [n] : t ̸∈ tr(e) and n + t ̸∈ tr(e)},

T2 = [n] \ T1 (34)

and observe that

T1 ⊆ [2, n − 1] and |T2| ≤ |tr(e)| ≤ k. (35)

Trivially, by the construction of Q0, for all t ∈ T1,

(Ut ∪ Un+t ) ∩ Q0 = ∅. (36)

Fact 21.

|Q0 ∩ At | ≤

⎧⎨⎩
k − p for t ∈ {1, n} ,

ℓ for t ∈ T2 ∩ [2, n − 1] ,

0 for t ∈ T1 .

(37)

Proof. If t ∈ T1 then the statement follows from (36). If t ∈ T2 ∩[2, n−1], then by the construction
f Q0,

Q0 ∩ At ⊆ Q0 ∩ Ut = e ∩ Ut

and the second line of (37) holds by Fact 20.
Let t = 1. If i = 1, then the R-H-S of Q ′

0 is like in diagram (30), and so, by (28),

|Q0 ∩ A1| = |e ∩ A1| ≤ |e ∩ U1| ≤ k − p.

f, on the other hand, i = n + 1, then consider two cases with respect to whether 1 ∈ tr(e) or not.
If 1 ̸∈ tr(e), then by diagrams (31) or (32), and by (15),

|Q0 ∩ A1| = ℓ + 1 ≤ k − p.

(To see the last inequality one has to check all 3 cases for p.)
On the other hand, if 1 ∈ tr(e), the procedure selecting i implies that

|e ∩ Un+1| = ρ(C1) ≥ ℓ + 1.

Furthermore, as 1 and n+ 1 are two vertices of the same component of G, and thus of G3, we have
{1, n + 1} ⊆ X and, by (29),

|e ∩ U1| + |e ∩ Un+1| ≤ |eX | ≤ k − p. (38)

Hence, again by diagrams (31) or (32),

|Q0 ∩ A1| ≤ |e ∩ U1| + (ℓ + 1) ≤ |e ∩ U1| + |e ∩ Un+1| ≤ k − p.

The proof for t = n is analogous, except that in the case j = 2n, n ∈ tr(e), to get an analog

of (38), instead of (29) we use the inequality |tr(e) \ {n, 2n}| ≥ c(e) − 1 ≥ p which immediately

14



A. Ruciński and A. Żak European Journal of Combinatorics 109 (2023) 103659

4

T
w
t

R
w

w
|

t

P

implies that

|e ∩ Un| + |e ∩ U2n| ≤ k − p. □

.4. Construction of bridges Q1, . . . ,Qn−1

Since G1 is maximally non-hamiltonian and 1n ̸∈ G1, there is a hamiltonian path in G1
which begins at vertex 1 and ends at vertex n. W.l.o.g., we assume that its vertex sequence is
1, 2, 3, . . . , n − 1, n. Based on this hamiltonian path we will build a hamiltonian (ℓ, k)-cycle in H .

First, we construct n−1 pairwise disjoint edges, e1 . . . , en−1 ∈ H1, such that they are also disjoint
from e and for each t = 1, . . . , n−1, et contains ⌊k/2⌋ vertices from At followed, if k is odd, by one
vertex from

⋃2n
s=n+1 Bs and then ⌊k/2⌋ vertices from At+1 (see the diagram below).

et = at . . . at  
⌊k/2⌋

(∗) at+1 . . . at+1  
⌊k/2⌋

.

hus, for each s = 2, . . . , n − 1 we need 2⌊k/2⌋ vertices of As which is feasible by (11) and (37),
hile for s ∈ {1, n} we only need ⌊k/2⌋ vertices of As, which is again possible by (11) and (37), and
he definition of p in (15).

Next we set aside pairwise disjoint (k − 2ℓ)-element sequences of vertices L1, . . . , Ln−1 and
1, . . . , Rn−1 which are also disjoint from Q0 ∪ e1 ∪ · · · ∪ en−1 and such that for all t = 1, . . . n − 1
e have Lt ⊂ Bt , while

Rt ⊂ An+t+1 if t + 1 ∈ T1 ,

Rt ⊂ Bt+1 if t + 1 ∈ T2 ,

hich is feasible by (11) together with (36), and (12) together with (59), and the bound |Q0 ∩ Bt | ≤

