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1. Introduction 14

The origins of the theory of random graphs are easy to pin down. Undoubtedly 15

one should look at a sequence of eight papers co-authored by two great 16

mathematicians: Paul Erdős and Alfred Rényi, published between 1959 and 17

1968: 18

[ER59] On random graphs I, Publ. Math. Debrecen 6 (1959), 290–297. 19

[ER60] On the evolution of random graphs, Publ. Math. Inst. Hung. Acad. 20

Sci. 5 (1960), 17–61. 21

[ER61a] On the evolution of random graphs, Bull. Inst. Internat. Statist. 38, 22

343–347. 23

[ER61b] On the strength of connectedness of a random graph, Acta Math. 24

Acad. Sci. Hungar. 12 (1961), 261–267. 25

[ER63] Asymmetric graphs, Acta Math. Acad. Sci. Hung. 14, 295–315. 26

[ER64] On random matrices, Publ. Math. Inst. Hung. Acad. Sci. 8 (1964), 27

455–461. 28

[ER66] On the existence of a factor of degree one of a connected random 29

graph, Acta Math. Acad. Sci. Hung. 17 (1986), 359–368. 30

[ER68] On random matrices II, Studia Sci. Math. Hung. 3 (1968), 459–464. 31

Our main goal is to summarize the results, ideas and open problems 32

contained in those contributions and to show how they influenced future 33

research in random graphs. 34

For us it was a great adventure to return to the roots of the theory of 35

random graphs, and to find out again and again, how far-reaching the impact 36

of Erdős and Rényi’s work on the field is. The reader will find in our paper 37

many quotations from their original papers (always in italics). We use this 38

convention to let them speak directly and to preserve their special insightful 39
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372 Micha�l Karoński and Andrzej Ruciński

style and way of thinking and stating the problems. Starting from there we 40

lead the reader through the literature, including the most current one, trying 41

to show how the ideas of Erdős and Rényi developed, how much time, skills 42

and effort to solve some of their most challenging open problems was needed. 43

Finally, to add some “salt and pepper” to our presentation, full of admiration 44

and respect, we point out to a few false statements and oversimplifications 45

of proofs, which have been found in their monumental legacy by the next 46

generations of random graph theorists. 47

2. The First Question: Connectivity 48

Although the notion of a random graph appeared in connection to the 49

probabilistic method already in the Erdős paper [25] (see J. Spencer’s article 50

in this volume), it was forgotten for a decade until Paul Erdős and Alfred 51

Rényi published a series of papers entirely devoted to properties of random 52

graphs. The model of a random graph they exclusively investigated was the 53

uniform one. Here is how they defined it: “Let En,N denote the set of all 54

graphs having n given labeled vertices and N edges. A random graph Γn,N 55

can be defined as an element of En,N chosen at random, so that each of the 56

elements of En,N have the same probability to be chosen, namely 1/
((n

2)
N

)
.” 57

(In this paper we adopt the original notation Γn,N .) 58

They were aware of existing results about other models of random graphs. 59

In particular, they acknowledge in a footnote to [ER61a] that E. N. Gilbert 60

[36] studied the connectedness of what we call today the binomial model, 61

where “We may decide with respect to each of the
(
n
2

)
edges, whether they 62

should form part of the random graph considered or not, the probability of 63

including a given edge being p = N/
(
n
2

)
for each edge and the decisions 64

concerning different edges being independent.” (In this paper we shall denote 65

this model by Γn,p.) In [ER61a] they mention that the investigations of 66

the binomial model can be reduced, due to a conditional argument they 67

attribute to Hajek, to that of Γn,N . However, they did not formulate 68

any equivalence theorem (these appeared much later in [14] and [59]) and 69

occasionally stated the binomial counterparts of their theorems without 70

proofs or repeated their proofs step by step. 71

Apparently they were not aware of the result of Gilbert and of the bino- 72

mial model at all when they wrote their first paper on random graphs,“On 73

random graphs I”. The question addressed there was that of connectedness of 74

a random graph. In fact, according to a remark in [ER59], this problem was 75

tried and partially solved already in 1939, when P. Erdős and H. Whitney, 76

in an unpublished work: “proved that if N >
(
1
2 + ε

)
n logn where ε > 0 77

then the probability of Γn,N being connected tends to 1 if n → ∞, but if 78

N <
(
1
2 − ε

)
n logn with ε > 0 then the probability of Γn,N being connected, 79

tends to 0 if n → ∞.” 80



UNCORRECTED
PROOF

The Origins of the Theory of Random Graphs 373

In the first “official” paper on random graphs, Erdős and Rényi refined 81

the above result as their (partial) answer to questions 1–3 from the following 82

list of problems they posed. 83

1. What is the probability of Γn,N being completely connected? 84

2. What is the probability that the greatest connected component (subgraph) 85

of Γn,N should have effectively n− k points? (k = 0, 1, . . .) 86

3. What is the probability that Γn,N should consist of exactly k+ 1 connected 87

components? (k = 0, 1, . . .) 88

4. If the edges of a graph with n vertices are chosen successively so that after 89

each step every edge which has not yet been chosen has the same probability 90

to be chosen as the next, and if we continue this process until the graph 91

becomes completely connected, what is the probability that the number of 92

necessary steps ν will be equal to a given number l? 93

Note that in problem 4 Erdős and Rényi describe a genuine random graph 94

process, whose advanced analysis could be carried over only two decades later. 95

Before turning to the proofs, they recall a recursive formula and a 96

generating function for the number C(n,N) of connected graphs on n labeled 97

vertices and with N edges, due to Riddell and Uhlenbeck, and also Gilbert. 98

But immediately they comment that neither of them “. . . helps much to 99

deduce the asymptotic properties of C(n,N). In the present paper we follow 100

a more direct approach.” 101

We now present the first result on random graphs and its proof in a 102

slightly modified form. The idea of the proof, however, remains unchanged. 103

In the 1959 paper only the middle part of the theorem below was stated 104

explicitly. The other two follow by letting c = cn tend to +∞ or −∞, 105

respectively. 106

Theorem 2.1 ([26]). 107

P (Γn,N is connected ) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if N
n − 1

2 logn → −∞
e−e−2c

if N
n − 1

2 logn → c

1 if N
n − 1

2 logn → ∞.

108

Proof. For convenience we switch to the binomial model, shortening the 109

original argument a lot, and, at the same time, avoiding a harmless error 110

in the proof of “the rather surprising Lemma” of [ER59], pointed out by 111

Godehardt and Steinbach [37]. 112

To make this argument formal, assume that 2np− logn− log logn→ ∞ 113

but np = O(log n). Thus, almost surely (i.e., with probability tending to 1 114

as n → ∞), there are no isolated edges in Γn,p. What remains to be shown 115

is that there are no components of size 3 ≤ k ≤ n
2 either. To this end 116

consider the random variable X counting such components. Then, bounding
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the probability that a given set of k vertices spans a connected subgraph by 117

kk−2pk−1, and using the inequality np > 1
2 logn, we obtain 118

Exp(X) ≤
n/2∑

k=3

(
n

k

)
kk−2pk−1(1 − p)k(n−k) <

∑

k

(en
k

)k

kk−2pk−1e−(n−k)pk

≤ 1

p

√
n∑

k=3

1

k2

(
enp

e(n−
√
n)p

)k

+
1

p

n∑

k≥√
n

1

n

( enp

enp/2

)k

= O

(
n

logn

log3 n

n3/2

)
+

1

logn

(
e logn

2n1/4

)√
n

= o(1).

