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Abstract. An ordered matching is an ordered graph which consists of
vertex-disjoint edges (and have no isolated vertices). In this paper we
focus on unavoidable patterns in such matchings. First, we investigate
the size of canonical substructures in ordered matchings and generalize
the Erdős-Szekeres theorem about monotone sequences. We also estimate
the size of canonical substructures in a random ordered matching. Then
we study twins, that is, pairs of order-isomorphic, disjoint sub-matchings.
Among other results, we show that every ordered matching of size n
contains twins of length Ω(n3/5), but the length of the longest twins in
almost every ordered matching is O(n2/3). AQ1

Keywords: Ordered matchings · Unavoidable patterns · Twins

1 Introduction

A graph G is said to be ordered if its vertex set is linearly ordered. Let G and H be
two ordered graphs with V (G) = {v1 < · · · < vm} and V (H) = {w1 < · · · < wm}
for some integer m ≥ 1. We say that G and H are order-isomorphic if for all
1 ≤ i < j ≤ m, vivj ∈ G if and only if wiwj ∈ H. Note that every pair of
order-isomorphic graphs is isomorphic, but not vice-versa. Also, if G and H are
distinct graphs on the same linearly ordered vertex set V , then G and H are
never order-isomorphic, and so all 2(|V |

2 ) labeled graphs on V are pairwise non-
order-isomorphic. It shows that the notion of order-isomorphism makes sense
only for pairs of graphs on distinct vertex sets.

One context in which order-isomorphism makes quite a difference is that of
subgraph containment. If G is an ordered graph, then any subgraph G′ of G
can be also treated as an ordered graph with the ordering of V (G′) inherited
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A. Castañeda and F. Rodŕıguez-Henŕıquez (Eds.): LATIN 2022, LNCS 13568, pp. 1–13, 2022.
https://doi.org/10.1007/978-3-031-20624-5_33

A
ut

ho
r 

Pr
oo

f

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20624-5_33&domain=pdf
https://doi.org/10.1007/978-3-031-20624-5_33


2 A. Dudek et al.

from the ordering of V (G). Given two ordered graphs, (a “large” one) G and (a
“small” one) H, we say that a subgraph G′ ⊂ G is an ordered copy of H in G if
G′ and H are order-isomorphic.

All kinds of questions concerning subgraphs in ordinary graphs can be posed
for ordered graphs as well (see, e.g., [11]). For example, in [3], the authors studied
Turán and Ramsey type problems for ordered graphs. In particular, they showed
that there exists an ordered matching on n vertices for which the (ordered) Ram-
sey number is super-polynomial in n, a sharp contrast with the linearity of the
Ramsey number for ordinary (i.e. unordered) matchings. This shows that it
makes sense to study even such seemingly simple structures as ordered match-
ings. In fact, Jeĺınek [7] counted the number of matchings avoiding (i.e. not
containing) a given small ordered matching.

In this paper we focus exclusively on ordered matchings, that is, ordered
graphs which consist of vertex-disjoint edges (and have no isolated vertices). For
example, in Fig. 1, we depict two ordered matchings, M = {{1, 3}, {2, 4}, {5, 6}}
and N = {{1, 5}, {2, 3}, {4, 6}} on vertex set [6] = {1, 2, . . . , 6} with the natural
linear ordering.

Fig. 1. Exemplary matchings, M and N , of size 3.

A convenient representation of ordered matchings can be obtained in terms
of double occurrence words over an n-letter alphabet, in which every letter occurs
exactly twice as the label of the ends of the corresponding edge in the matching.
For instance, our two exemplary matchings can be written as M = ABABCC
and N = ABBCAC (see Fig. 2).

Fig. 2. Exemplary matchings M and N .

Unlike in [7], we study what sub-structures are unavoidable in ordered match-
ings. A frequent theme in both fields, the theory of ordered graphs as well as
enumerative combinatorics, are unavoidable sub-structures, that is, patterns that
appear in every member of a prescribed family of structures. A good example pro-
viding everlasting inspiration is the famous theorem of Erdős and Szekeres [5] on
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Patterns in Ordered (random) Matchings 3

monotone subsequences. It states that any sequence x1, x2, . . . , xn of distinct real
numbers contains an increasing or decreasing subsequence of length at least

√
n.