Q0| < 7k. Finally, for all t = 1, . . . n − 1 set

Qt = Lt , et , Rt ,

hat is,

Qt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
bt . . . bt  

k−2ℓ

at . . . at  
⌊k/2⌋

(∗) at+1 . . . at+1  
⌊k/2⌋

an+t+1 . . . an+t+1  
k−2ℓ

if t + 1 ∈ T1 ,

bt . . . bt  
k−2ℓ

at . . . at  
⌊k/2⌋

(∗) at+1 . . . at+1  
⌊k/2⌋

bt+1 . . . bt+1  
k−2ℓ

if t + 1 ∈ T2 .
(39)

So far we have constructed all bridges. Let us summarize how many vertices of each set Ut ,
t ∈ [n], were consumed by them. In addition, for future purposes, we are also interested in the
usage of An+t , t ∈ T1. Let Q =

⋃n−1
t=0 Qt (here Qt ’s are understood as sets, not sequences).

Fact 22. We have the following bounds.

(i) For each t ∈ T1 , |Q ∩ At | = 2⌊k/2⌋, |Q ∩ Bt | = k − 2ℓ, and |Q ∩ An+t | = k − 2ℓ.
(ii) For each t ∈ T2 , |Q ∩ Ut | ≤ 2⌊k/2⌋ + 4k.

roof. In general, Q ∩ Ut = (Q0 ∩ Ut ) ∪ (Qt ∩ Ut ) ∪ (Qt−1 ∩ Ut ), where we assume Qn = ∅ for
convenience. By (36), when t ∈ T1, we have Q0 ∩Ut = ∅ and Q0 ∩An+t = ∅. Also then, by inspecting
(39), |Qt ∩ At | = ⌊k/2⌋ and |Qt ∩ Bt | = k − 2ℓ, while |Qt−1 ∩ At | = ⌊k/2⌋, |Qt−1 ∩ Bt | = 0 and
|Qt−1 ∩ An+t | = k − 2ℓ. This proves part (i).

When t ∈ [2, n − 1] ∩ T2, we have |Q0 ∩ Ut | = |e ∩ Ut | ≤ ℓ by Fact 20, and, again by inspection,
|Qt ∩ Ut | = |Qt−1 ∩ Ut | = ⌊k/2⌋ + k − 2ℓ, so, altogether, |Q ∩ Ut | ≤ 2⌊k/2⌋ + 2(k − 2ℓ) + ℓ ≤

2⌊k/2⌋ + 4k.
Consider now the case t = 1. Then i = 1 or i = n + 1. If i = 1, then bounding trivially

|e ∩ U | ≤ k, by (30) and (33), we have |Q ∩ U | ≤ k + (k − ℓ) + (k − 2ℓ). This, together with
1 0 1

15
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|Q1 ∩ U1| = ⌊k/2⌋ + k − 2ℓ, yields that

|Q ∩ U1| ≤ ⌊k/2⌋ + 4k − 5ℓ ≤ ⌊k/2⌋ + 4k.

f i = n + 1, then by (31), (32) (with i′ = 1), (33) and (39), and again bounding |e ∩ U1| ≤ k, we
btain

|Q ∩ U1| ≤ (ℓ + 1) + (k − 2ℓ) + (⌊k/2⌋ + k − 2ℓ) + 4 = ⌊k/2⌋ + 3k − 3ℓ + 1 ≤ ⌊k/2⌋ + 4k.

The case t = n is very similar. □

4.5. Construction of paths P1, . . . , Pn

Next, we construct n pairwise vertex disjoint (ℓ, k)-paths Pt ⊆ H2, t = 1, . . . , n, such that each Pt
onsists of all vertices from Ut \Q and some vertices from

⋃2n
s=n+1 Us \Q , so that together with the

equences Q0, . . . ,Qn−1 they exhaust all N vertices and, after some mending, will yield the ultimate
hamiltonian (ℓ, k)-cycle.

By the definition of H2 and Fact 13, each edge f ∈ Pt will have to satisfy min(f ) = t and
f ∩ (Ut \ Q )| ≥ k − ℓ + 1. We are going to build the paths P1, . . . , Pt , in two stages.

bstract construction
First, instead of

⋃2n
s=n+1 Us, we use vertices from some (abstract and disjoint from V ) infinite

et W and construct paths P ′

1, . . . , P
′
t which are as large as possible and each edge f ∈ P ′

t satisfies
f ∩ (Ut \ Q )| ≥ k−ℓ+1. By Definition 4 of function ν with U = Ut \Q we have |V (P ′

t )| = ν(|Ut \ Q |).
It will turn out that the total length of these paths and the sequences Q0, . . . ,Qn−1 exceeds N , so
n the second stage we will truncate them to the total length N (by removing some vertices of W )
nd, finally, replace the remaining vertices of W by those in