Hence, almost surely there are no components outside the largest 119

one other than isolated vertices (Erdős and Rényi say that such a graph 120

is of type A) and the threshold for connectedness coincides with that for 121

disappearance of isolated vertices, i.e., for 2np− logn− log logn → ∞ 122

P (Γn,p is connected ) = P (δ(Γn,p) > 0) + o(1). 123

Erdős and Rényi found the limiting value of P (δ(Γn,p) > 0) by inclusion- 124

exclusion. Nowadays a standard approach is by the method of moments 125

which serves to show that the number of isolates is asymptotically Poisson. 126

They used that method in the 1960 paper in a more general setting where 127

components isomorphic to a given graph G were considered. We shall return 128

to this later. 129

Answering question 4, they gave a somewhat oversimplified proof of the 130

fact that 131

lim
n→∞P

(
ν − 1

2n logn

n
< x

)
= e−e−2x

. 132� 133

Erdős and Rényi conclude the 1959 paper as follows. “The following more 134

general question can be asked: Consider the random graph Γn,N(n) with n 135

possible vertices and N(n) edges. What is the distribution of the number of 136

vertices of the greatest connected component of Γn,N(n) and the distribution of 137

the number of its components? What is the typical structure of Γn,N(n) (in the 138

sense in which, according to our Lemma, the typical structure of Γn,N(n) is 139

that it belongs to type A)? We have solved these problems in the present paper 140

only in the case N(n) = 1
2n logn+ cn. We shall return to the general case in 141

another paper [8].” ([8] = [ER60] on our reference list.) 142

As far as connectedness is concerned, in the 1961 paper Erdős and 143

Rényi go on and find the threshold for r-connectivity of Γn,p for every 144

natural r. “If G is an arbitrary non-complete graph, let cp(G) denote the 145

least number k such that by deleting k appropriately chosen vertices from 146

G (. . . ) the resulting graph is not connected. (. . . ) Let ce(G) denote the 147
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least number l such that by deleting l appropriately chosen edges from G 148

the resulting graph is not connected.” A graph is r-connected if no removal 149

of r or less vertices can disconnect it. When the random graph becomes 150

almost surely r-connected? Theorem 2.1 revealed an interesting feature of 151

random graphs. Namely, quite often trivial necessary conditions become 152

asymptotically sufficient in the sense that for a typical, large graph their 153

fulfillment guaranties that the property in question holds. Due to Theorem 2.1 154

this is the case of connectedness versus the nonexistence of isolated vertices. 155

For r-connectedness such natural necessary condition is that the minimum 156

degree (denoted in [ER61b] by c(G)) must be at least r. Otherwise removing 157

the vertices adjacent to a vertex of minimum degree would disconnect the 158

graph. Erdős and Rényi showed in 1961 that in the range 1
2n logn ≤ N ≤ 159

n logn this is the only way one can disconnect the random graph Γn,N by 160

removing the smallest possible number of vertices. A minimal cutset is a set 161

of vertices whose removal makes the graph disconnected but no proper subset 162

of that set has this property. For 2 ≤ k ≤ n−1
2 let Ak be the event that there 163

is in Γn,N a minimal cutset of size s, 1 ≤ s ≤ r − 1, which leaves the second 164

largest component of size k. Arguing similarly as in the proof of Theorem 2.1, 165

they proved that P (
⋃

k≥2 Ak) = o(1), meaning that, almost surely, if Γn,N 166

is not r-connected then the only reason for that is the presence of vertices of 167

degree less than r. The method of moments (again, in the inclusion-exclusion 168

cover-up) gives that, for N(n) = 1
2n logn + r

2n log log n + an + o(n), their 169

number is asymptotically Poisson. We thus arrived at the main result of the 170

1961 paper.AQ2 171

Theorem 2.2 ([28]). If we have 172

N(n) =
1

2
n logn+

r

2
n log logn+ an+ o(n) 173

where a is a real constant and r a non-negative integer, then 174

lim
n→∞P (cp(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
, (3)

further 175

lim
n→∞P (ce(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
(4)

and 176

lim
n→∞P (c(Γn,N(n)) = r) = 1 − exp

(
−e

−2a

r!

)
. (5)

In a proceeding remark they promise: “The statement (5) of Theorem 2.2 177

gives information about the minimal valency of points of Γn,N . In a forth- 178
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coming note we shall deal with the same question for larger ranges of N 179

(when c(Γn,N ) tends to infinity with n), further with the related question about 180

maximal valency of points of Γn,N .” This promise was never fulfilled. The only 181

trace of their interest in the vertex degrees of a random graph can be found in 182

the description of the last phase of the evolution of Γn,N in [ER61a]: “Phase 5. 183

consists of the range N(n) ∼ (n logn)w(n) where w(n) → ∞. In this range 184

the whole graph is not only almost surely connected, but the orders of points 185

are almost surely asymptotically equal. Thus the graph becomes in this phase 186

‘asymptotically regular’.” The proof of that statement can be found in the 187

last section of [ER60]. A very careful analysis of vertex degrees in a random 188

graph is due to Bollobás [10, 11] and can be found also in his book [14]. 189

3. Subgraphs: The Beginning of a Theory 190

After having written their paper on connectivity of a random graph Erdős and 191

Rényi decide to write a long paper addressing several properties of random 192

graphs. That seminal paper was preceded by an extended abstract [ER61a], 193

where they outlined the main goals of the theory to be born. “Our main goal 194

is to show (. . . ) that the evolution of a random graph shows very clear-cut 195

features. The theorems we have proved belong to two classes. The theorems of 196

the first class deal with the appearance of certain subgraphs (e.g., tress, cycles 197

of a given order etc.) or components, or other local structural properties, and 198

show that for many types of local structural properties A a definite ‘threshold’ 199

A(n) can be given, so that if N(n)
A(n) → 0 for n → ∞ then the probability 200

that the random graph Γn,N(n) has the structural property A tends to 0 for 201

n → ∞, while for N(n)
A(n) → ∞ for n → ∞ the probability that the random 202

graph Γn,N(n) has the structural property A tends to 1 for n → ∞. (. . . ) 203

The theorems of the second class are of similar type, only the properties A 204

considered are not of a local character, but global properties of the graph 205

Γn,N(n) (e.g., connectivity, total number of components, etc.).” The existence 206

of a threshold in all cases they considered was a rather surprising fact for 207

Erdős and Rényi. Only three decades later it was proved by Bollobás and 208

Thomason [19] that, as a consequence of the Kruskal-Katona inequality, every 209

monotone property (family) of random subsets of a set has a threshold in the 210

above sense. 211

In the same abstract they comment that their proofs are “. . . completely 212

elementary, and are based on the asymptotic evaluation of combinatorial 213

formulae and on some well-known general methods of probability theory . . . .” 214

The first theorem of the major paper [ER60] established the threshold for 215

the existence of a subgraph of a given type for a broad class of subgraphs. 216

“If a graph has n vertices and N edges, we call the number 2N
n the ‘degree’ of 217

the graph (as a matter of fact 2N
n is the average degree of the vertices of G.) 218

If a graph G has the property that G has no subgraph having a larger degree 219

than G itself, we call G a balanced graph.” 220
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Theorem 3.1 ([27]). Let k ≥ 2 and l (k− 1 ≤ l ≤ (
k
2

)
) be positive integers. 221

Let Bk,l denote an arbitrary not empty class of connected balanced graphs 222

consisting of k points and l edges. The threshold function for the property that 223

the random graph considered should contain at least one subgraph isomorphic 224

with some element of Bk,l is n
2− k

l . 225

Among special cases they mention trees, connected unicyclic graphs, 226

cycles, complete graphs and complete bipartite graphs all of which are 227

balanced. Over 20 years later, Bollobás [9] generalized this theorem to 228

arbitrary (not only balanced) graphs. He, however, used a rather complicated 229

method. In 1985, to a great surprise to all involved, Ruciński and Vince [73] 230

found out that the original proof of Erdős and Rényi which was based on 231

the second moment method can be easily adapted to cover all graphs as well. 232

We now state that result in the binomial model. 233

Theorem 3.2 ([9]). For an arbitrary graph G with at least one edge, 234

lim
n→∞P (G ⊂ Γn,p) =

{
0 if p = o(n−1/mG)