And, indeed, our first goal is to prove its analog for ordered matchings. The
reason why the original Erdős-Szekeres Theorem lists only two types of subse-
quences is, obviously, that for any two elements xi and xj with i < j there are
just two possible relations: xi < xj or xi > xj . For matchings, however, for
every two edges {x, y} and {u,w} with x < y, u < w, and x < u, there are three
possibilities: y < u , w < y, or u < y < w (see Fig. 3). In other words, every two
edges form either an alignment, a nesting, or a crossing (the first term intro-
duced by Kasraoui and Zeng in [8], the last two terms coined in by Stanley [10]).
These three possibilities give rise, respectively, to three “unavoidable” ordered
canonical sub-matchings (lines, stacks, and waves) which play an analogous role
to the monotone subsequences in the classical Erdős-Szekeres Theorem.

Fig. 3. An alignment, a nesting, and a crossing of a pair of edges.

Informally, lines, stacks, and waves are defined by demanding that every pair
of edges in a sub-matching forms, respectively, an alignment, a nesting, or a
crossing (see Fig. 5). Here we generalize the Erdős-Szekeres Theorem as follows.

Theorem 1. Let �, s, w be arbitrary positive integers and let n = �sw+1. Then,
every ordered matching M on 2n vertices contains a line of size �+ 1, or a stack
of size s + 1, or a wave of size w + 1.

It is not hard to see that the above result is optimal. For example, consider
the case � = 5, s = 3, w = 4. Take 3 copies of the wave of size w = 4:
ABCDABCD, PQRSPQRS, XY ZTXY ZT . Arrange them into a stack-like
structure (see Fig. 4):

ABCDPQRSXY ZTXY ZTPQRSABCD.

Now, concatenate � = 5 copies of this structure. Clearly, we obtain a matching
of size �sw = 5 · 3 · 4 with no line of size 6, no stack of size 4, and no wave of
size 5.

Also observe that the symmetric case of Theorem 1 implies that M always
contains a canonical structure of size at least n1/3.

Finally, notice that forbidding an alignment yields to a so called permu-
tational matching (for definition see the paragraph after Theorem 4). Permu-
tational matchings are in a one-to-one correspondence with permutations of
order n. Moreover, under this bijection waves and stacks in a permutational
matching M become, respectively, increasing and decreasing subsequences of
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4 A. Dudek et al.

Fig. 4. A stack of waves.

the permutation which is the image of M . Thus, we recover the original Erdős-
Szekeres Theorem as a special case of Theorem 1.

We also examine the question of unavoidable sub-matchings for random
matchings. A random (ordered) matching RMn is selected uniformly at ran-
dom from all (2n)!/(n!2n) matchings on vertex set [2n]. It follows from a result
of Stanley (Thoerem 17 in [10]) that a.a.s.1 the size of the largest stack and
wave in RMn is (1 + o(1))

√
2n. In Sect. 2 we complement his result and prove

that the maximum size of lines is also about
√

n.

Theorem 2.

(i) A.a.s. the random matching RMn contains no lines of size at least e
√

n.
(ii) A.a.s. the random matching RMn contains lines of size at least

√
n/8.

Our second goal is to estimate the size of the largest (ordered) twins in
ordered matchings. The problem of twins has been widely studied for other com-
binatorial structures, including words, permutations, and graphs (see, e.g., [1,9]).
We say that two edge-disjoint (ordered) subgraphs G1 and G2 of an (ordered)
graph G form (ordered) twins in G if they are (order-)isomorphic. The size of
the (ordered) twins is defined as |E(G1)| = |E(G2)|. For ordinary matchings,
the notion of twins becomes trivial, as every matching of size n contains twins
of size �n/2� – just split the matching into two as equal as possible parts. But
for ordered matchings the problem becomes interesting. The above mentioned
generalization of Erdős-Szekeres Theorem immediately (again by splitting into
two equal parts) yields ordered twins of length �n1/3/2�. In Sect. 3 we provide
much better estimates on the size of largest twins in ordered matchings which,
not so surprisingly, are of the same order of magnitude as those for twins in
permutations (see [2] and [4]).