⋃2n
s=n+1 Us, obtaining the desired paths

1, . . . , Pt .
We first estimate the lengths of the paths P ′

1, . . . , P
′
t . By Fact 22(i), (11), and (12), for t ∈ T1 we

ave |Ut \ Q | = xt − (2⌊k/2⌋ + k − 2ℓ). Thus, by (57) and (58),

|V (P ′

t )| = ν ((xt − 2⌊k/2⌋) − (k − 2ℓ)) = ν(xt − 2⌊k/2⌋) if t ∈ T1 (40)

Similarly (but understandably with less precision), by Fact 22(ii), (11), (12), and (49), we have

|V (P ′

t )|≥ν ((xt − 2⌊k/2⌋) − 4k) ≥ ν(xt − 2⌊k/2⌋) − 4k2 if t ∈ T2. (41)

Notice that |Qt | = 3k − 4ℓ for all t = 1, . . . , n − 1 and, as Q ′

0 has at least 3 edges, |Q0| ≥

(k− 2ℓ)+ 3(k− ℓ)+ ℓ ≥ 3k− 4ℓ. Using these estimates and recalling (34), (35), (40), and (41), we
ow bound from below the total number N ′ of vertices appearing in all so far constructed objects.

N ′
=

n−1∑
t=0

|Qt | +

n∑
t=1

|V (P ′

t )|

≥ (3k − 4ℓ)n +

∑
t∈T1

ν(xt − 2⌊k/2⌋) +

∑
t∈T2

(ν(xt − 2⌊k/2⌋) − 4k2)

≥ (3k − 4ℓ)n +

n∑
t=1

ν(xt − 2⌊k/2⌋) − 4k3 > N,

here the last inequality holds by (10).

rimming
Recall that N is divisible by k − ℓ. It is easy to check that the same is true for N ′. As long as

′ > N we apply the following iterative procedure of trimming the paths P ′

1, . . . , P
′
t : choose a path,
which currently contains the largest number of vertices of W and remove from it precisely k − ℓ

16
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Fig. 3. Illustration of trimming for k = 5 and ℓ = 2; the segment to the right of the dotted line remains unchanged,
while the one to the left retains only of vertices from Ut .

eftmost vertices of W (according to the order of their appearance on the path). As, by (11)–(13),
62), (14) and Fact 22⏐⏐⏐ n⋃

t=1

(
V (P ′

t ) ∩ W
) ⏐⏐⏐ ≥ N ′

−

n−1∑
t=0

|Qt | −

n∑
t=1

|Ut | > N − 5kn −

n∑
t=1

|Ut |

=

2n∑
t=n+1

|Ut | − 5kn ≥ n · min bt − 5kn ≥ (4k4−5k)n, (42)

a path with at least k− ℓ vertices of W exists (as long as N ′ > N). It is easy to see that, treating the
remaining vertices of the truncated path as consecutive, we obtain a new, shorter (by k − ℓ) path
such that each of its edges still has at least k− ℓ + 1 vertices of Ut \Q , see Fig. 3. Indeed, the edges
to the right of the rightmost removed element (dotted line in Fig. 3) remain the same as before
trimming (due to the fact that we have removed exactly (k−ℓ) leftmost vertices of W ), while those
to the left have now all vertices in Ut \ Q . For the remaining edge (the one with vertices to the left
and to the right) we argue similarly. Its part to the right remains unchanged (and so has the same
number of vertices from Ut \ Q as before trimming), while the part to the left has now all vertices
in Ut \ Q (at least as many as before trimming).

We conclude the procedure when the current number of vertices in all the paths and sequences
Q0, . . . ,Qn−1 (which remain untouched) reaches N . Let the resulting paths be denoted by P ′′

1 , . . . , P ′′
n .