1 if n−1/mG = o(p),
235

where mG = maxH⊆G dH and dG = |E(G)|
|V (G)| . 236

A crucial role in the Ruciński-Vince proof of Theorem 3.2 is played by 237

the quantity ΦG = minH⊆GExp(XH) . In fact, the inequalities 238

1 − ΦG ≤ P (G �⊂ Γn,p) ≤ c1/ΦG 239

obtained in that proof have been strengthened to exponential bounds 240

e−c2ΦG ≤ P (G �⊂ Γn,p) ≤ e−c3ΦG , 241

where the L-H-R follows by the FKG inequality and the R-H-S is a special 242

case of a recent inequality from [42]. 243

As far as the asymptotic distributions of subgraph counts are concerned, 244

Erdős and Rényi treated in [ER60] only trees and cycles. For trees of order k 245

they established a limiting Poisson distribution on the threshold N ∼ cn
k−2
k−1 . 246

They observed that the same result holds for isolated trees, since in this 247

range almost surely all k-vertex trees are isolated (i.e., are components of the 248

random graph). They also found another Poisson threshold for isolated trees 249

at N = 1
2kn logn+ k−1

2k n log log n+cn+o(n), beyond which isolated trees die 250

out (swallowed by the giant component on its way to absorb all the vertices 251

of the random graph). They also established an asymptotic normality of the 252

number of isolated trees of order k (after suitable standardization) in the 253

whole range of N between the two thresholds. As observed by A. Barbour 254

in [5], the proof given by Erdős and Rényi was not correct and in the range 255

N ∼ cn, c �= 1/2, the standardization was not right. However, using another 256
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method Barbour showed that indeed the asymptotic normality holds in the 257

entire range in question. For cycles and isolated cycles they established 258

a Poisson distribution (different in each case) at N ∼ cn and observed 259

that contrary to isolated trees, “. . . the probability that Γn,N contains an 260

isolated cycle of order k never approaches 1.” A similar result was proved for 261

connected unicyclic graphs. All these results were obtained by the method 262

of moments based on a fact from probability theory that for all distributions 263

which are uniquely determined by their moments (Poisson and normal are 264

such) the convergence of all moments of a sequence of random variables 265

to the moments of that distribution implies convergence in distribution 266

[8, Theorem 30.2]. Erdős and Rényi prove this fact as a lemma just for the 267

Poisson distribution, although they use it also for the normal distribution. 268

At the end of the paper, in a remark added in proof, they acknowledge that 269

N. V. Smirnov proved this lemma already in 1939. 270

They conclude their investigations of local properties of random graphs 271

with the comment: “Similar results can be proved for other types of subgraphs, 272

e.g., complete subgraphs of a given order. As however these results and their 273

proofs have the same pattern as those given above we do not dwell on the 274

subject any longer and pass to investigate global properties of the random 275

graph Γn,N .” In 1979, K. Schürger, a former Ph.D. student of Erdős, proved 276

similar results for complete subgraphs [74] and a few years later Karoński [47] 277

extended them to so called k-trees, a common generalization of trees and 278

complete graphs. All these particular cases led to a general result for all 279

strictly balanced graphs. A graph is strictly balanced if every proper subgraph 280

has its degree strictly smaller than the graph itself. Let us denote dG = |E(G)|
|V (G)| 281

and recall that XG is the number of copies of G in a random graph Γn,p. 282

The following result was proved independently in [9] and [48]. 283

Theorem 3.3 ([9, 48]). If G is a strictly balanced graph and npdG → c > 0 284

then XG converges to the Poisson distribution with expectation cv

aut(G) . 285

If a graph G is balanced but not strictly balanced then the limiting 286

distribution of XG on the threshold, i.e. when p = Θ(n−1/dG), becomes quite 287

involved. Although, in principle, as shown by Bollobás and Wierman [20], it 288

can be computed, there is no nice closed formula. For example, when G is a 289

disjoint union of 2 triangles then the limit distribution is that of the random 290

variable
(
Y
2

)
, where Y is Poisson. When G is the triangle with a pendant edge, 291

the limit is
∑Z

i=1 Yi, where all random variables involved are independent 292

and Poisson. When G is the triangle with two pendant edges hanging at 293

the same vertex then XG converges to the distribution of
∑Z

i=1

(
Yi

2

)
, where 294

again all random variables are independent Poisson. One more example: if 295

G is the triangle with a path of length 2 hanging at one of it vertices, then 296

the limit distribution is that of
∑∑U

j=1 Wj

i=1 Yi, where all random variables are 297

independent Poisson. We can only hope that so far the reader is convinced 298

that a pattern does indeed exist. 299
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If G is nonbalanced, then the expectation of XG tends to infinity and one 300

has to normalize. It turns out that there is a nonrandom sequence an(G) → ∞ 301

such that the asymptotic distribution of XG

an(G) coincides with that of XH , 302

where H is the largest subgraph of G for which dH = mG. Clearly, H is 303

balanced and we are back to the balanced case. The sequence an(G) is equal 304

to the expected number of extensions of a given copy of H to a copy of G in 305

the random graph Γn,p. For details see [71, page 292]. 306

Beyond the threshold, i.e., when npmG → ∞, XG converges after 307

standardization to the standard normal distribution as long as n2(1−p) → ∞. 308

(For bigger p XG is either Poisson or degenerate, according to the formula 309

XG ∼ (
n
v

)
v!

aut(G) −cn(G)Z, where Z is the binomial random variable counting 310

edges in the complement of Γn,p and cn(G) is the number of copies of G in Kn 311

containing a fixed edge. For details see [70].) This result was supplemented 312

by the rate of convergence in [7]. It was shown there that the total variation 313

distance between standardized XG and the standard normal distribution can 314

be bounded by O( 1√
ΦG

) as long as p �→ 1 and by O( 1
n
√
1−p

) otherwise. Recall 315

that ΦG → ∞ if and only if npmG → ∞. 316

A variant of the small subgraph problem is one when we only count 317

induced subgraphs of Γn,p which are isomorphic to G (induced copies). 318

Let YG count them. Then, denoting v = |V (G)| and l = |E(G)|, Exp(YG) = 319

Exp(XG)(1−p)(v
2)−l, and as long as p → 0 there is no substantial difference in 320

the limiting distribution of XG and YG. For p constant, however, interesting 321

things may happen. First of all, in contrast to XG, the variance of YG may 322

drop below the order of n2v−2. It does so when Exp(I|J12) = Exp(I), i.e., 323

when p = l/
(
v
2

)
, where I is the indicator of the event that there is an induced 324

copy of G in Γn,p on the vertex set {1, . . . , v} and Jij is the indicator that 325

the edge ij is present in Γn,p. But if V ar(YG) = Θ(n2v−3) then still YG is 326

asymptotically normal, and only when the variance drops further down to 327

the order of n2v−4 the distribution of standardized YG becomes nonnormal 328

(the convolution of normal and χ2 distributions). It is a purely combinatorial 329

