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Abstract. For positive integers k and �, a k-uniform hypergraph is
called a loose path of length �, and denoted by P

(k)
� , if its vertex set

is {v1, v2, . . . , v(k−1)�+1} and the edge set is {ei = {v(i−1)(k−1)+q : 1 ≤
q ≤ k}, i = 1, . . . , �}, that is, each pair of consecutive edges intersects

on a single vertex. Let R(P
(k)
� ; r) be the multicolor Ramsey number of

a loose path that is the minimum n such that every r-edge-coloring of
the complete k-uniform hypergraph K

(k)
n yields a monochromatic copy

of P
(k)
� . In this note we are interested in constructive upper bounds on AQ1

R(P
(k)
� ; r) which means that on the cost of possibly enlarging the order

of the complete hypergraph, we would like to efficiently find a monochro-
matic copy of P

(k)
� in every coloring. In particular, we show that there

is a constant c > 0 such that for all k ≥ 2, � ≥ 3, 2 ≤ r ≤ k − 1,
and n ≥ k(� + 1)r(1 + ln(r)), there is an algorithm such that for every

r-edge-coloring of the edges of K
(k)
n , it finds a monochromatic copy of

P
(k)
� in time at most cnk.

1 Introduction

For positive integers k ≥ 2 and � ≥ 0, a k-uniform hypergraph is called a loose
path of length �, and denoted by P

(k)
� , if its vertex set is {v1, v2, . . . , v(k−1)�+1}

and the edge set is {ei = {v(i−1)(k−1)+q : 1 ≤ q ≤ k}, i = 1, . . . , �}, that is, for
� ≥ 2, each pair of consecutive edges intersects on a single vertex (see Fig. 1),
while for � = 0 and � = 1 it is, respectively, a single vertex and an edge. For
k = 2 the loose path P

(2)
� is just a (graph) path on � + 1 vertices.

Let H be a k-uniform hypergraph and r ≥ 2 be an integer. The multicolor
Ramsey number R(H; r) is the minimum n such that every r-edge-coloring of
the complete k-uniform hypergraph K

(k)
n yields a monochromatic copy of H.
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2 A. Dudek and A. Ruciński

Fig. 1. A 4-uniform loose path P
(4)
3 .

For graphs, determining the Ramsey number R(P (2)
� , r) is a well-known prob-

lem that attracted a lot of attention. It was shown by Gerencsér and Gyárfás [6]
that

R(P (2)
� , 2) =

⌊
3� + 1

2

⌋
. (1)

For three colors Figaj and �Luczak [5] proved that R(P (2)
� , 3) ≈ 2�. Soon after,

Gyárfás et al. [7,8] determined this number exactly, showing that for all suffi-
ciently large �

R(P (2)
� , 3) =

{
2� + 1 for even �,

2� for odd �,
(2)

as conjectured earlier by Faudree and Schelp [4]. For r ≥ 4 much less is known.
A celebrated Turán-type result of Erdős and Gallai [3] implies that

R(P (2)
� , r) ≤ r�. (3)

Recently, this was slightly improved by Sárközy [9] and, subsequently, by Davies
et al. [1] who showed that for all sufficiently large �,

R(P (2)
� ; r) ≤ (r − 1/4)(� + 1). (4)

In this note we are mostly interested in constructive bounds which means
that on the cost of possibly enlarging the order of the complete hypergraph, we
would like to efficiently find a monochromatic copy of a target hypergraph F in
every coloring. Clearly, by examining all copies of F in K

(k)
n for n ≥ R(F ; r),

we can always find a monochromatic one in time O(n|V (F )|). Hence, we are
interested in complexity not depending on F , preferably O(nk). Given a k-graph
F , a constant c > 0 and integers r and n, we say that a property R(F, r, c, n)
holds if there is an algorithm such that for every r-edge-coloring of the edges of
K

(k)
n , it finds a monochromatic copy of F in time at most cnk. For graphs, a

constructive result of this type can be deduced from the proof of Lemma 3.5 in
Dudek and Pra�lat [2].