Furthermore, note that by (40), (41), (47) and (59), at the beginning of the trimming we had⏐⏐V (P ′

t ) ∩ W
⏐⏐ =

⏐⏐V (P ′

t ) \ Ut
⏐⏐ ≥ ν(xt − k) − 4k2 − xt ≥

k + 1
k

(xt − k) − 4k2 − xt

=
xt
k

− 4k2 − k ≥ 10k3 − 4k2 − k ≥ 5k3. (43)

ince at every stage we removed vertices from a path with the largest number of vertices in W , by
42) and (43),⏐⏐V (P ′′

t ) ∩ W
⏐⏐ ≥ min{5k3, 4k4 − 5k − (k − ℓ)} = 5k3. (44)

radicating
We still have to eradicate the remaining vertices of W , that is, to replace them by the vertices of

2n
s=n+1 Us. While doing so, we will also prepare the structure of the paths for the final concatenation

nto a hamiltonian (ℓ, k)-cycle. In fact, this preparation will mostly affect only the first edge, call it
′′, of P ′′ for t ∈ T .
t t 1

17
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Preparation: We first change the order of the first k vertices of P ′′
t , so that the vertices on

ositions ℓ + 1, ℓ + 2, . . . k are all from Ut . This is possible because f ′′
t (as well as every other

dge of P ′′
t ) contains at least k− ℓ+ 1 vertices from Ut . Note that this operation may also affect the

econd edge of P ′′
t , but it will still have at least k − ℓ + 1 vertices from Ut . The remaining edges of

′′
t , as disjoint from f ′′

t , remain unchanged. Let us call the resulting path P ′′′
t and its first edge f ′′′

t .
ocusing on f ′′′

t , we see that among its first ℓ vertices at least one is from Ut (because f ′′′
t has at

east k− ℓ+ 1 vertices from Ut ). Now, if there are more than one vertices like this, we swap all but
ne of them with arbitrary vertices of W ∩

(
P ′′′
t \ f ′′′

t

)
(note that by (44) there are enough vertices

of W in P ′′′
t to do this). After this operation the number of vertices from Ut in every edge (but f ′′′

t )
can only increase, so still each edge has at least k − ℓ + 1 vertices from Ut .

Finally, if necessary, we move the unique vertex of Ut among the first ℓ vertices to the ℓ-th
position and, if it belongs to Bt , we exchange it with a vertex of At (which also belongs to P ′′′

t ). Such
a vertex exists, since, by Fact 22(i), out of all vertices of At , precisely 2⌊k/2⌋ were used by Q , while
the remaining ℓ are sitting somewhere on the path P ′′′

t . In summary, after these changes we obtain
a new path P ′′′′

t such that, for each t ∈ T1, the structure of its first edge is

f ′′′′

t = w, . . . , w  
ℓ−1

, at , ut . . . , ut  
k−ℓ

. (45)

Replacement: Finally, to obtain the desired paths Pt ∈ H2, we replace the vertices of W in
n
t=1 V (P ′′′′

t ) by the vertices of
⋃2n

s=n+1 Us in the following order. First, for each t ∈ T1, we replace
he ℓ − 1 vertices of W at the left end of f ′′′′

t by vertices from An+t . This is possible, since by (11)
nd Fact 22, there are at least k−3 ≥ ℓ−1 vertices of An+t unused so far. As a result, the first edge

of each path Pt , t ∈ T1, by (45), takes the form

ft = an+t , . . . , an+t  
ℓ−1

, at , ut . . . , ut  
k−ℓ

. (46)

The remaining vertices of W in
⋃n

t=1 V (P ′′′′
t ) are replaced arbitrarily.

4.6. Construction of the hamiltonian cycle C

We will show that the following sequence

C = Q0, P1,Q1, P2,Q2, P3, . . . ,Qn−1, Pn.

spans a hamiltonian (ℓ, k)-cycle in H1 ∪ H2 + e. Recall that for each t ∈ [n], Pt ⊆ H2. Also, each
equence Qt , t ∈ [0, n − 1], consists of a core path (Q ′

0 ⊆ H1 ∪ H2 + e for t = 0 and just one edge
t ∈ H1 for t ∈ [n − 1]) and two ‘‘loose ends’’ of k − 2ℓ vertices each. Thus, there are exactly 2n
dges of C which are not contained in Q0 ∪ P1 ∪ · · · ∪ Qn−1 ∪ Pn and require a proof that they also

belong to H1 ∪ H2. Each of these new edges shares exactly k − ℓ vertices with a Qt and ℓ vertices
ith either Pt (Pn for t = 0) or Pt+1, t = 0, . . . , n−1. Let us denote them by gL

t and gR
t , respectively

(see Figs. 4 and 5). For convenience, we set P0 = Pn.
Let us first focus on gL

t , t ∈ [0, n−1]. By the construction of Qt (see (30)–(33) for t = 0 and (39)
for t ≥ 1), we have gL