question when V ar(YG) = Θ(n2v−4). For the higher terms to cancel out one 330

needs that Exp(I|J12, J13, J23) = Exp(I), or, equivalently, that in addition 331

to p = l/
(
v
2

)
, the proportion t3 : t2 : t1 : t0 = p3 : 3p2q : 3pq2 : q3 is satisfied, 332

where ti is the number of induced subgraphs of G isomorphic to the graph 333

with 3 vertices and i edges. For p = 1
2 , an example of a graph satisfying 334

these requirements is the wheel on 8 vertices, i.e. the graph obtained from 335

the 7-cycle by joining a new vertex to every vertex of the cycle. For some 336

time it was an open question if such abnormal cases take place for every 337

rational p. A positive answer to that puzzle is due to combined efforts of 338

Janson, Kratochv́ıl, Kärrman and Spencer [41, 45, 49].AQ3 339

The random variables XG and YG are examples of sums of random 340

variables with only few dependent summands. In particular, the summands 341

forming YG are dependent only if the sets corresponding to the indices 342

intersect (on at least 2 vertices, in fact). The reason is that the property of 343
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the vertex set we are after depends only on the presence and absence of the 344

edges within the set. The situation changes when we move to the properties 345

depending also on the pairs with one endpoint in the set. Then all summands 346

are mutually dependent, but most just weakly. We have already encountered 347

such a case when studying the number of components of Γn,p which are 348

isomorphic to a given graph G. Clearly this property requires that there is 349

no edge with one endpoint in the set of vertices of a copy of G. Another 350

example of such “semi-induced” property is the notion of a maximal clique. 351

This is a complete subgraph not contained in any bigger complete subgraph 352

of a graph. For a vertex set to span a maximal clique one needs that no other 353

vertex is adjacent to all the vertices of the set. In [6] the limiting distribution 354

of the number of maximal k-cliques was investigated. It was proved that 355

for k ≥ 2 there are two Poisson thresholds for the existence of maximal k- 356

cliques and the phase of asymptotic normality between them. Finally, there 357

are characteristics which lead to sums of random variables indexed by vertex 358

sets, which each depend on the presence or absence of all the edges in Γn,p. 359

An example of this is the number of copies of G disjoint from all other copies 360

of G in Γn,p. Here even the expectation is difficult to obtain, and the limiting 361

normal distribution is still beyond ones reach. 362

4. Phase Transition 363

Sections 4–9 of [ER60] are devoted to global properties of random graphs. 364

The proofs follow the same pattern. First, the expectation of the quantity in 365

question is asymptotically evaluated. Then, using Markov’s and Chebyshev’s 366

inequality (the first and the second moment method, resp.) the asymptotics 367

of the quantities themselves are derived. As a summary of these results we 368

quote here how Erdős and Rényi characterize the process of the evolution 369

of a random graph in the paper presented to the International Statistical 370

Institute meeting in Tokyo in 1961 [ER61a]: 371

“If n is fixed large positive integer and n is increasing from 1 to
(
n
2

)
, the 372

evolution of Γn,N passes through five clearly distinguishable phases. These 373

phases correspond to ranges of growth of the number N of edges, these ranges 374

being defined in terms of the number n of vertices. 375

• Phase 1 corresponds to the range N(n) = o(n). For this phase it is 376

characteristic that Γn,N(n) consists almost surely (i.e. with probability 377

tending to 1 as n → +∞) exclusively of components which are trees. (. . . ) 378

• Phase 2 corresponds to the range N(n) ∼ cn with 0 < c < 1/2. (. . . ) 379

In this range almost surely all components of Γn,N(n) are either trees 380

or components consisting of an equal number of edges and vertices, i.e. 381

components containing exactly one cycle. (. . . ) In this phase though not 382

all, but still almost all (i.e. n− o(n)) vertices belong to components which
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are trees. The mean number of components is n − N(n) + O(1), i.e. in 383

this range by adding a new edge the number of components decreases by 1, 384

except for the finite number of steps. 385

• Phase 3 corresponds to the range N(n) ∼ cn with c ≥ 1/2. When N(n) 386

passes the threshold n/2, the structure of Γn,N(n) changes abruptly. As a 387

matter of fact this sudden change of the structure of Γn,N(n) is the most 388

surprising fact discovered by the investigation of the evolution of random 389

graphs. While for N(n) ∼ cn with c < 1/2 the greatest component of 390

Γn,N(n) is a tree and has ( with probability tending to 1 as n → +∞) 391

approximately 1
α

(
logn− 5

2 log logn
)
vertices, where α = 2c − log 2c, for 392

N(n) ∼ n/2 the greatest component has (with probability tending to 1 as 393

n → +∞) approximately n2/3 vertices and has rather complex structure. 394

Moreover for N(n) ∼ cn with c > 1/2 the greatest component of Γn,N(n) 395

has (with probability tending to 1 as n → +∞) approximately G(c)n 396

vertices, where 397

G(c) = 1 − 1

2c

+∞∑

k=1

kk−1

k!

(
2ce−2c

)k
398

(clearly G(1/2) = 0 and limc→+∞G(c) = 1). 399

Except this “giant” component, the other components are all relatively 400

small, most of them being trees, the total number of vertices belonging to 401

components, which are trees being almost surely n(1 − G(c)) + o(n) for 402

c ≥ 1/2. (. . . ) 403

The evolution of Γn,N(n) in Phase 3. may be characterized by that the 404

small components (most of which are trees) melt, each after another, into 405

the giant component, the smaller components having the larger chance of 406

“survival”; the survival time of a tree of order k which is present in Γn,N(n) 407

with N(n) ∼ cn, c > 1/2 is approximately exponentially distributed with 408

mean value n/2k. 409

• Phase 4 corresponds to the range N(n) ∼ cn logn with c ≤ 1/2. In this 410

phase the graph almost surely becomes connected. (. . . ) 411

• Phase 5 consists of range N(n) ∼ (n logn)ω(n) where ω(n) → +∞. 412

In this range the whole graph is not only almost surely connected, but the 413

orders of all points are almost surely asymptotically equal. Thus the graph 414

becomes in this phase “asymptotically regular”. ” 415

Erdős and Rényi in their fundamental paper [ER60] gave a fairly complete 416

“big picture” of the evolution of a random graphs. However many fascinating 417

questions were left unanswered. For example, how did the giant component 418

grow so rapidly, what is the nature of the “double jump” of its size: from 419

O(log n) when c < 1/2 to Θ(n2/3) when c = 1/2 and finally being of the 420

order of n when c > 1/2? 421
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Often we say that a random graph goes through the phase transition at 422

c = 1/2 due to an obvious resemblance of this period of its evolution to the 423

physical phenomena of changing the state, for example, from liquid to solid. 424

Here a random graph changes abruptly its state from a loose collection of 425

small components being trees and unicyclic to solid single giant component 426

dominating its structure. 427

The critical moment of the phase transition was unresolved until the 428

milestone paper of Béla Bollobás [13] who revealed the mechanism of the 429

formation of the giant component. He also focused the attention, for the first 430

time, on the nature of the phase transition phenomena, investigating this 431

critical moment of the evolution and looking at the beginning of so called 432

supercritical phase. He asked what is the typical structure of a random graph 433