Theorem 1 ([2]). There is a constant c > 0 such that for all � ≥ 3, r ≥ 2, and
n ≥ 2r+1�, property R(P (2)

� , r, c, n) holds.

Our goal is to obtain similar constructive results for loose hyperpaths. How-
ever, to have a reference point we first state, without proof, a general (non-
constructive) upper bound, obtained iteratively for all k ≥ 2, starting from the
Erdős-Gallai bound (3).
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Constructive Ramsey Numbers for Loose Hyperpaths 3

Theorem 2. For all k ≥ 2, � ≥ 3, and r ≥ 2 we have R(P (k)
� ; r) ≤ (k − 1)�r.

One can show that Theorem 2 can be improved for r = 2 or for large �. For
r = 2, using (1) instead of (3) at the base step, one gets, for k ≥ 3,

R(P (k)
� ; 2) ≤ (2k − 5/2)�. (5)

For large �, using (2) instead of (3), we obtain for r = 3 that

R(P (k)
� ; 3) ≤ (3k − 4)�,

and for r ≥ 4, by (4),

R(P (k)
� ; r) ≤ (k − 1)�r − �/4.

By replacing the Erdős-Gallai bound (3) with the assumption on n given in
Theorem 1, the proof of Theorem 2 can be adapted to yield a constructive result.

Theorem 3. There is a constant c > 0 such that for all k ≥ 2, � ≥ 3, r ≥ 2,
and n ≥ 2r+1� + (k − 2)�r, property R(P (k)

� , r, c, n) holds.

Our main constructive bound (valid only for r ≤ k) utilizes a more sophisti-
cated algorithm.

Theorem 4. There is a constant c > 0 such that for all k ≥ 2, � ≥ 3, 2 ≤ r ≤ k,
and n ≥ k(�+1)r

(
1 + 1

k−r+1 + ln
(

1 + r−2
k−r+1

))
, property R(P (k)

� , r, c, n) holds.
For r = 2, the bound on n can be improved to n ≥ (2k − 2)� + k.

Note that for r = 2 the lower bound on n in Theorem 4 is very close to that
in (5). For r = k ≥ 3 the bound assumes a simple form

n ≥ k2(� + 1)(2 + ln(k − 1)).

Furthermore, for r ≤ k − 1, one can show that

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

)
≤ ln

(
1 +

r − 1
k − r

)

which yields the following corollary.

Corollary 1. There is a constant c > 0 such that for all k ≥ 3, � ≥ 3, 3 ≤ r ≤
k − 1, and n ≥ k(� + 1)r

(
1 + ln

(
1 + r−1

k−r

))
, property R(P (k)

� , r, c, n) holds.

We can further replace the lower bound on n by (slightly weaker but simpler)
n ≥ k(� + 1)r(1 + ln r).

Observe that in several instances the lower bound on n in Theorem 4 (and
also in Corollary 1) is significantly better (that means smaller) than the one
in Theorem 3 (for example for large k and k/2 ≤ r ≤ k). On the other hand,
for some instances the bounds in Theorems 3 and 4 are basically the same. For
example, for fixed r, large k and � ≥ k the lower bound is k�r + o(k�). This also
matches asymptotically the bound in Theorem 2.

In this note we only present the proof of Theorem 4.
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4 A. Dudek and A. Ruciński

2 Proof of Theorem 4

Given integers k and 2 ≤ m ≤ k, and disjoint sets of vertices W1, . . . ,Wm−1, Vm,
an m-partite complete k-graph K(k)(W1, . . . ,Wm−1, Vm) consists of all k-tuples
of vertices with exactly one element in each Wi, i = 1, . . . , m − 1, and k − m + 1
elements in Vm. Note that if |Wi| ≥ �, i = 1, . . . ,m−1, and |Vm| ≥ �(k−m)+1 for
m ≤ k−1 (or |Vm| ≥ � for m = k), then K(k)(W1, . . . ,Wm−1, Vm) contains P

(k)
� .

