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Abstract
We study the existence of powers of Hamiltonian cycles in
graphs with large minimum degree to which some additional
edges have been added in a random manner. It follows from
the theorems of Dirac and of Komlós, Sarközy, and Szemerédi
that for every k ≥ 1 and sufficiently large n already the min-
imum degree 𝛿(G) ≥

k
k+1

n for an n-vertex graph G alone
suffices to ensure the existence of a kth power of a Hamiltonian
cycle. Here we show that under essentially the same degree
assumption the addition of just O(n) random edges ensures the
presence of the (k + 1)st power of a Hamiltonian cycle with
probability close to one.
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1 INTRODUCTION

All graphs we consider are finite and for simplicity we assume that the vertex set V of any given graph
is the set {1,… , |V|}. We recall that for k ∈ N the kth power Hk of a graph H is defined to be a
graph on the same vertex set, where edges in Hk signify that its vertices have distance at most k in H.
Consequently, H0 is the empty graph on the same vertex set and H1 = H.

For integers n ≥ k + 2 and k ≥ 1 we consider the set of graphs k
n consisting of all n-vertex

graphs G that contain the kth power of a Hamiltonian cycle and we set k =
⋃

n≥k+2 
k
n . Clearly, k

n
is a monotone graph property for fixed n and k, as powers of a Hamiltonian cycle cannot disappear by
adding edges to a graph without adding new vertices.

We investigate the probabilities that a given n-vertex graph G with high minimum degree aug-
mented by a binomial random graph G(n, p) spans a kth power of a Hamiltonian cycle, that is, we are
interested in P(G ∪ G(n, p)∈ k

n ). More formally, for 𝛼 ∈ [0, 1) and p∶ N → [0, 1] we say (𝛼, p)
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ensures k if
lim
n→∞

min
G

P
(
G ∪ G(n, p(n))∈ k

n
)
= 1 ,

where the minimum is taken over all n-vertex graphs G with 𝛿(G) ≥ 𝛼n. We are interested in the
“minimal” pairs (𝛼, p) that ensure k.

For example, when p = 0, then this reduces to the classical theorem of Dirac [8] on Hamiltonian
cycles for k = 1 and for k ≥ 2 to the Pósa-Seymour conjecture [10, 24] and its resolution (for large n)
by Komlós, Sarközy, and Szemerédi [16]. These beautiful results then assert that

( k
k+1

, 0
)

ensures k

for every k ≥ 1.
For the other extreme case, when 𝛼 = 0, we arrive at the threshold problem for the existence of

powers of Hamiltonian cycles in G(n, p). This was asymptotically solved by Posá [21] for k = 1 (see
also [1, 6] for sharper results). For k = 2 the threshold is only known up to a factor of poly(log n) due
to Nenadov and Škorić [19]. For k ≥ 3 the threshold is given by a result of Riordan [22], which was
observed by Kühn and Osthus [18]. Writing p̂k(n) for the threshold for k then these results can be
summarized by

p̂1(n) ∼
ln n
n

,
( e

n

) 1
2
≤ p̂2(n) = O

( (ln n)4√
n

)
, and p̂k(n) ∼

( e
n

) 1
k

for k ≥ 3 ,

where ln stands for the natural logarithm loge.
We study for 𝛼 >

k
k+1

the asymptotics of the smallest function p = p(n) such that (𝛼, p)
ensures k+1. Recall that for 𝛼 >

k
k+1

the Komlós-Sarközy-Szemerédi theorem asserts that (𝛼, 0)
ensures k already. We show that under the same minimum degree assumption for n-vertex graphs G
the addition of O(n) random edges suffices to ensure k+1, which is asymptotically best possible (see
discussion below).

Theorem 1.1 For every integer k ∈ N and every 𝛼 ∈ R with k
k+1

< 𝛼 < 1 there is some constant
C = C(k, 𝛼) such that for p = p(n) ≥ C∕n the pair (𝛼, p) ensures k+1.

For k = 0 Theorem 1.1 was already obtained by Bohman, Frieze, and Martin [5]. For larger k
only suboptimal upper bounds for p(n) were established so far. The best known bound of the form
p̂k+1(n)∕n𝛿 for some 𝛿 > 0 and k ≥ 2 was given by Bedenknecht, Han, Kohayakawa, and Mota [3] for
k ≥ 2 (see also [4]).