t ∩ Qt ⊂ Ut , so |gL
t ∩ Qt ∩ Ut | = k − ℓ. Further, as Pt ⊂ H2, among its last ℓ

vertices there must be at least one from Ut . Since |gL
t ∩ V (Pt )| = ℓ, it altogether yields that gL

t ∈ H2.
In the same way one can prove that gR

t ∈ H2 for all t such that t + 1 ∈ T2 (see Fig. 4).
Finally, consider gR

t with t+1 ∈ T1, (see Fig. 5). By (39) and (46) we have {t+1, n+t+1} ∈ tr(gR
t ),

|gR
t ∩ At+1+n| = k − ℓ − 1 and |gR

t ∩ At+1| = ℓ + 1. Hence, gR
t ∈ H2

1 .

5. Concluding remarks

After fixing an inaccuracy in the first version of our proof, it turned out, quite disappointedly,
that Theorem 2, and thus Corollary 3, does not cover the case ℓ = ⌊k/2⌋ = (k − 1)/2 for odd k.

owever, a few little changes in the proof can close this gap. In order to confirm Conjecture 1 for
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Fig. 4. Construction of C , t + 1 ∈ T2 .

Fig. 5. Construction of C , t + 1 ∈ T1 .

= (k − 1)/2, one has to prove Lemmas 10 and 11 for

2 ≤ p = ℓ = (k − 1)/2,

hich together will imply a corresponding version of Theorem 2 for p = ℓ = (k − 1)/2, and thus
onjecture 1 for ℓ = (k − 1)/2.
The change in the proof boils down to replacing 2⌊k/2⌋ + ℓ with 2⌊k/2⌋ + ℓ − 1 in (11) and,

ccordingly, xi −2⌊k/2⌋− ℓ with xi −2⌊k/2⌋− ℓ+1 in (12). Notice that, for each i, |Ui| = |Ai|+ |Bi|

tays unchanged. As a result, (20) and (21) remain true, since now |Aj| ≤ 3⌊k/2⌋ − 1. Moreover,
lthough inequality (24) is relaxed to⏐⏐(V (Pi) ∩ Aji

)
\ (e1 ∪ · · · ∪ em)

⏐⏐ ≥ ℓ,

it still implies that degTr(M)(ji) ≤ 1, because
⏐⏐Aji

⏐⏐ ≤ 2⌊k/2⌋+ℓ−1. This saves Claims 16 and 17, while
all estimates of the length of C remain intact (they rely mainly on the cardinalities of Ut which have
ot changed). Thus, the proof of Lemma 10 is retained.
In order to modify the proof of Lemma 11, in Section 4.2 one has to choose i and j according to

hether ρ(C1) ≤ ℓ−1 or ρ(C1) ≥ ℓ, instead of ρ(C1) ≤ ℓ or ρ(C1) ≥ ℓ+1 (and the same for ρ(C2)).
his does not affect the structural properties of the bridge Q0, as consecutive edges intersect in ℓ

ertices only, but at the same time strengthens Fact 20 to |e ∩ Ut | ≤ ℓ− 1. This, in turn, allows one
o replace the middle part of Fact 21 by |Q0 ∩ At | ≤ ℓ − 1, compensating for the decrease of |At |.

Indeed, since all bridges Q1, . . . ,Qn−1, defined in (39), use together at most 2⌊k/2⌋ vertices from
ach set At , t = 2, . . . , n − 1, this part of Fact 21 implies that there are sufficiently many vertices
n the sets At , t = 2, . . . , n − 1, to construct all bridges (including Q0). On the other hand, for each

∈ {1, n}, the bridges Q1, . . . ,Qn−1 require only at most ⌊k/2⌋ vertices from At . Hence, by the first
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line of Fact 21 (with p = ℓ = (k − 1)/2), we have

k − p + ⌊k/2⌋ = k ≤ 3(k − 1)/2 − 1 = |At |,

since k ≥ 5. Consequently, the construction of all bridges can be completed. As the remainder of
the proof of Lemma 11 does not involve the (modified) cardinalities of the sets At , the construction
of the Hamiltonian cycle C can be finalized basically in the same way as presented in Sections 4.5
and 4.6.

Let us summarize that, owing to the above extension, Conjecture 1 is now confirmed for ℓ = 1,
all (k − 1)/3 ≤ ℓ ≤ k/2, and all ℓ ≥ 0.8k. We believe that the two missing ranges of ℓ will require
some new ideas.
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Appendix. Properties of function ν

In [7] we proved the following simple facts.

Proposition 23 ([7]). Function ν has the following properties.