We now give a description of the algorithm. As an input there is an r-coloring
of the edges of the complete k-graph K

(k)
n . The algorithm consists of r − 1

implementations of the depth first search (DFS) subroutine, each round exploring
the edges of one color only and either finding a monochromatic copy of P

(k)
� or

decreasing the number of colors present on a large subset of vertices, until after
the (r−1)st round we end up with a monochromatic complete r-partite subgraph,
large enough to contain a copy of P

(k)
� .

During the ith round, while trying to build a copy of the path P
(k)
� in the

ith color, the algorithm selects a subset Wi,i from a set of still available vertices
Vi ⊆ V and, by the end of the round, creates trash bins Si and Ti. The search
for P

(k)
� is realized by a DFS process which maintains a working path P (in the

form of a sequence of vertices) whose endpoints are either extended to a longer
path or otherwise put into Wi,i. The round is terminated whenever P becomes a
copy of P

(k)
� or the size of Wi,i reaches certain threshold, whatever comes first.

In the latter case we set Si = V (P ).
To better depict the extension process, we introduce the following terminol-

ogy. An edge of P
(k)
� is called pendant if it contains at most one vertex of degree

two. The vertices of degree one, belonging to the pendant edges of P
(k)
� are called

pendant. In particular, in P
(k)
1 all its k vertices are pendant. For convenience, the

unique vertex of the path P
(k)
0 is also considered to be pendant. Observe that

for t ≥ 0, to extend a copy P of P
(k)
t to a copy of P

(k)
t+1 one needs to add a new

edge which shares exactly one vertex with P and that vertex has to be pendant
in P . Our algorithm may also come across a situation when P = ∅, that is, P
has no vertices at all. Then by an extension of P we mean any edge whatsoever.

The sets Wi,i have a double subscript, because they are updated in the later
rounds to Wi,i+1, Wi,i+2, and so on, until at the end of the (r−1)st round (unless
a monochromatic P

(k)
� has been found) one obtains sets Wi := Wi,r−1, i =

1, . . . , r − 1, a final trash set T =
⋃r−1

i=1 Ti ∪ ⋃r−1
i=1 Si and the remainder set Vr =

V \ (
⋃r−1

i=1 Wi ∪ T ) such that all k-tuples of vertices in K(k)(W1, . . . ,Wr−1, Vr)
are of color r. As an input of the ith round we take sets Wj,i−1, j = 1, . . . , i − 1,
and Vi−1, inherited from the previous round, and rename them to Wj,i, j =
1, . . . , i − 1, and Vi. We also set Ti = ∅ and P = ∅, and update all these sets
dynamically until the round ends.
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Constructive Ramsey Numbers for Loose Hyperpaths 5

Now come the details. For 1 ≤ i ≤ r − 1, let

τi =

⎧⎨
⎩

(i − 1)
(

�
k−r+1 + �+1

k−r+2 + · · · + �+1
k−i

)
if 1 ≤ i ≤ r − 2,

(r − 2) �
k−r+1 if i = r − 1,

(6)

and
ti = τi + 2(i − 1).

Note that τi is generally not an integer. It can be easily shown that for all
2 ≤ r ≤ k and 1 ≤ i ≤ r − 1

τi ≤ (i − 1)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
. (7)

Before giving a general description of the ith round, we deal separately with
the 1st and 2nd round.