2 Unavoidable Sub-matchings

Let us start with formal definitions. Let M be an ordered matching on the vertex
set [2n], with edges denoted as ei = {ai, bi} so that ai < bi, for all i = 1, 2, . . . , n,
1 Asymptotically almost surely.
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Patterns in Ordered (random) Matchings 5

and a1 < · · · < an. We say that an edge ei is to the left of ej and write ei < ej

if ai < aj . That is, in ordering the edges of a matching we ignore the positions
of the right endpoints.

We now define the three canonical types of ordered matchings:

• Line: a1 < b1 < a2 < b2 < · · · < an < bn,
• Stack : a1 < a2 < · · · < an < bn < bn−1 < · · · < b1,
• Wave: a1 < a2 < · · · < an < b1 < b2 < · · · < bn.

Assigning letter Ai to edge {ai, bi}, their corresponding double occurrence words
look as follows:

• Line: A1A1A2A2 · · · AnAn,
• Stack: A1A2 · · · AnAnAn−1 · · · A1,
• Wave: A1A2 · · · AnA1A2 · · · An.

Each of these three types of ordered matchings can be equivalently characterized
as follows. Let us consider all possible ordered matchings with just two edges. In
the double occurrence word notation these are AABB (an alignment), ABBA
(a nesting), and ABAB (a crossing). Now a line, a stack, and a wave is an
ordered matching in which every pair of edges forms, respectively, an alignment,
a nesting, and a crossing (see Fig. 5).

Fig. 5. A line, a stack, and a wave of size three.

Consider a sub-matching M ′ of M and an edge e ∈ M \ M ′, whose left
endpoint is to the left of the left-most edge f of M ′. Note that if M ′ is a line
and e and f form an alignment, then M ′ ∪ {e} is a line too. Similarly, if M ′ is
a stack and {e, f} form a nesting, then M ′ ∪ {e} is a stack too. However, an
analogous statement fails to be true for waves, as e, though crossing f , may not
necessarily cross all other edges of the wave M ′. Due to this observation, in the
proof of our first result we will need another type of ordered matchings combining
lines and waves. We call a matching M = {{ai, bi} : i = 1, . . . , n} with ai < bi,
for all i = 1, 2, . . . , n, and a1 < · · · < an, a landscape if b1 < b2 < · · · < bn,
that is, the right-ends of the edges of M are also linearly ordered (a first-come-
first-serve pattern). Notice that there are no non-trivial stacks in a landscape.
In the double occurrence word notation, a landscape is just a word obtained by
a shuffle of the two copies of the word A1A2 · · · An. Examples of landscapes for
n = 4 are, among others, ABCDABCD, AABCBCDD, ABCABDCD (see
Fig. 6). Now we are ready to prove Theorem 1.
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6 A. Dudek et al.

Fig. 6. A landscape of size four.

Proof of Theorem 1. Let M be any ordered matching with edges {ai, bi}, i =
1, 2, . . . , n. Let si denote the size of a largest stack whose left-most edge is {ai, bi}.
Similarly, let Li be the largest size of a landscape whose left-most edge is {ai, bi}.
Consider the sequence of pairs (si, Li), i = 1, 2, . . . , n. We argue that no two
pairs of this sequence may be equal. Indeed, let i < j and consider the two edges
{ai, bi} and {aj , bj}. These two edges may form a nesting, an alignment, or a
crossing. In the first case we get si > sj , since the edge {ai, bi} enlarges the
largest stack starting at {aj , bj}. In the two other cases, we have Li > Lj by the
same argument. Since the number of pairs (si, Li) is n > s · �w, it follows that
either si > s for some i, or Lj > �w for some j. In the first case we are done, as
there is a stack of size s + 1 in M .