Γn,N when N(n) = 1
2n + s , where s = o(n). In particular he proved that 434

the largest component is almost surely unique once s ≥ 2(logn)1/2n2/3 and 435

its size L1(Γn,N ) is approximately 4s while the size of the second largest 436

component L2(Γn,N ) is much smaller. 437

Bollobás gave a good lead to what we might consider as the proper 438

magnification if we want to get undistorted picture of the phase transition 439

while looking at the neighborhood of the “critical point” n/2. Due to later 440

results of �Luczak [58], combined with those of Kolchin [51], we know that the 441

correct parametrization is 442

N(n) =
1

2
n+ λn2/3. 443

When λ → −∞ then Γn,N consists of many components of the same 444

size as the largest one, which is still very small and consists roughly of 445

n2

2s2 log(s3/n2) vertices, and the large components are unable to “swallow” 446

each other and therefore are forced to hunt for smaller query. Hence large 447

components grow absorbing only small ones and no clear favorite to win the 448

race for the giant emerges. As the number of edgesN(n) increases, the number 449

of contestants decreases. When λ = constant < 0 the probability that two 450

specified large components will form a new component is bounded away from 451

zero, but still too small to ensure the creation of unique giant component. At 452

the same time, a big gap between the orders of large and small components 453

arises which prevents the creation of new large components from the small 454

ones. Next, as soon as λ→ ∞, all large components almost “instantly” merge 455

together and a unique large component emerges. This component is still not 456

giant, it has barely over n2/3 vertices, but it will continue to absorb other 457

components, first the largest ones, rapidly becoming giant. 458

The next result of �Luczak [58] gives a clear picture of the sizes Li(Γn,N ) 459

of the ith largest components during the phase transition of Γn,N . Here and 460

throughout the paper the abbreviation a.s. stands for ‘almost surely’, a phrase 461

whose precise meaning was explained in the description of Phase 1. above. 462
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Theorem 4.1 ([58]). Let k be natural number and sn−2/3 → ∞ but s = 463

o(n). 464

(i) If N = n/2 − s then for every i = 1, 2, . . . , k and every real r 465

lim
n→∞P

(
Li(Γn,N ) <

n2

2s2

(
log

s3

n2
− 5

2
log log

s3

n2
+ r

))
=

i−1∑

j=0

λj

j!
e−λ, 466

where λ = λ(r) = 2/
√
πe−r. 467

Moreover, a.s. the ith largest component of Γn,N is a tree for i = 468

1, 2, . . . , k and Γn,N contains no component with more edges than vertices. 469

(ii) Let N = n/2 + s and let s′ be the unique positive solution of the equation 470

(
1 − 2s′

n

)
e

2s′
n =

(
1 +

2s′

n

)
e−

2s′
n . 471

Then a.s. 472

∣
∣
∣
∣L1(Γn,N ) − 2(s+ s′)n

n+ 2s

∣
∣
∣
∣ < ω(n)

n√
s

473

and so 474

|L1(Γn,N ) − 4s| < ω(n)
n√
s

+O

(
s2

n

)
. 475

Moreover, for every i =, 2, . . . , k and every real r 476

lim
n→∞P

(
Li(Γn,N ) <

n2

2s2

(
log

s3

n2
− 5

2
log log

s3

n2
+ r

))
=

i−1∑

j=0

λj

j!
e−λ, 477

where λ = λ(r) = 2/
√
πe−r. 478

Furthermore a.s. the ith largest component of Γn,N , i = 2, 3, . . . , k, 479

is a tree and no component of Γn,N , except for the largest one, contains 480

more edges than vertices. 481

To study the critical “interval” when the phase transition takes place, 482

i.e., when N(n) = 1
2n+ λn2/3 and λ→ ∓∞, requires very sophisticated and 483

delicate tools. Janson, Knuth, �Luczak and Pittel in their extensive, almost 484

140 pages long, study [40] applied machinery of generating functions with 485

great success. They were able to analyze the structure of evolving graphs 486

(and multigraphs) when edges are added one at a time and at random, with 487

great precision, mainly looking and so called excess and deficiency of a graph. 488

To give the reader a taste of their results let us quote the following theorem. 489
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Theorem 4.2 ([40]). The probability that a random graph or multigraph 490

with n vertices and 1
2n + O(n1/3) edges has exactly r bicyclic components 491

(i.e., components with exactly two cycles), and no components of higher cyclic 492

order, is 493

(
5

18

)r
√

2

3

1

(2r)!
+O(n−1/3). 494

They also study the following fascinating problem: What is the 495

probability that the component which during the evolution becomes the first 496

“complex” component (i.e., the first component with more than one cycle) 497

is the only complex component which emerges during the whole process? 498

So they ask what is the probability that the first bicyclic component is the 499

“seed” for the giant one. They prove that it happens quite often indeed. 500

Theorem 4.3 ([40]). The probability that an evolving graph or multigraph 501

on n vertices never has more than one complex component throughout its 502

evolution approaches 5π
18 ≈ 0.8727 as n → ∞. 503

5. Planarity and Chromatic Number 504

In a paper of such an enormous length one can likely find less rigorous claims. 505

One of such things happened in the paper [ER60] in relation to the question 506

when a random graph Γn,N is planar. 507

Since trees and components with exactly one cycle are planar, Erdős and 508

Rényi easily deduced from their findings about early stages of the evolution 509

of a random graph, that when c < 1/2 then the probability that Γn,N is 510

planar tends to 1. Now, to support the claim that when c passes 1/2 the 511

graph becomes non-planar they used the argument that Γn,N contains an 512

induced cycle with d diagonals. Although their claim (Theorem 8a on page 513

51) regarding the distribution of the number of such cycles is incorrect, as 514

it was pointed out later by �Luczak and Wierman [63], their intuition was 515

perfect and the following result is indeed true. 516

Theorem 5.1 ([63]). Let us suppose that N ∼ cn. If c < 1/2 the probability 517

that the graph Γn,N is planar is tending to 1 while for c > 1/2 this probability 518

tends to 0. 519

Such a behavior of a random graph shows the fundamental difference 520

in its typical structure before and after the phase transition. Now, thanks 521

to the contribution of �Luczak, Pittel and Wierman [64], we have more 522

detailed knowledge about planarity of a random graph, also during the phase 523

transition. 524

Theorem 5.2 ([64]). Let ε = ε(n) → 0 as n → ∞. Then Γn,p is: 525
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(i) a.s. planar, when p = (1 − ε)/n, ε3n → ∞; 526

(ii) Planar with probability tending to a(λ), 0 < a(λ) < 1, as n → ∞, when 527

p = (1 + ε)/n, where ε3n → λ and −∞ < λ < ∞ is a constant; 528

(iii) a.s. non-planar, when p = (1 + ε)/n, ε3n → ∞. 529

In the final section of the paper [ER60] Erdős and Rényi collected 530

unsolved problems. One of them is closely related to planarity: Another in- 531

teresting question is: what is the threshold for the appearance of a “topological 532

complete graph of order k”, i.e., of k points such that any two of them can 533

be connected by a path and these paths do not intersect. For k > 4 we do 534

not know the solution. The solution was found many years later by Ajtai, 535

Kómlos, and Szemerédi [2]. 536

Another problem mentioned there turned out to be one of the central 537

and most challenging questions of the theory. Erdős and Rényi asked ”what 538

will be the chromatic number of Γn,N ?” What they knew then about this 539

important graph invariant was limited to facts which can be deduced from 540

general results regarding the evolutionary process. Here is what they were 541

able to conclude : “Clearly every tree can be colored by 2 colors, and thus 542

by Theorem 4a almost surely Ch(Γn,N ) = 2 if N(n) = o(n). As however 543

the chromatic number of a graph having an equal number of vertices and 544

edges is equal to 2 or 3 according whether the only cycle contained in such 545

graph is of even or odd order, it follows from Theorem 5e that almost surely 546

Ch(Γn,N ) ≤ 3 for N(n) ∼ nc with c < 1/2. For N(n) ∼ n/2 we have 547

almost surely Ch(Γn,N ) ≥ 3. As a matter of fact, in the same way, as we 548

proved Theorem 5b, one can prove that Γn,N contains for N(n) ∼ n/2 almost 549

surely a cycle of odd order. It is an open problem how large Ch(Γn,N ) is for 550

