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Maximal graphs with bounded maximum degree:
structure, asymptotic enumeration, randomness

O. Introduction

A graph G 1is called a d-greph if it is not a spanning subgraph
of any graph of maximum degree d. A vertex of degree less than
d is called unsaturated. In this paper we examine the structure
of d-graphs and enumerate them asymptotically with respect to
the number of unsaturated vertices. We also discuss the guestion
of Erdbs about the limit distribution of the number of unsatu-
rated vertices at the end of the graph process in which edges .
are added one by one, equiprobably, and so that the meximum
dedree does not exceed d.

1. Random graph models

By a random graph (a random graph process) we mean a probabili-
stic space whose elemepts are graphs (sequences of graphs) on
the vertex set V = {1,2,...,n}. Most natural are equiprobable
models: the Erdds-Bényi model Kn,N consisting of all graphs
with N edges and Bollobas’ process nn formed by all sequen-
ces (Go‘Gl""‘G(g))‘ where _Gi has 1 edges and‘is contained

in G;,q, 1 =0,...,(3)-1. Both can be thought of as results of
random experiments: K, y - drawing N out of (§) pairs of
vertices, l1n - adding eddes one by one to the empty graph. (See
[4] for an extensive account on random graphs.)

In many applications in chemistry and physics these models are
not satisfactory due to the lack of dedree restrictions aquite
natural in the world of molecules. In the simplest case the
condition that no vertex has degree larger than d is required.
Then the appropriate model could be the equiprobable space of
all graphs on V with N eddes and meximum degree at most
d - an analogue of Kn,N‘ However, in this peper we do not deal
with this model. More appealing is an analogue of ﬂn vwhich we
denote by ﬂn.d and define as follows.
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Let [V1Z be the set of 2-element subsets of V, A(G) and
E(G) stand for the maximum degree and edge set of a graph G,
respectively, and G v x = (V,E(G) v {x}), where x € [VJZ—E(G)-

The space M, 4 consists of all sequences (G, Gy, Gp)
satisfying

(i) IE(G3} =4, 1 =0,...,m,

(i1} ¢ = E(G,) < E(Gy) = ... = E(G,),

(iii) A(Gi) €d, 1=0,...,m

(iv) Ay = &,

m-1 1

where A(G) = { x € [VI%-E(G): A(G v x) < d }.
equals to M a;

The probability assigned te (G,,....Gp) RUNE-"
where a; = [A(G;)]. 1=0
More intuitively, one keeps adding eddes one by one, each time
choosing equiprobably a pair of vertices which are not yet
joined and both have degree less then d.

Note that the length of the process varies, since it terminates
when for the first time A(Gi) = 4. At first glance we see two
differences between ‘ﬂn and nnld. The space nn‘d is not
equiprobable and the last term, Gm, is not unique. Indeed, Gm
renges over all graphs G with A(G) =d and A(G v x) >d
for all =x ¢ [V]2~E(G). Such graphs are caelled d-graphs here.
This notion was introduced (under different name) by Kennedy and
Quintas [5]. Some probabilistic spaces of d-grephs where also

investigated by Balinska and Quintas [1].

In Section 2 we examine some structural properties of d-graphs,
whereas Section 3 contains an asymptotic enumeration of n-vertex
d-graphs (as n—>«) with respect to the number of vertices of
degree less then d. Such vertices are called unsaturated here.
;t is an open problem posed by ErdSs (a personal communication)
to determine the limit distribution (as n—>«) of the number of
unsaturated vertices at the end of the random process M 4.

In Sectioh 4 we present a simple procedure to find the distribu-
tion for d = 2 end any fixed n. For larder d, a computer
simulation is all one is able to do at the- moment. A simple
procedure of gdenerating a random process "n,d goes as follows.
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Procedure 1:

Set E=4¢, ¢y = ... = ¢, =n-l, dy = ... = d, = 0.
(k%) Pick R = a random intager from {1, 2""'°1+"'+°n}'
Set 1 for the smallest inteder satisfying

R < cy + ... + cj.