In the second case, assume that L is a landscape in M of size at least p =
�w+1. Let us order the edges of L as e1 < e2 < · · · < ep, accordingly to the linear
order of their left ends. Decompose L into edge-disjoint waves, W1,W2, . . . ,Wk,
in the following way. For the first wave W1, pick e1 and all edges whose left
ends are between the two ends of e1, say, W1 = {e1 < e2 < . . . < ei1}, for some
i1 � 1. Clearly, W1 is a true wave since there are no nesting pairs in L. Notice
also that the edges e1 and ei1+1 are non-crossing since otherwise the latter edge
would be included in W1. Now, we may remove the wave W1 from L and repeat
this step for L − W1 to get the next wave W2 = {ei1+1 < ei1+2 < . . . < ei2}, for
some i2 � i1 + 1. And so on, until exhausting all edges of L, while forming the
last wave Wk = {eik−1+1 < eik−1+2 < . . . < eik

}, with ik � ik−1 + 1. Clearly, the
sequence e1 < ei1+1 < . . . < eik−1+1 of the leftmost edges of the waves Wi must
form a line. So, if k � �+ 1, we are done. Otherwise, we have k � �, and because
p = �w + 1, some wave Wi must have at least w + 1 edges. This completes the
proof. 
�

It is not hard to see that the above result is optimal.
Now we change gears a little bit and investigate the size of unavoidable struc-

tures in random ordered matchings. Let RMn be a random (ordered) matching
of size n, that is, a matching picked uniformly at random out of the set of all

αn :=
(2n)!
n!2n

matchings on the set [2n].
Stanley determined very precisely the maximum size of two of our three

canonical patterns, stacks, and waves, contained in a random ordered matching.
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Patterns in Ordered (random) Matchings 7

Theorem 3 (Theorem 17 in [10]). The largest stack and the largest wave
contained in RMn are each a.a.s. of size (1 + o(1))

√
2n.

Our Theorem 2 complements this result by estimating the maximum size
of lines. In the proof of Part (ii) of Theorem 2 we will make use of the follow-
ing lemma that can be easily checked by a standard application of the second
moment method, and, therefore, its proof is omitted here. Define the length of
an edge {i, j} in a matching on [2n] as |j − i|.
Lemma 1. Let a sequence k = k(n) be such that 1 � k � n. Then, a.a.s. the
number of edges of length at most k in RMn is k(1 + o(1)).

Proof of Theorem 2. Part (i) is an easy application of the first moment method.
Let Xk be a random variable counting the number of ordered copies of lines of
size k in RMn. Then,

EXk =
(

2n

2k

)
·1·αn−k

αn
=

2k

(2k)!
· n!
(n − k)!

≤ 2k

(2k)!
·nk ≤ 2k

(2k/e)2k
·nk =

(
e2n

2k2

)k

.

Thus,

Pr(∃k ≥ e
√

n : Xk > 0) ≤
∑

e
√

n≤k≤n

EXk

≤
∑

e
√

n≤k≤n

(
e2n

2k2

)k

≤ n2−e
√

n = o(1).

It remains to prove Part (ii). Let k =
√

n/2. Due to Lemma 1, a.a.s. the
number of edges of length at most k in RMn is at least

√
n/4. We will show that

among the edges of length at most k, there are a.a.s. at most
√

n/8 crossings or
nestings. After removing one edge from each crossing and nesting we obtain a
line of size at least

√
n/4 − √

n/8 =
√

n/8.
For a 4-element subset S = {u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < u2 < v2,

let XS be an indicator random variable equal to 1 if both {u1, u2} ∈ RMn and
{v1, v2} ∈ RMn, that is, if S spans a crossing in RMn. Clearly,

Pr(XS = 1) =
1

(2n − 1)(2n − 3)
.