The following construction shows that Theorem 1.1 is optimal in the sense that for every 𝛼 >
k

k+1

there are n-vertex graphs G with 𝛿(G)∕n ≥ 𝛼 >
k

k+1
that require at least Ω(n) additional random edges

to ensure a (k + 1)st power of a Hamiltonian cycle.
Let (k+1) ∣ n and consider a vertex partition [n] = V1 ∪⋅ · · · ∪⋅ Vk+1 with each part of size n∕(k+1).

Moreover, for every i = 1,… , k + 1 fix some subset Wi ⊆ Vi of size |Wi| = ⌈𝜀n⌉ for some arbitrarily
small 𝜀 > 0.

Let G be the n-vertex graph consisting of the union of the complete (k + 1)-partite graph with
vertex partition V1 ∪⋅ · · · ∪⋅ Vk+1 and k + 1 complete bipartite graphs with vertex classes Wi and Vi ∖Wi
for i = 1,… , k + 1. Clearly, 𝛿(G) ≥ ( k

k+1
+ 𝜀)n. However, any copy of k+1

n , the (k + 1)st power of a
Hamiltonian cycle, contains ⌊n∕(k+2)⌋ vertex-disjoint copies of Kk+2 and each of these cliques would
require at least one edge contained in some set Vi. Consequently, every such clique has at least one
vertex in

⋃k+1
i=1 Wi and, hence, G contains at most ||⋃k+1

i=1 Wi|| = (k+1)⌈𝜀n⌉ vertex disjoint Kk+2’s. This
implies that for 𝜀 ≪ (k+1)−2 one needs to add at least a matching of size Ω(n) to G before it may have
a chance to contain a copy of k+1

n .
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In view of the optimality of Theorem 1.1, the next open problem might be to find the asymptotics
of the minimal p such that (𝛼, p) ensures k+1 for 𝛼 = k

k+1
or even smaller values of 𝛼. This problem

was also considered by Böttcher, Montgomery, Parczyk, and Person in [4].

2 METHOD OF ABSORPTION

The proof of Theorem 1.1 is based on the absorption method, which has been introduced about a
decade ago in [23]. Since then, it has turned out to be an extremely versatile technique for solving a
variety of combinatorial problems concerning the existence of spanning substructures in graphs and
hypergraphs obeying minimum degree conditions.

A nice feature of this method is that it often makes it possible to split the problem at hand into
several subproblems, which may turn out to be more manageable. In the present case, we may reduce
Theorem 1.1 to the Propositions 2.1-2.4 formulated later in this section.

Before stating the first of these propositions, we fix some terminology concerning powers of paths.
A (k + 1)-path is defined as the (k + 1)st power of a path. The ordered sets of the first and last k + 1
vertices are called the end-sets of the (k + 1)-path, which must span (k + 1)-cliques. If K and K′ are
the ordered cliques induced by the end-sets of a (k + 1)-path P, we say that P connects K and K′ and
the vertices of P not contained in V(K) ∪ V(K′) are its internal vertices.

We may now state the so-called Connecting Lemma, which is proved in Section 4. Roughly speak-
ing, it asserts that in the graphs we need to deal with, one may connect any two disjoint (k+ 1)-cliques
by means of a “short” (k + 1)-path. Moreover, we want to declare some small proportion of the vertex
set to be “unavailable” for such a connection (e.g., because we already have something else in mind
that we want to do with those vertices), then the desired connection does still exist.

Proposition 2.1 (Connecting Lemma) For every integer k ≥ 0 and every 𝜀 > 0 there exists some
C > 1 such that for every n-vertex graph G with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n and p = p(n) ≥ C∕n a.a.s.

H = G ∪ G(n, p) has the following property.1

For every subset Z ⊆ V of size at most 𝜀n∕2 and every pair of disjoint, ordered (k+1)-cliques K, K′,
there exists a (k + 1)-path connecting K and K′ with exactly (k + 1)2k+1 internal vertices from V ∖ Z.

As the proof of Theorem 1.1 progresses, the number of vertices we do not want to use for connec-
tions anymore gets out of control. Therefore one puts a small set R of vertices aside at the beginning,
which is called the reservoir and has the property that, actually, we can always connect any two given
(k + 1)-cliques through the reservoir. Of course, in order to use the reservoir multiple times, we shall
need again a version, where a small part of the reservoir is “unavailable” at any particular moment. A
precise version of the Reservoir Lemma, which is proved in Section 5, reads as follows.