IfT i=1 set j =0 otherwise set J for the lardest integer
satisfying

R > cq + + €j
If j=0 set r =R otherwise set r =R - (¢ + ... + cj).
Set 1 = 0.
For k=1,...,n, k#4i if {i,k} ¢E end dy <d then

1 =141 wuntil 1 = r.

Set E =E v {i,k}, d4; = di+1, dy = dp+1.

For t =i,k if dt <d then cy = ct—l otherwise set cy = o]
and for s = 1,...,n, s * i,k if {t,s} ¢ E then cg = cs~1.
If all ¢; =0 then stop, otherwise go to (*).

Comment: At +the end the set E is the set of eddes of Gm. To
gain the whole process one should keep the track of the order in
which edges are included to E. Vertices 1 with di <d are
unsaturated.

Such simulation has been performed by K. Balinska and the data
will be published in [2].

2. The structure of d-graphs

Let us denote by U = UG the set of unsaturated vertices of a
d-grarh G. Clearly, U induces a complete subgraph of G and
therefore u = |U] € d. The unsaturated vertices have degrees'
between u~1 and d-1. Thus the number of edges in an n-vertex
d-greph with U] = u varies from (3) + zd(n-u) to Z(nd-u).
It is not quite obvious that all theoretically possible cases
are realisable. A trivial necessary condition is that d € n-u-1.
It is satisfied in the whole range 1€uc<d only if
n » 2d+1.

A more refined necessary condition for the existence of an n-
vertex d-graph with |U| = u and 2|E(G)| = L, relevant when
n € 2d, is

.d-k € n—u-1, where k = L(L - (n-u)d - u(u-1))/{(n-u)l. (1)
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As it happens (1) is sufficient as well.

Proposition 1: For all d» 2, n» d+1l, 1€ u<d, and

u(u-1) + (n-u)d € L € nd-u, L even, there exists an n-vertex d-
graph G with ]Uéi =u .and Z2|E(G)] = L if and only if
condition (1) is satisfied.

Proof: The difference L - (n-u)d - u(u-1) is equal +to the
number of edges doing from U to V-U. There must be a vertex
in ¥-U incident to at most k of them. Hence the netessity
follows. Let x,,y, be the unique integer sclution to the
system of equations

{x+y:n-u.
kx + (k+l)y = L - (n-u)d - u(u-1).

It can be easily shown that there exists a graph H on n-u
vertices with Xo blue vertices of degree d-k and Yo red
vertices of dedree d-k-1. Let K be a complete graph on u
vertices disjoint from H. It is possible to join each blue
vertex of H -to k vertices of K and each red vertex of H
to k+1 vertices of K and not produce a vertex in K of
degree larger than d-1. ]

As a consegquence of the above result the doubled number of edges
in an n-vertex d-greph may be as small as the smallest even
integer not smaller than nd - ;(d2+3d). The minimum is achieved
when u = L%(d+1)].

To avoid the parity problem we define a d-regular gaph as one
with at most one vertex of degree d-1 end at least n-1 ver-
tices of degree d. As we already know d-graphs are almost d-
regular, especially when n = |V| is large compared to d. In
order to increase the number of edges in a non-d-regular d-graph
one has to remove an edge and then add two new ones if posaible.
An edge of a d-graph which has the above property. is called
normal, 'the name is justified by the fact that every edge with
neither endpoint Jjoint to an unsaturated vertex is -such and
typically there are many such eddes in a d-graph. Does-every d-
graph has a normal edge? It is not immediately seen that the
answer is yes. '

Proposition 2: Every d-graph is either d-regular or it containd
a normal edge.

50



Proof: The assertion is trivial for u = |U}] = 1. Assume, there-
fore, that up 2 and set f for the number of edges with
exactly one endpoint in U. Clearly f € u(d-u).