Let X =
∑

XS , where the summation is taken over all sets S as above and
such that u2−u1 ≤ k and v2−v1 ≤ k. Note that this implies that v1−u1 ≤ k−1.
Let f(n, k) denote the number of terms in this sum. We have

f(n, k) ≤
(

2n(k − 1) −
(

k

2

))(
k

2

)
≤

(
nk − 1

2

(
k

2

))
k2,
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8 A. Dudek et al.

as we have at most 2n(k−1)−(
k
2

)
choices for u1 and v1 and, once u1, v1 have been

selected, at most
(
k
2

)
choices of u2, and v2. It is easy to see that f(n, k) = Ω(nk3).

Hence, EX = Ω(k3/n) → ∞, while

EX =
∑
S

EXS =
f(n, k)

(2n − 1)(2n − 3)
≤ k3/4n =

1
32

√
n.

To apply Chebyshev’s inequality, we need to estimate E(X(X − 1)), which
can be written as

E(X(X − 1)) =
∑
S,S′

Pr({{u1, u2}, {v1, v2}, {u′
1, u

′
2}, {v′

1, v
′
2}} ⊂ RMn),

where the summation is taken over all (ordered) pairs of sets S =
{u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < u2 < v2 and S′ = {u′

1, u
′
2, v

′
1, v

′
2} ⊂ [2n]

with u′
1 < v′

1 < u′
2 < v′

2 such that u2 − u1 ≤ k, v2 − v1 ≤ k, u′
2 − u′

1 ≤ k, and
v′
2 − v′

1 ≤ k. We split the above sum into two sub-sums Σ1 and Σ2 according to
whether S ∩ S′ = ∅ or |S ∩ S′| = 2 (for all other options the above probability
is zero). In the former case,

Σ1 ≤ f(n, k)2

(2n − 1)(2n − 3)(2n − 5)(2n − 7)
= (EX)2(1 + O(1/n)).

In the latter case, the number of such pairs (S, S′) is at most f(n, k) · 4k2, as
given S, there are four ways to select the common pair and at most k2 ways to
select the remaining two vertices of S′. Thus,

Σ2 ≤ f(n, k) · 4k2

(2n − 1)(2n − 3)(2n − 5)
= O(k5/n2) = O(

√
n)

and, altogether,

E(X(X − 1)) ≤ (EX)2(1 + O(1/n)) + O(
√

n) = (EX)2 + O(
√

n).

By Chebyshev’s inequality,

Pr(|X − EX| ≥ EX) ≤ E(X(X − 1)) + EX − (EX)2

(EX)2

≤ 1 + O(1/
√

n) +
1

EX
− 1 = O

(
1√
n

)
→ 0.

Thus, a.a.s. X ≤ 2EX ≤ √
n/16.

We deal with nestings in a similar way. For a 4-element subset
S = {u1, u2, v1, v2} ⊂ [2n] with u1 < v1 < v2 < u2, let YS be an indicator
random variable equal to 1 if both {u1, u2} ∈ RMn and {v1, v2} ∈ RMn, that is,
if S spans a nesting in RMn. Further, let Y =

∑
YS , where the summation is

taken over all sets S as above and such that u2 − u1 ≤ k and v2 − v1 ≤ k. It is
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Patterns in Ordered (random) Matchings 9

crucial to observe that, again, EY ≤ k3/n =
√

n/32. Indeed, this time there are
at most 2nk − (

k+1
2

)
choices for u1 and u1 and, once u1, u1 have been selected,

at most
(
k
2

)
choices of v1, and v2, while the probability of both pairs appearing

in RMn remains the same as before. The remainder of the proof goes mutatis
mutandis.

We conclude that a.a.s. the number of crossings and nestings of length at
most k in RMn is at most

√
n/8 as was required. 
�

3 Twins

Recall that by twins in an ordered matching M we mean any pair of disjoint,
order-isomorphic sub-matchings M1 and M2 and that their size is defined as
the number of edges in just one of them. For instance, the matching M =
AABCDDEBCFGHIHEGFI contains twins M1 = BCDDBC and M2 =
EFHHEF of size three (see Fig. 7).

Fig. 7. Twins of size 3 with pattern XY ZZXY .