Round 1. Set V1 = V , W1,1 = ∅, and P = ∅. Select an arbitrary edge e of
color one (say, red), add its vertices to P (in any order), reset V1 := V1\e, and
try to extend P to a red copy of P

(k)
2 . If successful, we appropriately enlarge P ,

diminish V1, and try to further extend P to a red copy of P
(k)
3 . This procedure

is repeated until finally we either find a red copy of P
(k)
� or, otherwise, end up

with a red copy P of P
(k)
t , for some 1 ≤ t ≤ � − 1, which cannot be extended

any more. In the latter case we shorten P by moving all its pendant vertices to
W1,1 and try to extend the remaining red path again. When t ≥ 2, the new path
has t − 2 edges. If t = 2, P becomes a single vertex path P

(k)
0 , while if t = 1, it

becomes empty.
Let us first consider the simplest but instructive case r = 2 in which only

one round is performed. If at some point P = ∅ and cannot be extended (which
means there are no red edges within V1), then we move � − |W1,1| arbitrary
vertices from V1 = V \W1,1 to W1,1 and stop. Otherwise, we terminate Round 1
as soon as

|W1,1| ≥ �.

At that moment, no edge of K(k)(W1,1, V1) is red (so, all of them must be, say,
blue). Moreover, since the size of W1,1 increases by increments of at most 2(k−1),
we have

� ≤ |W1,1| ≤ � + 2(k − 1) − 1,

and, consequently,

|V1| = n − |W1,1| − |V (P )| ≥ n − � − 2(k − 1) + 1 − |V (P (k)
�−1)| ≥ �(k − 2) + 1

by our bound on n. This means that the completely blue copy of K(k)(W1,1, V1)
is large enough to contain a copy of P

(k)
� .

When r ≥ 3, there are still more rounds ahead during which the set W1,1 will
be cut down, so we need to ensure it is large enough to survive the entire process.
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6 A. Dudek and A. Ruciński

To this end we alter the stopping rule as follows. If at some point P = ∅ and
cannot be extended, we move �(k − 1)τ2	 + � + 1 − |W1,1| arbitrary vertices from
V1 = V \W1,1 to W1,1 and stop. Otherwise, we terminate Round 1 as soon as

|W1,1| ≥ (k − 1)τ2 + � + 1. (8)

Since the size of W1,1 increases by increments of at most 2(k −1) and the R-H-S
of (8) is not necessarily integer, we also have

|W1,1| ≤ (k − 1)τ2 + � + 1 + 2(k − 1). (9)

Finally, we set S1 := P , T1 = ∅ for mere convenience, and V1 := V \ (W1,1 ∪
S1 ∪ T1). Note that |S1| ≤ |V (P (k)

�−1)| = (� − 1)(k − 1) + 1. Also, it is important
to realize that no edge of K(k)(W1,1, V1) is colored red.

Round 2. We begin with resetting W1,2 := W1,1 and V2 := V1, and setting
P := ∅, W2,2 = ∅, and T2 := ∅. In this round only the edges of color two (say,
blue) belonging to K(k)(W1,2, V2) are considered. Let us denote the set of these
edges by E2. We choose an arbitrary edge e ∈ E2, set P = e, and try to extend
P to a copy of P

(k)
2 in E2 but only in such a way that the vertex of e belonging

to W1,2 remains of degree one on the path. Then, we try to extend P to a copy
of P

(k)
3 in E2, etc., always making sure that the vertices in W1,2 are of degree

one. Eventually, either we find a blue copy of P
(k)
� or end up with a blue copy P

of P
(k)
t , for some 1 ≤ t ≤ � − 1, which cannot be further extended. We move the

pendant vertices of P belonging to W1,2 to the trash set T2, while the remaining
pendant vertices of P go to W2,2. Then we try to extend the shortened path
again.

We terminate Round 2 as soon as P = ∅ cannot be extended or

|W2,2| ≥ (k − 2)τ2.