Suppose, to the contrary, that there is no normal edde. We claim
the existence of a pair of vertices x € U, ¥y ¢ U such that
N(¥) ~ U = U-{x}, where N(y) is the set of neighbours of ¥.
It follows from two facts:

(i) not all vertices of dedree d are joined to all ones in U,
(ii) each vertex of degree d has at least u-1 unsaturated
neighbours.

To prove (ii) suppose that for some z¢U [N(2) A~ Ul =1 < u-2.
Then all its neighbours of degree d must be joined to all
vertices in U and therefore f 2 1 + (d-1)u > u(d-u), a con-
tradiction.
Each saturated (= of degree k) neighbour of ¥ is Jjoined
either to all vertices in U or to all except x. Let 1 of
them be of the second kind. If 1 = 0 then

f » (u-1) + u(d-u+l) > u(d-u).
If 1 » O then the degree of x is d-1 (otherwise there would
be a normal edge from ¥y +to any of its neighbours not joined to
x) and so x is joined to

(d=1) - ({u-1}) + (d-u+i-1)) = 1-1
gsaturated vertices not in N(¥) v {¥}. But each of these ver-
tices 1is, in .turn. joined to at least wu-1 vertices in U.
Altogether, we get

£ 3 (u-1) + u(d-u+l-1) + l(u-1) + (1-1)(u-1) > u(d-u),

again a contradiction. ]

To meke a d-graph d-regular one has to repeat the above opera-
tion L%ndj - e(@) +times, where e(G) = |E(G)|. This means that

£(G) = min {|E(G) A E(F)|: d-regular F on vertex set V}

< 3 (LjndJ - e(@)).
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In fact, the equality holds and so the repetitive replacement of

a normal edge by two new edges is the fastest way from & d-greph

to a d-regular graph.

Proposition 3: For every d-graph on the vertex set V it holds
£(G) = 3 (L}nd) - e(@)).

Proof: The sum of degrees of unsaturated vertices bears the
whole deficit

e = 2l4nd] - 2e(G).
Let F be a d-regular graph which minimizes f£(G). There has to
be at least & edges between U and V-U in E(F)-E(G). This,
however, forces wus to remove at least %5 edges joining satu-

rated vertices of G. ]

3. Asymptotic enumeration of d-graphs

Let 8 = SG be the set of vertices of degree %k with at least
one unsaturated neighbour. In this section we asymptotically
enumerate n-vertex d-graphs (n—>«) with respect to the size of
U and S. We consider separately the ceses of dn odd and
even. In the former cases almost all d-graphs are d-regular
(under the broader definition of Section 2). For dn even, it
turns out that for almost all d-graphs 0< |0l €2 and
|81 = |U|(d-2), regardless the value of d. In both cases & is
typically an independent set. For convenience, we present our
results in the probabilistic form, associating to each n-vertex
d-graph the same probability.

Proposition 4: Let P be the uniform probability measure on

the set of all d-grephs on the vertex set Vn ={1,...,n }.
Then
a) lim P(IU} =1, 8| =d-1) = 1,

Nn—>>c

nd odd

- (2-(3)) (d-1)¥

b) 1lim P(IU} = u, |8] = uw(d-2)) = —=—n——— | u=20,1,2,

= d+1

nd even

¢} 1lim P(S 1is an independent set) = 1.
n—>o

52



Proof: Throughout the proof we use the notations:

a ~b if lima /b =1
n n i n’ n 2

a, = o(bn) if iizmaﬂ/bﬂ =0,

[+
1]

D(bn} if anicbn for some ¢>?@ and n large enough,

a, = bn if a, = U(bn) and bn = U(an).
Let us set u = |U|, s = |S|, and let f be the number of edges
from U to 8. Denote by A(u,s,f) the set of all d-graphs on
the vertex set Vn and with parameters u, s and f as above.
Note that 0 € u<d, O s € u(d-u), s € £ € min(sd, u(d-u)).
Bender and Canfield [3] proved that the number of graphs on Vn
with the degrees dq,...,d , max d; < D, is asymptotically equal
to