(a) For every x ≥ (k − 3)(k − 1), ν(x) ≥ x +
⌊ x

k−1

⌋
+ 3 − k.

(b) For every x ≥ k − 2, ν(x) ≤ kx.
(c) For all x ≥ 2, ν(x − 1) ≥ ν(x) − k.

We will now note three consequences of the above proposition. For x ≥ k3 it follows from
roposition 23(a) that

x ≤
k − 1
k

ν(x) +
(k − 1)(k − 2)

k
≤

k
k + 1

ν(x) ≤ ν(x). (47)

Indeed, after dropping the floor in (a), we get the first inequality above, while the second inequality
s equivalent to ν(x) ≥ (k+ 1)(k− 1)(k− 2), which is true by the assumption on x. Moreover, since
(x) equals ℓ modulo k − ℓ, Proposition 23(c) can be strengthened to yield, for x ≥ 2,

ν(x) = ν(x − 1) or ν(x) − ν(x − 1) = k − ℓ. (48)

Finally, by iterating the inequality of Proposition 23(c) t times, we have

ν(x + t) ≤ ν(x) + tk. (49)

It follows directly from these definitions that

z ≥ ν (µ(z)) and z < ν
(
µ∗(z)

)
. (50)

The following properties of functions ν, µ, and µ∗ will turn out to be crucial in our proofs.

Proposition 24. We have

ν
(
µ∗(z)

)
− ν (µ(z)) = k − ℓ, (51)

ν (µ(z)) = ν (µ(z) − (k − 2ℓ)) , and ν
(
µ∗(z)

)
= ν

(
µ∗(z) + (k − 2ℓ)

)
. (52)

Proof. Equality (51) follows from (5) and (48). In order to deduce (52), we first determine an exact
formula for function ν from which it will follow quickly. Set κ = k − ℓ + 1 and β = 2k − 4ℓ + 2
20
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and notice that

max{κ, β} =

{
κ if ℓ ≥

k+1
3 ,

β if ℓ < k+1
3 .

et us choose an integer x and define integers q := q(x, k, ℓ) and r := r(x, k, ℓ) by setting

x − κ = qmax{κ, β} + r, where 0 ≤ r ≤ max{κ, β} − 1. (53)

We claim that

ν(x) =

{
q(2k − 2ℓ) + k if r ≤ k − 2ℓ
q(2k − 2ℓ) + 2k − ℓ if r ≥ k − 2ℓ + 1

(54)

Formula (54) shows that ν(x) is a step functions which is constant on intervals (steps) of lengths,
lternately, k− 2ℓ+ 1, and max{κ, β}− 1− (k− 2ℓ) ≥ β − 1− (k− 2ℓ) = k− 2ℓ+ 1. This, together

with the definitions of µ and µ∗, implies equalities (52). Indeed, let, for instance, x = µ(z) for some
. Then ν(x) ≤ z but ν(x + 1) > z. In view of (54) this means that in the expression (53) we have

either r = k − 2ℓ or r = max{κ, β} − 1, that is, x is at the right end of a step of ν. Thus, clearly,
ν(x − (k − 2ℓ)) = ν(x), as required. For the second equality in (52), observe that if x = µ∗(z), then
ν(x) > z but ν(x − 1) ≤ z, so x sits at the left end of a step of ν.

In order to show (54), we will first prove an upper bound valid for all (ℓ, k)-paths P satisfying
(4) and then construct a particular (ℓ, k)-path P0 which achieves this bound.

Let P be an (ℓ, k)-path with t edges satisfying (4). Let e1, . . . , et be the edges of P in the linear
order underlying P . Set s =

⌊ t+1
2

⌋
. Clearly, t ∈ {2s − 1, 2s}. Further, set

fi = e2i−1 ∪ e2i \ e2i+1, i = 1, . . . , s − 1.

ince, by (4), |e2i−1 ∩ U | ≥ κ for each i ∈ {1, . . . , s}, we have |fi ∩ U | ≥ κ for each i ∈ {1, . . . , s−1},
too. However, if ℓ < (k + 1)/3, then this bound can be improved. As, also, |e2i ∩ U | ≥ κ for each
i ∈ {1, . . . , s − 1}, we infer that

|(e2i \ (e2i−1 ∪ e2i+1)) ∩ U | ≥ κ − 2ℓ = k − 3ℓ + 1.

Therefore,

|fi ∩ U | ≥ β i = 1, . . . , s − 1, and |e2s−1 ∩ U | ≥ κ.