N(n) ∼ n/2 with c > 1/2.” 551

This question remained open for next 30 years, and was answered, for 552

large c, by �Luczak in [57]. He proved that the chromatic number χ(Γn,p) 553

behaves as follows. 554

Theorem 5.3 ([57]). Let np = c and ε > 0 be fixed. Suppose cε ≤ c + o(n) 555

for sufficiently large constant cε. Then 556

P

(
c

2 log c
< χ(Γn,p) < (1 + ε)

c

2 log c

)
→ 1 as n → ∞. 557

Although the original question was posed for sparse random graphs 558

the ideas leading to the proof came from investigations of the chromatic 559

number of dense random graphs. The first step toward the solution was 560

made by Matula [66, 67] and Bollobás and Erdős [16] who discovered high 561

concentration of the size of the largest independent set in Γn,p around 2 logb n, 562

where b = 1/(1−p) and edge probability p is a constant. It suggested that the 563

respective lower bound for χ(Γn,p) should be n/(2 logb n). Only a few years 564

later, Grimmett and McDiarmid published a paper [38] in which they showed 565

that a greedy algorithm, which assigns colors to vertices of a random graph 566
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sequentially, in such a way that a vertex gets the first available color, needs, 567

with high probability, approximately n/ logb n colors to produce a proper 568

coloring of Γn,p. It established an upper bound for the chromatic number 569

of dense random graph, twice as large as the lower bound. Grimmett and 570

McDiarmid conjectured that the lower bound sets, in fact, the correct order of 571

magnitude for χ(Γn,p). The right tool to settle this conjecture was delivered 572

by Shamir and Spencer [76]. They proved that the chromatic number of 573

Γn,p is sharply concentrated in an interval of length of order n1/2 but, what 574

perhaps was more important then their result itself, they introduced to the 575

theory of random graphs a new powerful technique based on concentration 576

measure of martingales, known in the probabilistic literature as Hoeffding- 577

Azuma inequality. But it was Béla Bollobás who showed how the potential of 578

martingale approach can be utilized to solve long standing conjecture. In his 579

paper [15] he proved the following theorem. 580

Theorem 5.4 ([15]). Let 0 < p < 1 be fixed and b = 1/(1 − p). Then for 581

every ε > 0 582

P (
n

2 logb n
< χ(Γn,p) < (1 + ε)

n

2 logb n
) → 1 as n → ∞. 583

Later on Matula and Kucera [68] gave an alternative proof of the above 584

theorem, using the second moment and “expose and merge” algorithmic 585

approach. �Luczak’s proof of Theorem 5.3 is in fact an ingenious blend of 586

the martingale and “expose and merge” techniques. 587

The chromatic number of a random graph is a random variable, the 588

distribution of which should be highly concentrated. It is easy to notice 589

(see above) that if p = o(n−1) then χ(Γn,p) is 2 (not counting the case when 590

the edge probability is of the order smaller then n−2 and therefore, with high 591

probability the graph is empty). One can also show that when p ∼ cn−1, 592

O < c < 1 then P (χ(Γn,p) = 2) → a and P (χ(Γn,p) = 3) → 1 − a, where 593

a = ec/2((1− c)/(1 + c))1/4. The last probabilities are simply the same as the 594

probabilities that Γn,p has or does not have an odd cycle. Such a behavior of 595

a random variable χ has been confirmed, for small edge probabilities only, by 596

�Luczak. He proved in [61] that if p < n−5/6−ε then the chromatic number, as 597

expected, takes on at most two values. 598

6. Asymmetric Graphs 599

Another interesting topic originated from a joint paper by Erdős and Rényi 600

in the peak of their cooperation in early 1960s [ER63]. Here is how they 601

describe their goals: “We shall call (. . . ) a graph symmetric, if there exists 602

a non-identical permutation of its vertices, which leaves the graph invariant. 603

By other words, a graph is called symmetric if the group of its automorphisms 604

has degree greater than 1. A graph which is not symmetric will be called 605
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asymmetric. The degree of symmetry of a symmetric graph is evidently 606

measured by the degree of its group of automorphisms. The question which 607

led us to the results contained in the present paper is the following: how can 608

we measure the degree of asymmetry of an asymmetric graph?” 609

They answer the last question in what follows: “Evidently any asymmetric 610

graph can be made symmetric by deleting certain of its edges and by adding 611

certain new edges connecting its vertices. We shall call such a transformation 612

of the graph its symmetrization. For each symmetrization of the graph let us 613

take the sum of the number of deleted edges – say r – and the number of new 614

edges – say s –; it is reasonable to define the degree of asymmetry A[G] of 615

a graph G, as the minimum of r + s where the minimum is taken over all 616

possible symmetrizations of the graph G. (. . . ) The question arises: how large 617

can be the degree of asymmetry of a graph of order n (i.e., a graph which has 618

n vertices)? We shall denote by A(n) the maximum of A[G] for all graphs G 619

of order n(n = 2, 3, . . . ).” 620

They first notice that A(2) = A(3) = A(4) = A(5) = 0 while A(6) = 621

1. In general, a rather straightforward deterministic argument leads to the 622

following result. 623

Theorem 6.1 ([30]). 624

A(n) ≤
⌊
n− 1

2

⌋
. 625

To find the lower bound for A(n) Erdős and Rényi use a non-constructive 626

argument, i.e., they show via the probabilistic method that there exists a 627

certain graph on n vertices with the degree of asymmetry at least n(1− ε)/2, 628

0 < ε < 1. 629

Theorem 6.2 ([30]). Let us choose at random a graph Γ having n given 630

vertices so that all possible 2(n
2) graphs should have the same probability 631

to be chosen. Let ε > 0 be arbitrary. Let Pn(ε) denote the probability that 632

by changing not more than n(1−ε)
2 edges of Γ it can be transformed into a 633

symmetric graph. Then we have 634

lim
n→∞Pn(ε) = 0. 635

Corollary 6.1. For any ε with 0 < ε < 1 there exists an integer n0(ε) 636

depending only on ε, such that for every n > n0(ε) there exists a graph G of 637

order n with A[G] > n(1 − ε)/2. 638

Indeed, for large n, Theorem 6.2 shows that almost every graph is a 639

counterexample to the hypothesis that its symmetrization is possible with 640

less than n
2 (1 − o(1)) edges. 641
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Hence, if we combine Theorem 6.1 and Corollary 6.1 we see that 642

lim
n→∞

A(n)

n
=

1

2
. 643

After showing that almost all labeled simple graphs are asymmetric, Erdős 644

and Rényi turned their attention to graphs with a prescribed number of 645

edges. First they noticed that since almost every tree has a cherry, i.e., a pair 646

of pendant vertices adjacent to a common neighbor, therefore almost every 647

tree on n vertices is symmetric. Furthermore they proved that any connected 648

graph of order n having n edges is either symmetric or its asymmetry is one 649

and gave the following bound. 650

Theorem 6.3 ([30]). If a graph G of order n has N = λn edges (0 < λ < 651

(n− 1)/2) then 652

A[G] ≤ 4λ

(
1 − 2λ

n− 1

)
. 653

Erdős and Rényi went further in their investigations. Let us quote a 654

few more lines from their paper [ER63]. “Another interesting question is 655

to investigate the asymmetry or symmetry of a graph for which not only the 656

number of vertices but also the number of edges N is fixed, and to ask that 657

if we choose one of these graphs at random, what is the probability of its 658

being asymmetric. We have solved this question too, and have shown that if 659

N = n
2 (log n+ω(n)), where ω(n) tends arbitrarily slowly to +∞ for n→ +∞, 660

then the probability that a graph with n vertices and N edges chosen at random 661