20 ! 199 o ]
exp (—o o} (2q)!/(ql2 _ﬂldi-)
=

n 1 B
as n —> =, vwhere 29 = ZFd; and o =gz Zdj

i=1 i=1 l(di_l)'

(Notice that O € o € (D-1)/2.)
Applying that result we det

|A(u,s, £)| = nY*S (dn-du-f):
(3(dn-du-£) 1297/2(q1)n

and, for dn odd,

1
1A(u,s, £) ] = n@*S7Z(AWEHL) g0 4 9,4-1))
= o(|A(1,d-1,d-1)])

unless u =1 and s = £ = d-1. This is because s & f € u(d-2)
for w» 2 end s =f for u=1.

Hence part a) is proved.

Now assumme that dn is even and denote ﬁo = A(0,0,0),
Al = A(1,4-2,4-2), Rz = A(2,2d-4,2d-4).

Then .
lﬂ(u,s.f)l-|ﬁo|_1 = puts-gldutf) _ ;g
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unless u<?2 eand s =t = u(d-2). The reason is that for
u2 3 we have t € u(d-3) and therefore

258 € 2f € T + u(d-3) < f + u(d-2).

Moreover, if u = 2 then either of the inequalities s < f and
f < u(d-2) implies that 2s < f + u(d-2).
Careful calculations show that

1Ay 1/1A 1 ~ d-1 and IRyl /1A 1 ~ (d-1)%/2

completing the proof of b).

We are left with the proof of c¢). Let A’(u,s,f) be the set of
all d-graphs belonging to A(u,s,f) and such that S is an
independent set. Denote further by H +the family of all graphs
with the vertex set {1,2,...,s}, with at least one edde and
maximum degree at most d-1. Givemn H € K, let RH be the
number of graphs G on vertices {1,...,n-u} with dG(i{ =d
for i =s+1,...,n-u and dG(i) = d—l—dH(i} for I 2 Xy anth
where dF(v} stands for the degree of vertex v in graph F.
With the above notation

1A% (w5, = 02 3 Ry = 0(GIAMWS, ). m

A weaker version of the above result was proved for d = 3 in
[1] using a recursion formula of Wormald.

4. 2-processes

Let us recall the question of Erdds:

For a random d-process (Go'Gl""'Gm)’ what is the limit di-
stribution of the number of unsaturated vertices in Gm as n -
> o?

In this section we investigate the case d = 2. A connected
component of a graph with the maximum degree at most 2 must be
either & cycle or a path. We associate to each such greph a
triple (a,b,c),. called the type of a graph, where a, b, c are
the number of isolated vertices, isolated edges, and components
being paths of length at least 2, respectively.

Let (G, ..,G,) be a 2-process and assume that G; is of -type
(a,b,c). Then atb+c = n-i  and Gi+l may be one of the fol-
lowing types:
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(a-2, b+l, c), (a-1, b-1, c+l), (a, b-2, c+l), (a-1, b, c),
(a, b-1, c), (a, b, c-1}.

We write (a,b,c) — (&’,b’,c’) if (a’,b’,c’) 1is any of the
six triples above. The transition probabilities multiplied by

(8*22%2¢) _ p are (§), 2ab, 4(D), 2ec, 4be, and ¢ + 4(5),

respectively. Thus we have just defined a Markov process whose
states are types of graphs and not graphs. Let us denote by
P(a,b,c) the probability that in the i-th step, i = n-(atb+c),
the process is in state (a,b,c), eguivalently that G; is of
the type (a,b,c). :

In particular, P(0,0,0), P(1,0,0), and P(0,1,0) are the proba-
bilities we are interested in, i.e. they are equal to
P(iUGml =k), k=0,1,2.

There is a simple procedure of computing all P(a,b,c) whose
complexity is D(nsj.