Proposition 2.2 (Reservoir Lemma) For every integer k ≥ 0 and every 𝜀 > 0, 𝛾 ∈ (0, 1) there exists
C > 1 such that for every n-vertex graph G with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n there exists a set of vertices R ⊆ V

of size 𝛾2n such that for p = p(n) ≥ C∕n a.a.s. H = G ∪ G(n, p) has the following property.
For every S ⊆ R with |S| ≤ 𝜀|R|∕4 and for every pair of disjoint, ordered (k + 1)-cliques K, K′

in G − R, there exists a (k + 1)-path connecting K and K′ with exactly (k + 1)2k+1 internal vertices
from R ∖ S.

1As usual a.a.s. abbreviates asymptotically almost surely and means that the statement holds with probability tending to 1 as
n → ∞. Strictly speaking, we should therefore consider arbitrary sequences (Gn)n∈N of n-vertex graphs with 𝛿(Gn) ≥ ( k

k+1
+𝜀)n.

However, for a less baroque presentation we chose this “simplification” here and in the propositions below.
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The next result (proved in Section 6) plays a central rôle and, in fact, this kind of statement gave the
absorption method its name. It promises the existence of a very special, so-called absorbing (k+1)-path
A, which can “absorb” any small set of vertices. Thus the problem of constructing the (k + 1)st power
of a Hamiltonian cycle gets reduced to the much easier problem of finding the (k + 1)st power of an
almost spanning cycle containing A. Let us remark at this point that the Absorbing Lemma gets utilized
after the Reservoir Lemma and the set R appearing below takes this fact into account.

Proposition 2.3 (Absorbing Lemma) For every integer k ≥ 0 and every 𝜀 > 0 there exist
𝛾 ∈ (0, 𝜀∕4k+2) and C > 1 such that for every n-vertex graph G with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n and every

p = p(n) ≥ C∕n a.a.s. H = G ∪ G(n, p) has the following property.
For every set of vertices R ⊆ V of size 𝛾2n the graph H − R contains a (k + 1)-path A with at most

𝛾n∕2 vertices such that for every U ⊆ V with |U| ≤ 2𝛾2n the graph H[V(A) ∪ U] contains a spanning
(k + 1)-path having the same end-sets as A.

The last ingredient of our argument is a statement to the effect that essentially the whole graph
under consideration can be covered by “not too many” (k + 1)-paths. Such paths can be connected
together with the absorbing path A obtained earlier by means of “relatively few” connections to be
made through the reservoir, thus producing the desired (k + 1)st power of an almost spanning cycle.
We shall prove this Covering Lemma in Section 7.

Proposition 2.4 (Covering Lemma) For every integer k ≥ 0 and every 𝜀 > 0, 𝛾 ∈ (0, 𝜀∕2] there
exists C > 1 such that for every n-vertex graph G with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n and p = p(n) ≥ C∕n a.a.s.

H = G ∪ G(n, p) has the following property:
For every subset Q ⊆ V of size at most 𝛾n there exists a family of 𝛾3n vertex disjoint (k + 1)-paths

in H − Q that cover all but at most 𝛾2n vertices from V ∖ Q.

We conclude the present section with a proof of our main result assuming the four propositions
stated above. In fact, we shall not make a direct reference to Proposition 2.1 in the proof below, but it
will be employed in the proof of Proposition 2.3 in Section 6.

Proof of Theorem 1.1 Let k ∈ N and 𝛼 ∈
( k

k+1
, 1
)

be given and set 𝜀 = 𝛼− k
k+1

. Plugging k and 𝜀 into

Proposition 2.3 we get 𝛾 ∈ (0, 𝜀∕4k+2) and C3 > 1. Next we appeal with k, 𝜀, and 𝛾 to Propositions 2.2
and 2.4, thus getting two further constants C2 > 1 and C4 > 1. We claim that C = max{C2,C3,C4} is
as desired.

So let an n-vertex graph G with 𝛿(G) ≥ ( k
k+1

+ 𝜀)n as well as some p ≥ C∕n be given. We need to

check that a.a.s. the graph H = G ∪ G(n, p) contains the (k + 1)st power of a Hamiltonian cycle k+1
n .