In the former case we move �(k − 2)τ2	 − |W2,2| arbitrary vertices from V2 to
W2,2. Note that at the end of this round

|W2,2| ≤ (k − 2)τ2 + 2(k − 2). (10)

We set S2 := V (P ) and V2 := V \(W1,2 ∪ W2,2 ∪ S2 ∪ T2). Observe that no edge
of K(k)(W1,2,W2,2, V2) is red or blue. We will now show that

|T2| ≤ t2 and |W1,2| ≥ (k − 2)τ2. (11)

First observe that

|W1,1| ≤ |W1,2| + |T2| + � − 1. (12)

Indeed, at the end of this round W1,1 is the union of W1,2 ∪ T2 and the vertices
in V (P ) ∩ W1,2 that were moved to S2. Since |V (P ) ∩ W1,2| ≤ � − 1, (12) holds.
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Constructive Ramsey Numbers for Loose Hyperpaths 7

Also note that each vertex in T2 can be matched with a set of k − 2 or k − 1
vertices in W2,2, and all these sets are disjoint. Consequently,

|W2,2| ≥ (k − 2)|T2|. (13)

Inequality (13) immediately implies that

|T2|
(13)

≤ 1
k − 2

|W2,2|
(10)

≤ τ2 + 2 = t2.

Furthermore,

(k − 1)τ2 + � + 1
(8)

≤ |W1,1|
(12)

≤ |W1,2| + |T2| + � − 1 ≤ |W1,2| + τ2 + � + 1,

completing the proof of (11).
From now on we proceed inductively. Assume that i ≥ 3 and we have just

finished round i − 1 constructing so far, for each 1 ≤ j ≤ i − 1, sets Sj , Tj , and
Wj,i−1, satisfying

|Wj,i−1| ≥ k − i + 1
i − 2

τi−1, (14)

|Si−1| ≤ |V (P (k)
�−1)|, and |Ti−1| ≤ ti−1, and the residual set

Vi−1 = V \
i−1⋃
j=1

(Wj,i−1 ∪ Sj ∪ Tj)

such that K(k)(W1,i−1, . . . ,Wi−1,i−1, Vi−1) contains no edge of color 1, 2, . . . , or
i − 1.

Round i, 3 ≤ i ≤ r − 1. We begin the ith round by resetting W1,i :=
W1,i−1, . . . ,Wi−1,i := Wi−1,i−1, and Vi := Vi−1, and setting P := ∅, Wi,i := ∅,
and Ti := ∅. We consider only edges of color i in K(k)(W1,i, . . . ,Wi−1,i, Vi). Let
us denote the set of such edges by Ei.

As in the previous steps we are trying to extend the current path P using
the edges of Ei, but only in such a way that the vertices of degree two in P
belong to Vi. When an extension is no longer possible and P �= ∅, we move
the pendant vertices of P belonging to

⋃i−1
j=1 Wj,i to the trash set Ti, while the

remaining pendant vertices of P go to Wi,i (see Fig. 2). Then we try to extend
the shortened path. We terminate the ith round as soon as P = ∅ cannot be
extended or

|Wi,i| ≥ k − i

i − 1
τi.

In the former case we move �k−i
i−1 τi	−|Wi,i| vertices from Vi to Wi,i. In the latter

case, set Si := V (P ). This yields that

|Wi,i| ≤ k − i

i − 1
τi + 2(k − i). (15)
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8 A. Dudek and A. Ruciński

Fig. 2. Applying the algorithm to a 7-uniform hypergraph. Here i = 4 and path P ,
which consists of edges e1, e2, and e3, cannot be extended. Therefore, the vertices in
V (P ) ∩ (W1,4 ∪ W2,4 ∪ W3,4) are moved to the trash bin T4 and the pendant vertices
in V4 ∩ (e1 ∪ e3) are moved to W4,4.