Procedure 2:

Set P(n,0,0) = 1. For s T generate all +triples
(a’,b’,c’), a’+b’+c’ = n-i (with some further restrictions) and
for each triple (a,b,c), a+tb+c = n-i+l check if (a,b,c) —
(a2,;bch):

If this is the case multiply P(a,b,c) by the transition proba-
bility and add the outcome to the current value of P(a’,b’,c’).

Let wus demonstrate how the procedure works in the case n=25
(see Fig. 1).

A sample of +the data obtained by +the author using his
ATARI 130 XE is given in Table 1 below. (The cases of
n = 30, 40, 48 were supplied by K. Balinska.) The numbers are
rounded to the fourth decimal position.

n P(0,0,0) P(1,0,0)

4 7333 2667

5 6296 2037

10 7474 1683

15 7724 1586
20 7875 1519
25 7980 1470
30 8060 1432
40 .8173 . 1375
48 .8238 .1341 Table 1
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P(5,0,0) =1

10/10
P(3,1,0) = 1
?ig”’/”’//’ \“‘\\\\\\\\‘\6/9
P(1,2:0) = & P(2,0,1) = §
P(1,0,1)=3.3+%.2 1 PO, 1, =332k = 1§ Pe2,0,00%.} =
1/3 2/3 4/5 /5 1/1

P(1,0,0) %_é_ % = %%‘ P(O)O,]_}:%—%.%-}-Tg.% = %;— P(0O, 1;0)-‘1‘%-%+% = é

1/1

P(0,0,0) = §¥
Fig. 1
But what is the limit distribution remains an open question By
essentially the same approach but applied backward we get for

all n

P(1,0,0) < ¢ and P(0,1,0) € }.

The self-explanatory calculations leading to the first inequali-

ty together with the corresponding diagram are presented in
Fig. 2. The second inequality can be derived similarly.
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(1,0,0}

1/3
(1,0,1)

%ii//””)’ \““\\\3{5
(2,1,0) (1,0,2)
2/3 4/9

1/2
(2,0,1) (1,1,1)
(1,2,0)

P(1,0,0) = § P(1,0,1) = § ( § P(2,1,0) + § P(2,0,1) + 5 P(1,2,0)
+ $P(1,1,1) + § P(1,0,2) ) < 55
Fig. 2

If one allows parallel edges, the number of unsaturated vertices
in Gm has two-point distribution (O ‘or 1). In such a case
the process can be identified with a 2-dimensional random walk
along a special lattice. A simple algorithm with complexity n2
calculetes the distribution. For instance, the probability of no
unsaturated vertex is 2/3 for n =3, 7/9 for n = 4, 116/180
for n = 5, and then it increases but rather slowly to reach,
approximately, .835 for n = 20, .8597 for n = 50, .8973
for n = 500, .9087 for n = 1500 (the last took 30 hours on
ATARI 130 XE).

Acknowledgments

This peper was born in New York in 1985 during inspiring discus-
sions with J.W. Kennedy and L.V. Quintas. A preliminary ver-
sion was presented to the participants of the weekly Seminar on
Random Graphs in Poznah in January 1987. 1 appreciate the com-
ments they made.

Finally, M. Truszczynski was of great help in proving Proposi-
tion 2,

87



References

1. Balifiska, K.T., and Quintas, L.V.: Random graph models for
physical systems. Stud. Phys. Theoret. Chem. 51,
349-361 (1987)

2 Balinska, K.T., and Quintas, L.V.: Generating random
f-graphs. (tentative title, in preparation)

3 Bender, E.A., and Canfield, E.R.: The asymptotic number of
labeled graphs with given degree sequence. J. Combin.
Theory Ser. A 24, 296-307 (1978}

4, Bollobas, B.: Random Graphs. London 1985

5. Kennedy, J.HW., and Quintas, L.V.: Probability models for
random f-graphs. Third Internation. Conf. on Comb.
Math., New York, June 10-14, 1985. Ann. New York Acad.
Sci. (to appear)

received: September 17, 1988

Author:

Dr. Andrzej Rucifski

Department of Discrete Mathematics
Adam Mickiewicz University

Poznafi

Poland

58