For this purpose it suffices to prove that every graph H = G ∪ G(n, p) exemplifying the conclusion of
Proposition 2.x for each x ∈ {2, 3, 4} contains a copy of k+1

n .
Use Proposition 2.2 for obtaining a reservoir set R ⊆ V of size 𝛾2n. By Proposition 2.3 there

exists an absorbing (k + 1)-path A ⊆ H − R. Since |R| + |V(A)| ≤ (𝛾2 + 𝛾∕2)n < 𝛾n, we can apply
Proposition 2.4 to Q = R∪ V(A) and obtain a collection  of at most 𝛾3n vertex-disjoint (k + 1)-paths
covering the whole graph H − Q except for a small set of vertices U⋆ ⊆ V ∖ Q with |U⋆| ≤ 𝛾2n. Now
we want to create the (k + 1)st power of a cycle  ⊆ H

• containing A and each (k + 1)-path in  as a subpath,
• such that between any two “consecutive” such subpaths of  there are always exactly

(k + 1)2k+1 vertices from R.
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For building  we intend to make ||+ 1 successive applications of Proposition 2.2. In each such
application we let K and K′ be the end-sets of (k + 1)-paths we wish to connect and we let S ⊆ R be
the set of all vertices that we obtained as internal vertices in previous applications of Proposition 2.2.
When arriving at the last step of this process closing the cycle , the set S of vertices we need to
exclude has size

|S| = (k + 1)2k+1 ⋅ || ≤ 4k+1𝛾3n ≤
𝜀

4
|R| ,

which justifies the applications of Proposition 2.2.
Now the complement U = V ∖ V() satisfies |U| = |U⋆| + |R ∖ V()| ≤ 2𝛾2n, whence by

Proposition 2.3 there exists a (k + 1)-path AU with V(AU) = V(A) ∪⋅ U having the same end-sets as A.
Therefore, we can replace A by AU in  and obtain the desired (k + 1)st power of a Hamiltonian cycle
k+1

n ⊆ H. ▪

3 PRELIMINARIES

In the proofs of the propositions stated in Section 2 we make use of the high minimum degree condition
of the given graph G and combine it with properties of G(n, p). We prepare for this by collecting a few
observations for such graphs G in Section 3.1 and for the random graph in Section 3.2.

3.1 Neighborhoods in graphs of large minimum degree

We recall the following standard notation. For a set V and an integer j ∈ N we write V (j) for the set
of all j-element subsets of V . Given a graph G = (V ,E) we write NG(u) for the neighborhood of a
vertex u ∈ V . More generally, for a subset U ⊆ V we set

NG(U) =
⋂
u∈U

N(u)

for the joint neighborhood of U. For simplicity we may suppress G in the subscript and for sets
{u1,… , ur} we may write N(u1,… , ur) instead of N({u1,… , ur}).

Lemma 3.1 For every integer k ≥ 0 and 𝜀 > 0 the following holds for every n-vertex graph
G = (V ,E) with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n. For every j ∈ [k + 1] and every J ∈ V (j) we have

|N(J)| ≥ (
k + 1 − j

k + 1
+ j𝜀

)
n . (3.1)

Furthermore, for j ∈ [k] the induced subgraph G[N(J)] satisfies

𝛿(G[N(J)]) ≥
(

k − j
k − j + 1

+ 𝜀

) |N(J)| (3.2)

for every J ∈ V (j).
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Proof First observe that De Morgan’s law and Boole’s inequality imply

n − ||N(J)|| = ||V ∖ N(J)|| = ||||⋃u∈J

(
V ∖ N(u)

)|||| ≤ jn −
∑
u∈J

||N(u)|| .
Therefore,

|N(J)| ≥ ∑
u∈J

||N(u)|| − (j − 1)n ≥ j𝛿(G) − (j − 1)n

≥

( jk
k + 1

+ j𝜀
)

n − (j − 1)n =
( jk − (j − 1)(k + 1)

k + 1
+ j𝜀

)
n ,

which yields (3.1).
Proceeding with (3.2) we note that every v ∈ N(J) satisfies

||N(v) ∩ N(J)|| ≥ 𝛿(G) −
(
n − |N(J)|) ≥ (

1 − n − 𝛿(G)|N(J)|
) |N(J)| .