(so that any such graph has the same probability
((n

2)
N

)−1

to be chosen) should 662

be asymmetric, tends to 1 for n → +∞. This and some further results will 663

be published in another forthcoming paper.” 664

Unfortunately the announced paper has never been published! Several 665

years later this problem and the analogous one for unlabeled graphs was 666

attacked again by Wright [79]. 667

Consider graphs Γn,N and Un,N picked at random from the families of 668

all labeled and unlabeled graphs on n vertices and with N = N(n) edges, 669

respectively. Here is the result of Wright. 670

Theorem 6.4 ([79]). If ω(n) = (2N(n)/n)−logn → ∞ then Γn,N and Un,N 671

are almost surely asymmetric while when ω(n) ≤ 0 then they are almost surely 672

symmetric. 673

Later �Luczak [56] gave precise results about the structure of the 674

automorphism group Aut(Γn,N ) of a random graph Γn,N . He studied the 675

symmetry of the largest component L1(n,N) of this random graph. What 676

he found was that when N(n) = 1
2nα(n) then there exists a constant d such
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that for α(n) ≥ d almost surely Aut(L1(n,N) is isomorphic to some product 677

of symmetric groups. From this result he was able to deduce the following 678

strengthening of the “labelled” part of Theorem 6.4. 679

Theorem 6.5 ([56]). Let N = n
2 (logn+ ω(n)). 680

(i) If ω(n) → −∞ then |Aut(Γn,N )| → ∞ a.s. 681

(ii) If ω(n) → c then 682

lim
n→∞P (|Aut(Γn,N )| = 1) = eλ(1 + λ)

lim
n→∞P (|Aut(Γn,N )| = k!) =

λk

k!
e−λ

for k = 2, 3, . . . , where λ = e−c and c is a constant. 683

(iii) If ω(n) → ∞ then |Aut(Γn,N )| = 1 a.s. 684

7. Perfect Matchings 685

The last three papers Erdős and Rényi wrote on the subject of random graphs 686

were devoted to the existence of 1-factors. In [ER64] and [ER68] they coped 687

with the relatively easier case of random bipartite graphs. In both papers 688

they consequently emphasized the matrix terminology. “In the present paper 689

we deal with certain random 0-1 matrices. Let M(n,N) denote the set of 690

all n by n square matrices among the elements of which there are exactly N 691

elements (n ≤ N ≤ n2) equal to 1, all the other elements are equal to 0. The 692

set M(n,N) contains clearly
(
n2

N

)
such matrices; we consider a matrix M 693

chosen at random from the set M(n,N), so that each element of M(n,N) 694

has the same probability
(
n2

N

)−1
to be chosen. We ask how large N has to 695

be, for a given large value of n, in order that the permanent of the random 696

matrixM should be different from zero with probability ≥ α, where 0 < α < 1. 697

(. . . ) A second way to formulate the problem is as follows: we shall say that 698

two elements of a matrix are in independent position if they are not in the 699

same row and not in the same column. Now our question is to determine 700

the probability that the random matrix M should contain n elements which 701

are all equal to 1 and pairwise in independent position.” 702

The result they prove resembles that for the connectedness (compare 703

Theorem 2.1). 704

Theorem 7.1 ([31]). Let P (n,N) denote the probability of the event that 705

the permanent of the random matrix M is positive. Then if 706

N(n) = n logn+ cn+ o(n) 707

708
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390 Micha�l Karoński and Andrzej Ruciński

where c is any real constant, we have 709

lim
n→∞P (n,N(n)) = e−2e−c

. 710

Finally, they also mention graphs: “This result can be interpreted also in 711

the following way, in terms of graph theory. Let Γn,N be a bichromatic random 712

graph containing n red and n blue vertices, and N edges which are chosen at 713

random among the n2 possible edges connecting two vertices having different 714

color (so that each of the
(
n2

N

)
possible choices has the same probability). 715

Then P (n,N) is equal to the probability that the random graph Γn,N should 716

contain a factor of degree 1, i.e., Γn,N should have a subgraph which contains 717

all vertices of Γn,N and n disjoint edges, i.e., n edges which have no common 718

endpoint.” (They seem not to use the name ‘perfect matching’ at all.) 719

As far as the proof is concerned, “Besides elementary combinatorial and 720

probabilistic arguments similar to that used by us in our previous work on 721

random graphs (. . . ) our main tool in proving our results is the well-known 722

theorem of D. König, which is nowadays well known in the theory of linear 723

programming, according to which if M is an n by n matrix, every element 724

of which is either 0 or 1, then the minimal number of lines (i.e., rows or 725

columns) which contain all the 1-s, is equal to the maximal number of 1-s in 726

independent position. As a matter of fact, for our purposes we need only the 727

special case of this theorem, proved already by Frobenius (1917), concerning 728

the case when the maximal number of ones in independent positions is equal 729

to n (. . . ). According to the theorem of Frobenius-König 1−P (n,N) is equal 730

to the probability that there exists a number k such that there can be found k 731

rows and n−k−1 columns of M which contain all the ones (0 ≤ k ≤ n−1).” 732

The rest of the proof is devoted to showing that this is very unlikely for 733

N(n) given. It is interesting to notice that Erdős and Rényi never mention 734

Hall’s theorem, which is equivalent to Frobenius but far more popular in 735

combinatorics nowadays. 736

The 1968 paper is a straightforward extension of the 1964 result, where 737

it is shown that setting 738

N(n) = n logn+ (r − 1)n log logn+ nω(n) 739

where ω(n) tends arbitrarily slowly to infinity then almost surely the 740

bichromatic random graph contains r disjoint 1-factors. The only new element 741

of the proof is the observation that if there are no r disjoint 1-factors then 742

there is a way to delete some edges so that no vertex looses more than r − 1 743

from its degree and the resulting subgraph contains no 1-factor at all. Then 744

again the theorem of Frobenius is used. 745

The most involved of the three papers about 1-factors is that from 746

1966, where an ordinary (not bichromatic) random graph Γn,N is considered. 747

The reason is that the theorem of Tutte describing the structure of graphs 748

which admit 1-factors is more complex than its counterpart in the bipartite 749
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case. “It should be added that the problem investigated in the present paper 750

is much more difficult than the corresponding problem for even graphs solved 751

in [5]. Thus for instance in [5] we made use of the well known theorem of 752

D. König; the corresponding tool in the present paper is the much deeper 753

theorem of Tutte mentioned above.” ([5] = [ER 64]) 754

The result of that paper says that the threshold for containing a 755

1-factor coincides with that for disappearance of isolated vertices, and thus 756

also with that for connectivity (see Theorem 2.1). The proof is long and 757

tedious and involves a weaker version of Tutte’s theorem ignoring the parity 758

of components. 759

Erdős and Rényi make also the following claim: “If N = 1
2n logn+O(n), 760

as mentioned above, with probability near to 1, Γn,N consists of a connected 761

component and a certain number of isolated points. With the same method 762

(. . . ) one can prove that if the connected component of Γn,N consists of an 763

even number of points, it has with probability near 1 a factor of degree one. 764

As the proof of this result is almost the same (. . . ) we do not go into the 765

details.” 766

The above mentioned result was proved (in a strengthened form) by 767

Bollobás and Thomason [18]. In order to quote that result let us extend 768

the notion of a perfect matching by saying that a graph satisfies property 769

PM if there is a matching covering all but at most one of the nonisolated 770

vertices. It is known that, switching to the binomial model, as soon as 771

2np − logn − log logn → ∞, there are only isolated vertices outside the 772

giant component. However, the main obstacle for the property PM is the 773

presence of a pair (at least two such pairs when the number of nonisolates is 774

odd) of vertices of degree 1 adjacent to the same vertex (called, as we already 775

mentioned, ‘a cherry’). The expected number of cherries is 776

3

(
n

3

)
p2(1 − p)2(n−3) < n3p2e−2np+6p = o(1) 777

if 2np− logn− 2 log logn → ∞. Again, a trivial necessary condition becomes 778

almost surely sufficient. 779

Theorem 7.2 ([18]). Let yn = 2np− logn− 2 log logn → ∞. Then 780

P (Γn,p ∈ PM) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if yn → −∞
e−

1
8 e

−c

if yn → c

1 if yn → ∞.