Let t(M) denote the maximum size of twins in a matching M and tmatch(n)
– the minimum of t(M) over all matchings on [2n].

We first point to a direct correspondence between twins in permutations and
ordered twins in a certain kind of matchings. By a permutation we mean any
finite sequence of pairwise distinct positive integers. We say that two permuta-
tions (x1, . . . , xk) and (y1, . . . , yk) are similar if their entries preserve the same
relative order, that is, xi < xj if and only if yi < yj for all 1 � i < j � k. Any
two similar and disjoint sub-permutations of a permutation π are called twins.
For example, in permutation

(6, 1 , 4 , 7, 3 , 9, 8 , 2 , 5 ),

the red and blue subsequences form a pair of twins of length 3, both similar to
permutation (1, 3, 2).

For a permutation π, let t(π) denote the maximum integer k such that π
contains twins of length k each. Further, let tperm(n) be the minimum of t(π)
over all permutations of [n], called also n-permutations. By the first moment
method Gawron [6] proved that tperm(n) � cn2/3 for some constant c > 0.

As for a lower bound, notice that by the Erdős-Szekeres Theorem, we have
tperm(n) �

⌊
1
2n1/2

⌋
. This bound was substantially improved by Bukh and

Rudenko [2]
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10 A. Dudek et al.

Theorem 4 (Bukh and Rudenko [2]). For all n, tperm(n) � 1
8n3/5.

We call an ordered matching M on the set [2n] permutational if the left end
of each edge of M lies in the set [n]. In the double occurrence word notation
such a matching can be written as M = A1A2 . . . AnAi1Ai2 . . . Ain

, where πM =
(i1, i2, . . . , in) is a permutation of [n] (see Fig. 8).

Fig. 8. The permutational matching that corresponds to the (2, 6, 1, 4, 3, 5) permuta-
tion.

Clearly there are only n! permutational matchings, nevertheless the connec-
tion to permutations turned out to be quite fruitful. Indeed, it is not hard to
see that ordered twins in a permutational matching M are in one-to-one corre-
spondence with twins in πM . Thus, we have t(M) = t(πM ) and, consequently,
tmatch(n) ≤ tperm(n). In particular, by the above mentioned result of Gawron, it
follows that tmatch(n) = O(n2/3).

More subtle is the opposite relation.

Proposition 1. For all 1 ≤ m ≤ n, where n − m is even,

tmatch(n) ≥ min
{

tperm(m), 2tmatch

(
n − m + 2

2

)}
.

Proof. Let M be a matching on [2n]. Split the set of vertices of M into two
halves, A = [n] and B = [n + 1, 2n] and let M(A,B) denote the set of edges of
M with one end in A and the other end in B. Note that M ′ := M(A,B) is a
permutational matching. We distinguish two cases. If |M ′| � m, then

t(M) ≥ t(M ′) = t(πM ′) ≥ tperm(|M ′|) ≥ tperm(m).

If, on the other hand, e(A,B) ≤ m − 2, then we have sub-matchings MA and
MB of M of size at least (n − m + 2)/2 in sets, respectively, A and B. Thus, in
this case, by concatenation,

t(M) ≥ t(MA) + t(MB) ≥ 2tmatch

(
n − m + 2

2

)
.


�
Proposition 1 allows, under some mild conditions, to ,,carry over” any lower

bound on tperm(n) to one on tmatch(n).
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Lemma 2. If for some 0 < α, β < 1, we have tperm(n) ≥ βnα for all n ≥ 1,
then tmatch(n) ≥ β(γn)α for any 0 < γ ≤ min{1 − 21−1/α, 1/4} and all n ≥ 1.

Proof. Assume that for some 0 < α, β < 1, we have tperm
r (n) ≥ βnα for all n ≥ 1

and let 0 < γ ≤ min{1 − 21−1/α, 1/4} be given. We will prove that tmatch(n) ≥
β(γn)α by induction on n. For n � 1

γ

(
1
β

)1/α

the claimed bound is at most 1,

so it is trivially true. Assume that n ≥ 1
γ

(
1
β

)1/α

and that tmatch(n′) ≥ β(γn)α

for all n′ < n. Let nγ ∈ {�γn�, �γn� + 1} have the same parity as n. Then, by
Proposition 1 with m = nγ ,

tmatch(n) ≥ min
{

tperm(nγ), 2tmatch

(
n − nγ + 2

2

)}
.