Owing to the lower bound on 𝛿(G) and that (3.1) implies |N(J)| ≥ k+1−j
k+1

n we deduce

𝛿(G[N(J)])|N(J)| ≥ 1 − n − 𝛿(G)|N(J)| ≥ 1 −
1 − k

k+1
− 𝜀

k+1−j
k+1

≥ 1 − 1
k + 1 − j

+ 𝜀 =
k − j

k + 1 − j
+ 𝜀 ,

as desired. ▪

3.2 Janson’s inequalities

We shall use the following variant of Janson’s inequality [13] (see also [14]).

Theorem 3.2 (Janson’s inequality) Let 𝜚 > 0 and C > 1 be constants. Let F = (VF,EF) be a forest
and let  be a family of copies of F in Kn with | | ≥ 𝜚n|VF|.

There exists some constant cF only depending on F such that for p ≥ C∕n the probability that
G(n, p) contains no copy of F from  is at most 2−cF𝜚

2pn2 .

The following further customized version of Janson’s inequality will be utilized in our proof in
Sections 4 and 5. Roughly speaking this version will guarantee that G(n, p) provides the missing edges
of a (k+1)-path connecting two (k+1)-cliques K and K′ provided the deterministic graph G guarantees
many short k-paths between K and K′.

Corollary 3.3 For all integers k, 𝓁 ≥ 0 with (k + 1) ∣ 𝓁 and 𝜚 > 0 there exists C > 0 such that
for every n-vertex graph G and p ≥ C∕n the graph H = G ∪ G(n, p) satisfies with probability at least
1 − 4−n the following property:

If for a pair of ordered, disjoint (k + 1)-cliques K, K′ in G there is a family  of at least 𝜚n𝓁+2k+2

k-paths P = x1 … xk+1y1 … y𝓁x′1 … x′k+1 in G such that Kx1 … xk+1 and x′1 … x′k+1K′ form (k+1)-paths,
then there is at least one k-path P ∈  such that KPK′ forms a (k + 1)-path in H.

Proof Let F denote the linear forest on 𝓁 + 2k + 2 vertices consisting of k + 1 disjoint paths on
2 + 𝓁∕(k + 1) vertices each. For each P ∈  there is a copy FP of F such that the union P ∪ FP forms
a (k + 1)-path connecting K with K′ (see Figure 1).
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FIGURE 1 For k = 1 and 𝓁 = 4 completing a 1-path P to a 2-path with a linear forest FP consisting of two 3-edge paths
[Colour figure can be viewed at wileyonlinelibrary.com]

We estimate the probability that at least one of them is a subgraph of G(n, p). Setting
 = {FP ∶ P ∈ } we have | | = || ≥ 𝜚n𝓁+2k+2, Theorem 3.2 shows that for C ≥ 2c−1

F 𝜚−2 this
leads to

P
(
FP ⊈ G(n, p) for all FP ∈ 

)
≤ 4−n ,

and the corollary is proved. ▪

4 PROOF OF THE CONNECTING LEMMA

In this section we establish Proposition 2.1. For that we first prove a deterministic lemma (see
Lemma 4.1), which guarantees many short k-paths between every pair of disjoint k-cliques in large
graphs G with sufficiently high minimum degree. Similar results appeared before in [12,17]. We shall
employ this result in the proof of Proposition 2.1, where at least one of these k-paths will be “thickened”
to a (k + 1)-path by an application of Janson’s inequality in the form of Corollary 3.3.

In Lemma 4.1 it will be convenient to consider k-walks, which are defined like k-path, without the
restriction that all vertices must be distinct. However, since we consider only graphs without loops,
any k consecutive vertices in a k-walk must be distinct. As in the case of k-paths we say a walk con-
nects the ordered k-cliques forming the ends of the walk and internal vertices are counted with their
multiplicities (outside the ends).

Lemma 4.1 For every integer k ≥ 1 and 𝜀 > 0 there exists some 𝜚k > 0 such that every n-vertex
graph G with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n satisfies the following for 𝓁k = (k + 1)(2k+1 − 2).

For all pairs of disjoint, ordered k-cliques K, K′ in G the number of k-walks connecting K and K′

with 𝓁k internal vertices is at least 𝜚kn𝓁k .