781

The proof, again, was based on Tutte’s theorem. Years later �Luczak and 782

Ruciński proposed an alternative approach, via Hall’s Theorem, invented 783

in [65] to attack a more general question. For a given graph G, a perfect 784

G-matching of a graph is a spanning subgraph which is a disjoint union of 785

copies of G. For G = K2 this is the ordinary notion of a 1-factor. 786
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In [65] it was shown that for every nontrivial tree T , the threshold is the 787

same as that for disappearance of isolated vertices. 788

Theorem 7.3 ([65]). For every tree T on t vertices and with at least one 789

edge, assuming n is divisible by t, 790

P (Γn,p has a perfect T -matching ) →

⎧
⎪⎪⎨

⎪⎪⎩

0 if np− log n→ −∞
e−e−c

if np− log n→ c

1 if np− log n→ ∞.

791

The threshold for arbitraryG is not known in general. Some partial results 792

are contained in [4] and [72]. 793

Coming back to the original papers of Erdős and Rényi, the last of them 794

is concluded by the following problem: “does a random graph Γn,N where n 795

is even and 796

N =
1

2
n logn+

r − 1

2
n log logn+ ω(n)n 797

where ω(n) → ∞, contain at least r disjoint factors of degree one with 798

probability tending to 1 for n → ∞?” 799

Shamir and Upfal [77] answered this question in the positive. Given a 800

map f of V (G) into the set of non-negative integers, define an f -factor of G 801

as a spanning subgraph of G in which the degree of vertex x is f(x). 802

Theorem 7.4 ([77]). If 803

p =
1

n
(logn+ (r − 1) log logn+ ω(n), 804

r ≥ 1, limn→∞ ω(n) = ∞ and 1 ≤ f(xi) ≤ r,
∑n

i=1 f(xi) even, then Γn,p has 805

an f -factor, almost surely. 806

Although f -factors are characterized by Tutte’s theorem, Shamir and 807

Upfal chose an alternative approach using an algorithmic technique (in- 808

troduced to random graphs by Pósa) of augmentation of sub-factors by 809

alternating paths. In fact, the answer to the last question of Erdős and 810

Rényi does not follow directly from the above result (not every r-factor 811

has a 1-factorization) but from the proof. In 1985 Bollobás and Frieze [17] 812

strengthened this answer by proving that almost surely in the random graph 813

process of adding edges one by one, as soon as the minimum degree becomes 814

r, there are 
r/2� disjoint hamiltonian cycles plus a disjoint perfect matching 815

if r is odd. 816

The next problem we would like to mention cannot be directly attributed 817

to Erdős and Rényi. Here is how Erdős describes their omission [3, Ap- 818

pendix B]. “When Rényi and I developed our theory of random graphs, we 819

thought of extending our study for hypergraphs. We mistakenly thought that 820
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all (or most) of the extensions would be routine and we completely overlooked 821

the following beautiful question of Shamir. (. . . ) Shamir asked how many 822

triples must one choose on 3n elements so that with probability bounded away 823

from zero one should get n vertex disjoint triples. Shamir proved that n3/2
824

triples suffice, but the truth may very well be n1+ε or even cn logn. The reason 825

for the difficulty is that Tutte’s theorem seem to have no analogy for triple 826

systems or more generally for hypergraphs.” The result mentioned by Erdős 827

belongs, in fact, to J. Schmidt-Pruzan and E. Shamir [75]. In 1995, Frieze 828

and Janson in [35] pushed the bound down to n4/3. 829

Fortunately, Erdős and Rényi did not overlook some other important 830

problems which stimulated the research in the theory of random graphs 831

over the years. One such problem was the threshold for existence of a 832

Hamiltonian cycle in a random graph. They, in fact, asked only: for what order 833

of magnitude of N(n) has Γn,N(n) with probability tending to 1 a Hamilton- 834

line (i.e., a path which passes through all vertices). This problem was first 835

tried by Pósa [69] and Korshunov [55] and finally solved by Kómlos and 836

Szemerédi [54] and, in a stronger form, by Bollobás [12]. They proved that 837

the threshold for Hamiltonian cycle coincides with that of disappearance of 838

all vertices of degree 0 and 1. 839

8. Update for the Second Edition 840

We wrote this paper back in 1995. In this second edition of the volume we 841

decided to leave the original text intact except for a few obvious corrections 842

and the proofs of Theorems 3.2 and 3.3 which have been deleted entirely. 843

However, several new developments have occurred afterward. Here we would 844

like to mention some of them along with a couple of earlier results omitted 845

in the first edition. Needles to say, our choice is quite subjective. For more 846

thorough treatment of random graphs we refer the reader to the monograph 847

[43] published in 2000. 848

In relation to connectivity, one should note that an old result of 849

�Luczak [60] states that the k-core of a random graph, for p large enough, 850

is a.s. empty or k-connected. It implies that Γn,p is a.s. c(Γn,p)-connected for 851

the ranges of N larger than those in Theorem 2.2. 852

In the domain of small subgraphs of random graphs there has been an 853

intense study of the so called upper tail of the random variable XG counting 854

copies of a given graph G in Γn,p. As far as the lower tail is concerned, whose 855

special case is the probability P (X = 0) discussed briefly after Theorem 3.2, 856

the asymptotic order of magnitude of the logarithm of P (X ≤ (1 − ε)EX) 857

has been determined in [39] to be −ΦG. The exponent in the upper tail, 858

P (X ≥ (1 + ε)EX), is of a smaller order of magnitude which is still to 859

be determined. In [44] general lower and upper bounds were obtained which
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differ only by a logarithmic factor. Very recently DeMarco and Kahn [21] have 860

found the right threshold for cliques and formulated the “right” conjecture 861

for the general case. 862

In Sect. 5, the threshold for topological cliques found in [2] has been 863

sharpened (see [62], a remark after Corollary 18). A significant result about 864

the chromatic number of a random graph appeared in [1]. Achlioptas and 865

Naor found therein an explicit two-point limiting distribution of χ(Γn,p), 866

where p = d/n, for every d > 0, strengthening a theorem from [61] mentioned 867

at the end of Sect. 5. 868

The most acclaimed result in random graph theory which appeared after 869

1995 is, without doubt, a solution to the celebrated Shamir problem posed 870

in Sect. 7. After some initial attempts (Krivelevich [52, 53] and Kim [50]), in 871

2008 Johansson, Kahn, and Vu [46] published a complete solution to both, the 872

hypergraph Shamir problem and to its random graph counterpart (triangle- 873

factors), receiving for their achievement the prestigious Fulkerson Prize. Quite 874

recently in a series of papers, Dudek, Frieze, Loh, and Speiss [22–24, 34] 875

obtained thresholds for the hamiltonicity of random uniform hypergraphs. In 876

the hardest case of so called loose Hamilton cycles they incorporated in their 877

proofs the result on perfect matchings from [46]. 878
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396 Micha�l Karoński and Andrzej Ruciński
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42. S. Janson, T. �Luczak and A.Ruciński, An exponential bound for the probability 967

of nonexistence of a specified subgraph of a random graph, in: Proceedings of 968

Random Graphs ’87, Wiley, Chichester, 1990, 73–87. 969

43. S. Janson, T. �Luczak and A. Ruciński, Random Graphs Wiley, (2000). 970
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AQ3. Please check if “Kärman” has been changed to “Kärrman” as per

reference list is okay.
AQ4. Please cite Refs. “[29, 32, 33, 78]” in text.