By the assumption of the lemma, tperm(nγ) ≥ βnα
γ ≥ β(γn)α. Since γ ≤ 1/4 and

so, n ≥ 4, we have (n − nγ + 2)/2 ≤ n − 1. Hence, by the induction assumption,
also

2tmatch

(
n − nγ + 2

2

)
≥ 2β

(
γ

n − nγ + 2
2

)α

≥ 2β

(
γn

1 − γ

2

)α

≥ β(γn)α

where the last inequality follows by the assumption on γ. 
�
In particular, Theorem 4 and Lemma 2 with β = 1/8, α = 3/5, and γ = 1/4

imply immediately the following result.

Corollary 1. For every n, tmatch(n) ≥ 1
8

(
n
4

)3/5.

Moreover, any future improvement of the bound in Theorem 4 would auto-
matically yield a corresponding improvement of the lower bound on tmatch(n).

As for an upper bound, we already mentioned that tmatch(n) = O
(
n2/3

)
.

This means that for each n there is a matching M of size n with t(M) ≤ cn2/3,
where c > 0 is a fixed constant. In fact, this holds for almost all M .

Proposition 2. A.a.s. t(RMn) = O
(
n2/3

)
.

Proof. Consider a random (ordered) matching RMn. The expected number of
twins of size k in RMn is

1
2

(
2n

2k, 2k, 2n − 4k

)
αk · 1 · αn−2k

αn
=

2kn!
2(2k)!k!(n − 2k)!

<

(
e3n2

2k3

)k

,

which tends to 0 with n → ∞ if k ≥ cn2/3, for any c > e2−1/3. This implies that
a.a.s. there are no twins of size at least cn2/3 in RMn. 
�
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4 Final Remarks

Proposition 2 asserts that a.a.s. t(RMn) = O
(
n2/3

)
. In the journal version

of this extended abstract we intend to prove the matching lower bound: a.a.s.
t(RMn) = Ω

(
n2/3

)
. The real challenge, however, would be to prove (or disprove)

that the bound holds for all matchings of size n.

Conjecture 1. For each n there is a matching M of size n with t(M) ≥ cn2/3,
where c > 0 is a fixed constant. Consequently, tmatch(n) = Θ

(
n2/3

)
.

The same statement is conjectured for twins in permutations (see [4]). By our
results from Sect. 3, we know that both conjectures are actually equivalent.

In a similar way twins may be defined and studied in general ordered graphs.

Problem 1. How large twins must occur in every ordered graph with n edges?

For unordered graphs there is a result of Lee, Loh, and Sudakov [9] giving an
asymptotically exact answer of order Θ(n log n)2/3. It would be nice to have an
analogue of this result for ordered graphs.

Finally, it seems natural to look for Erdős-Szekeres type results like Theo-
rem 1 for more general structures. One possible direction to pursue is to consider,
for some fixed k � 3, ordered k-uniform matchings. In full analogy with graph
ordered matchings (k = 2), these structures correspond to k-occurrence words,
in which every letter appears exactly k times. For instance, for k = 3 there
are exactly 1

2

(
6
3

)
= 10 ways two triples AAA and BBB can intertwine which,

somewhat surprisingly, give rise to 9 canonical structures, analogous to lines,
stacks, and waves in the graph case. In fact, they correspond to different pairs of
the three graph structures. Using this correspondence, in the journal version we
intend to prove that every 3-occurrence word of length 3n contains one of these
9 structures of size Ω

(
n1/9

)
. We suspect that similar phenomena hold for each

k ≥ 4 or even for words in which the occurrences of particular letters may vary.

Acknowledgements. We would like to thank all four anonymous referees for a careful
reading of the manuscript and suggesting a number of editorial improvements.
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