Proof We argue by induction on k. For k = 1 we have 𝓁1 = 4 and the statement reduces to showing
that any two distinct vertices x and y of an n-vertex graph G with minimum degree 𝛿(G) ≥

( 1
2
+ 𝜀

)
n

are connected by 𝜚1n4 walks with four internal vertices for some 𝜚1 = 𝜚1(𝜀) > 0. The minimum degree
condition implies that there are at least (1∕2 + 𝜀)3n3 walks with three edges that start in x. Moreover,
by (3.1) for j = 2 the end-vertex of each such walk has at least 2𝜀n joint neighbors with y, which gives
rise to at least 2𝜀(1∕2 + 𝜀)3n4 different x-y-walks in G with four internal vertices. This establishes the
induction start for 𝜚1 = 𝜀∕4.

For the inductive step we assume that the lemma holds for k − 1 in place of k ≥ 2 and we consider
a given n-vertex graph G = (V ,E) with 𝛿(G) ≥ ( k

k+1
+ 𝜀)n. Given 𝜀 > 0 we will use some auxiliary

constants 𝜉, 𝜉′, 𝜉′′, and 𝜉′′′ before we define 𝜚k. Moreover, given 𝜚k−1 by the inductive assumption

http://wileyonlinelibrary.com
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applied with 𝜀, we shall work under the following hierarchy of constants

k−1, 𝜀 ≫ 𝜚k−1, 𝜉 ≫ 𝜉′ ≫ 𝜉′′ ≫ 𝜉′′′ ≫ 𝜚k .

First we observe that for any u, w ∈ V(G) the case j = 2 of (3.1) and (3.2) yields

|N(u,w)| ≥ k − 1
k + 1

n and e(N(u,w)) ≥
(k − 2

k − 1
+ 𝜀

) |N(u,w)|2
2

.

Hence, it follows from Turán’s theorem that G[N(u,w)] induces a copy of Kk and owing to the
so-called supersaturation phenomenon (see, e.g., [11]) the induced subgraph G[N(u,w)] contains
Ω(|N(u,w)|k) = Ω(nk) copies of Kk. Consequently, there exists 𝜉 = 𝜉(k, 𝜀) > 0 such that

||{Kk ⊆ G[N(u,w)]
}|| ≥ 𝜉nk , (4.1)

that is, there are at least 𝜉nk copies of Kk contained in G[N(u,w)] for any vertices u, w ∈ V .
We consider two disjoint, ordered k-cliques K and K′. As a preliminary step we first extend K′ in

a greedy manner by k vertices. (This seems like an unnecessary step but it is needed to fulfill a certain
divisibility condition at the end of this proof.) The total number of these extensions is, by k applications
of (3.1) with j = k, at least (( 1

k + 1
+ k𝜀

)
n
)k

≥

( n
k + 1

)k
, (4.2)

as we do not require that all these vertices are distinct from those in K or K′. Let ′ be the set of all
ordered k-tuples obtained this way. By construction for every L′ ∈ ′ we have that L′K′ induces a
k-walk connecting L′ and K′ without internal vertices.

Next we connect K with every L′ ∈ ′ by a k-walk. Again we infer from (3.1) that we have|N(V(K))| ≥ n
k+1

and |N(V(L′))| ≥ n
k+1

. It, therefore, follows from (4.1) that

∑
u∈N(V(K))

∑
w∈N(V(L′))

||{M ∶ M ≅ Kk and M ⊆ G[N(u,w)]
}|| ≥ 𝜉nk+2

(k + 1)2
.

By a double counting argument, this implies that there are at least 𝜉′nk k-cliques M in G for which

||{(u,w) ∈ N(V(K)) × N(V(L′)) ∶ M ⊆ G[N(u,w)]
}|| ≥ 𝜉′n2.

For fixed such M we let UK denote the set of those vertices u ∈ N(V(K)) that belong to at least one
such pair and let WL′ ⊆ N(V(L′)) be defined in the same way. Clearly, we have |UK|, |WL′ | ≥ 𝜉′n.