Similarly as in (12) and (13) notice that for all 1 ≤ j ≤ i − 1

|Wj,i−1| ≤ |Wj,i| +
|Ti|
i − 1

+ � − 1 (16)

and
|Ti| ≤ i − 1

k − i
|Wi,i| ≤ τi + 2(i − 1) = ti. (17)

Thus,

k − i + 1
i − 2

τi−1

(14)

≤ |Wj,i−1|
(16),(17)

≤ |Wj,i|+ τi

i − 1
+2+�−1 = |Wj,i|+ τi

i − 1
+�+1

and, since also
k − i + 1

i − 2
τi−1

(6)
=

k − i + 1
i − 1

τi + � + 1,

we get

|Wj,i| ≥ k − i

i − 1
τi. (18)

Consequently, when the ith round ends, we have (18) for all 1 ≤ j ≤ i. We also
have |Si| ≤ |V (P (k)

�−1)|, |Ti| ≤ ti, and Vi = V \ ⋃i
j=1(Wj,i ∪ Sj ∪ Tj) such that

K(k)(W1,i, . . . ,Wi−1,i,Wi,i, Vi) has no edges of color 1, 2, . . . , or i.
In particular, when the (r − 1)st round is finished, we have, for each 1 ≤ j ≤

r − 1,

|Wj,r−1| ≥ k − r + 1
r − 2

τr−1, (19)

|Sr−1| ≤ |V (P (k)
�−1)| and |Tr−1| ≤ tr−1. Set Wj := Wj,r−1, j = 1, . . . , r − 1, and

Vr := V \⋃r−1
j=1(Wj ∪Sj ∪Tj) and observe that K(k)(W1, . . . ,Wr−1, Vr) has only

edges of color r.
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Constructive Ramsey Numbers for Loose Hyperpaths 9

By (19), for each 1 ≤ j ≤ r − 1

|Wj |
(19)

≥ k − r + 1
r − 2

τr−1
(6)
= �.

Now we are going to show that |Vr| ≥ �(k − r + 1) which will com-
plete the proof as this bound yields a monochromatic copy of P

(k)
� inside

K(k)(W1, . . . ,Wr−1, Vr). (Actually for r ≤ k − 1 it suffices to show that
|Vr| ≥ �(k − r) + 1.)

First observe that

|W1,1| + · · · + |Wr−2,r−2| ≥ |W1| + · · · + |Wr−2| + |T1| + · · · + |Tr−1|. (20)

This is easy to see, since during the process

Wi,i ⊇ Wi,r−1 ∪ (Wi,i ∩ (Ti+1 ∪ · · · ∪ Tr−1)) .

Also,

|W1,1|
(9)

≤ (k − 1)τ2 + 2(k − 1) + � + 1
(7)

≤ (k − 1)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
+ 2(k − 1) + � + 1

and, for 2 ≤ i ≤ r − 1,

|Wi,i|
(15)

≤ k − i

i − 1
τi + 2(k − i)

(7)

≤ (k − i)(� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
+ 2(k − i).

Since
r−1∑
i=1

(k − i) = (k − r/2)(r − 1),

we have by (20) that

|W1| + . . . + |Wr−1| + |T2| + · · · + |Tr−1|

≤ (� + 1)
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))
(k − r/2)(r − 1)

+ (2k − r)(r − 1) + � + 1

≤ k(� + 1)r
(

1
k − r + 1

+ ln
(

1 +
r − 2

k − r + 1

))

+ (2k − r)(r − 1) + � + 1.

As also |Si| ≤ |V (P (k)
�−1)| = (k − 1)(� − 1) + 1 for each 1 ≤ i ≤ r − 1 and

|Vr| = |V | −
r−1∑
i=1

(|Wi| + |Ti| + |Si|),
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we finally obtain, using the lower bound on n = |V |, that

|Vr| ≥ k(� + 1)r − (2k − r)(r − 1) − � − 1 − (r − 1) [(k − 1)(� − 1) + 1]
= �(2r − 3) + (r − 1)(r − 2) + (k − 1) + �(k − r + 1) ≥ �(k − r + 1),

since the first three terms in the last line are nonnegative.
To prove the O(nk) complexity time, observe that in the worst-case scenario

we need to go over all edges colored by the first r−1 colors and no edge is visited
more than once.
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