Because f1, f2, . . . , fs−1, e2s−1 are pairwise disjoint, this implies, in view of (53), that s− 1 ≤ q. Also
by (4), if t = 2 s, then

|(et \ e2s−1) ∩ U | ≥ κ − ℓ = k − 2ℓ + 1.

Thus, if r ≤ k − 2ℓ, then t = 2s − 1 and

|V (P)| =

s−1∑
i=1

|fi| + |e2s−1| = (s − 1)(2k − 2ℓ) + k ≤ q(2k − 2ℓ) + k.

therwise, t ≤ 2s and

|V (P)| =

s−1∑
i=1

|fi| + |e2s−1 ∪ e2s| = (s − 1)(2k − 2ℓ) + 2k − ℓ

≤ q(2k − 2ℓ) + 2k − ℓ.

To show equality, let us construct P0 satisfying (4) which achieves this bound. We will represent
0 as a binary sequence Q over the alphabet {u, w}, where each vertex of U is represented by u and
ach vertex of V (P0)∩W is represented by w (and the edges of P0 follow the sequence Q according
o the definition of an (ℓ, k)-path).

Assume first that ℓ ≥
k+1
3 . Sequence Q consists of q identical blocks plus another block at the

nd (see diagram (55) below). Each block begins with a u-run of length κ − ℓ, followed by a w-run
21
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of length ℓ − 1, followed by a u-run of length ℓ, followed by a w-run of length k − 2ℓ. The final
lock begins with the same runs as all previous blocks, that is, a u-run of length κ − ℓ, followed
y a w-run of length ℓ − 1, followed by a u-run of length ℓ. If r ≤ k − 2ℓ, then this is it, except
hat we arbitrarily convert r symbols w to u. If r ≥ k− 2ℓ + 1, we add a u-run of length r followed
y a w-run of length k − ℓ − r , creating one more edge. In this case there is no need for any final
lteration.

e1  
u, . . . , u  

κ−ℓ

w, . . . , w  
ℓ−1

, u, . . . , u  
ℓ

w, . . . , w  
k−2ℓ

e3  
u, . . . , u  

κ−ℓ

w, . . . , w  
ℓ−1

, u, . . . , u  
ℓ

w, . . . , w  
k−2ℓ

· · · (55)
e2q−1  

u, . . . , u  
κ−ℓ

w, . . . , w  
ℓ−1

, u, . . . , u  
ℓ

w, . . . , w  
k−2ℓ

e2q+1  
u, . . . , u  

κ−ℓ

w, . . . , w  
ℓ−1

, u, . . . , u  
ℓ

(u, . . . , u  
r

, w, . . . , w)  
k−ℓ−r

t is easy to check that P0 satisfies (4). Indeed, the number of symbols u equals qκ + κ + r = x
hich agrees with (53). Moreover, every edge of P0 covers at least κ symbols u. This is clearly seen
n diagram (55) for edges e2i+1, i = 1, . . . , q. However, since ℓ ≥ k− ℓ, every edge e2i, i = 1, . . . , q,
lso contains at least κ − ℓ + ℓ = κ symbols u. And the last edge, e2q+2, if present, contains at least
+ r ≥ ℓ + (k − 2ℓ + 1) = τ symbols u too. (We write ‘‘at least’’ as we do not count possible
onverts from w to u.) Finally, as desired (cf. (54)),

|V (P0)| =

{
q(k + k − 2ℓ) + k = q(2k − 2ℓ) + k if r ≤ k − 2ℓ
q(k + k − 2ℓ) + k + (k − ℓ) = q(2k − 2ℓ) + 2k − ℓ if r ≥ k − 2ℓ + 1.

(56)

For ℓ < (k+1)/3 we modify the above construction by replacing each w-run of length k−2ℓ by
u-run of length k−3ℓ+1 followed by a w-run of length ℓ−1. Again, it is easy to check that both,
4) and (56), hold. Indeed, the total number of symbols u is q(κ + k− 3ℓ + 1)+ κ + r = qβ + κ + r
hich, again, agrees with (53). Moreover, each edge of P0 covers at least κ symbols u. Again, this is
lear for odd-index edges, while for even indices notice that, this time, ℓ < κ − ℓ, so these edges
ontain each at least ℓ + (k − 3ℓ + 1) + ℓ = τ symbols u. Finally, the above modification of our
onstruction does not change the total number of vertices in P0, so |V (P0)| is the same as in (56). □

By (52) in Proposition 24 and the definitions of x and x∗ above,

ν(x − 2⌊k/2⌋) = ν(µ(z)) = ν(µ(z) − (k − 2ℓ)) = ν (x − 2⌊k/2⌋ − (k − 2ℓ)) (57)

nd

ν(x∗
− 2⌊k/2⌋) = ν(µ∗(z) + (k − 2ℓ)) = ν(µ∗(z)) = ν

(
x∗

− 2⌊k/2⌋ − (k − 2ℓ)
)
. (58)

lso, by Proposition 23(b), the monotonicity of ν, (51), (50), the definition of z in (9), and (8),

x ≥
ν(x)
k

≥
ν(µ(z))

k
=

ν(µ∗(z)) − (k − ℓ)
k

>
z − k
k

≥
N
kn

+
4k2

n
− 4 ≥ 11k4 − 4 ≥ 10k4. (59)

n particular, x − 2⌊k/2⌋ ≥ k3, which justifies several future applications of (47).
On the other hand, by (47),(9), (49), (50), and (8),

x ≤ ν(x) ≤ ν(µ(z) + k) ≤ ν(µ(z)) + k2 ≤ z + k2 ≤
N + 4k3

+ k2 ≤ 12k5. (60)

n

22
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Proposition 25. There exist xi ∈ {x, x∗
}, i = 1, . . . , n, such that

nz <

n∑
i=1

ν(xi − 2⌊k/2⌋) ≤ nz + k − ℓ. (61)

Proof. Set y := ν (x − 2⌊k/2⌋) and y∗
= ν (x∗

− 2⌊k/2⌋). By (9), (57), and (58), y = ν(µ(z)) and
y∗

= ν(µ∗(z)). Thus, by (51), y∗
− y = k− ℓ, and, by (50), y ≤ z while y∗ > z. We are going to show

by induction on m = 1, . . . , n that there exists a choice of xi ∈ {x, x∗
}, i = 1, . . . ,m, such that (61)

is satisfied with n replaced by m. Indeed, let x1 = x∗, then z < y∗
= y + (k − ℓ) ≤ z + (k − ℓ). Fix

2 ≤ m ≤ n and assume the statement is true for m − 1. Set Σ :=
∑m−1

i=1 ν(xi − 2⌊k/2⌋). Then

mz < Σ + y∗
≤ mz + 2(k − ℓ), while mz − (k − ℓ) < Σ + y ≤ mz + (k − ℓ).

ince (Σ + y∗) − (Σ + y) = k − ℓ, we have either Σ + y∗
≤ mz + (k − ℓ) or mz < Σ + y, which

completes the proof. □

Proof of Proposition 5. The R-H-S of (10) is the L-H-S of (61). On the other hand, by the R-H-S of
(61), (47), and (59),∑

i∈I

ν(xi − 2⌊k/2⌋) ≤

n∑
i=1

ν(xi − 2⌊k/2⌋) − min
1≤i≤n

ν(xi − 2⌊k/2⌋)

≤ N + 4k3 − (3k − 4ℓ)n + k − ν(x − 2⌊k/2⌋)

≤ N + 4k3 − (3k − 4ℓ)n + 2k − x ≤ N − (3k − 4ℓ)n − 8k4,

which is the L-H-S of (10). □

Indeed, by (11), (12), (9), (47), (61), and (8)
2n∑
i=1

|Ai| +

n∑
i=1

|Bi| =

n∑
i=1

xi + n (2k − 2ℓ − 3) =

n∑
i=1

(xi − 2⌊k/2⌋) + n (2⌊k/2⌋ + 2k − 2ℓ − 3)

≤
k

k + 1

n∑
i=1

ν(xi − 2⌊k/2⌋) + 3kn <
k

k + 1

(
N + 4k3 − (3k − 4ℓ)n + 2k

)
+ 3kn

< N −
N

k + 1
+

k2

k + 1

(
4k2 − 3n + 2

)
+ 5kn < N −

(
N

k + 1
− 5kn

)
< N − 4k4n.

hus, for each i = n + 1, . . . , 2n, we have

bi ≥

⎢⎢⎢⎣1
n

2n∑
j=n+1

bj

⎥⎥⎥⎦ ≥ 4k4. (62)

while, trivially,

bi ≤

⎡⎢⎢⎢1
n

2n∑
j=n+1

bj

⎤⎥⎥⎥ ≤ N/n + 1 ≤ 12k5, (63)

where the last inequality follows by (8). □
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