We connect K and L′ by k-walks through M. For the k-walk connecting K and M we shall use
the properties of u ∈ UK and, analogously, we rely on the properties of w ∈ WL′ for the k-walk
connecting M and L′. Recall that for every u ∈ UK we have K ⊆ G[N(u)], M ⊆ G[N(u)] and an
application of (3.2) with j = 1 gives

𝛿(G[N(u)]) ≥
(k − 1

k
+ 𝜀

)|N(u)| .
Thus, by the inductive assumption, there are at least 𝜚k−1n𝓁k−1 (k − 1)-walks connecting the last k − 1
vertices of K and the first k−1 vertices of M and each such walk has 𝓁k−1 internal vertices. Let K+ ⊆ K
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FIGURE 2 Building a 2-path Q for k = 1 that connects K and M by adding vertices from UP
K to a 1-path P connecting K+

and M− at the indicated places [Colour figure can be viewed at wileyonlinelibrary.com]

be the ordered (k − 1)-clique spanned by the last k − 1 vertices of K and let M− ⊆ M be the ordered
(k−1)-clique spanned by the first k−1 vertices of M. Repeating this argument for every vertex u ∈ UK
we obtain at least

|UK| ⋅ 𝜚k−1n𝓁k−1 ≥ 𝜉′𝜚k−1n1+𝓁k−1 = 𝜉′′n1+𝓁k−1

pairs (u,P) where u ∈ UK and P is a (k − 1)-walk connecting K+ and M− in G[N(u)]. As there are no
more than n𝓁k−1 such walks in G, there are at least 1

2
𝜉′′n vertices u ∈ UK for which G[N(u)] contains

at least 1
2
𝜉′′n𝓁k−1 of these walks. Let us fix one such (k − 1)-walk P and denote by UP

K the subset of UK
consisting of the vertices u such that P ⊆ G[N(u)]. Next we construct a k-walk Q from K to M by
inserting

𝓁k−1

k
+ 1 = 2k − 1

vertices from UP
K into P in such a way that there are exactly k internal vertices of the (k − 1)-walk P

between each consecutive pair of the vertices of UP
K (see Figure 2).

Note that any such k-walk Q created this way is indeed a k-walk connecting K and M including
the first vertex of K and the last vertex of M, as every vertex u ∈ UP

K ⊆ UK contains K and M in its
neighborhood. Note that this way we ensure the existence of at least

1
2
𝜉′′n𝓁k−1 ⋅

(1
2
𝜉′′n

)2k−1
= 𝜉′′′n𝓁k−1+2k−1

k-walks connecting K and M.
The same argument applied for M and L′ (instead of K and M) using the set WL′ yields 𝜉′′′n𝓁k−1+2k−1

k-walks connecting M and L′. Consequently, for fixed M and L′ we obtain

(
𝜉′′′n𝓁k−1+2k−1)2

k-walks connecting K and K′ that pass through M and L′. We recall that there are at least 𝜉′nk choices
for the clique M for fixed L′ ∈ ′ and that |′| ≥ ( n

k+1

)k
(see (4.2)). Therefore, the number of k-walks

connecting K and K′ is at least

(
𝜉′′′

)2n2𝓁k−1+2k+1−2 ⋅ 𝜉′nk ⋅
( n

k + 1

)k
≥ 𝜚kn2𝓁k−1+2k+1−2+2k = 𝜚kn𝓁k ,

http://wileyonlinelibrary.com
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where the last identity follows from 𝓁k−1 = k(2k − 2), which gives indeed

2𝓁k−1 + 2k+1 − 2 + 2k = 2k(2k − 2 + 1) + 2k+1 − 2 = (k + 1)(2k+1 − 2) = 𝓁k .

This concludes the inductive step and the proof of Lemma 4.1. ▪

It is left to deduce Proposition 2.1 from Lemma 4.1. Roughly speaking, Lemma 4.1 verifies the
assumptions of Corollary 3.3, which then guarantees that at least one given k-path will be enriched to
a (k + 1)-path by the random graph G(n, p).

Proof of Proposition 2.1 Let k ≥ 0 and 𝜀 > 0 be given. If k = 0, then we set 𝜚0 = 1, and for k ≥ 1,
we appeal to Lemma 4.1 applied with k and 𝜀∕2 and obtain a constant 𝜚k > 0. We then let C > 1 be
given by Corollary 3.3 applied with

k , 𝓁 = (k + 1)(2k+1 − 2) , and 𝜚 = 1
2𝓁+1

𝜚k ⋅
(
𝜀

2

)2k+2
.

Finally, let G = (V ,E) be an n-vertex graph with 𝛿(G) ≥
( k

k+1
+ 𝜀

)
n and p ≥ C∕n.

Consider a set Z ⊆ V of size at most 𝜀n∕2 and let K and K′ be two disjoint, ordered (k+ 1)-cliques
in G − Z. In order to meet the assumptions of Corollary 3.3 we first show that there are many ways to
greedily extend K and K′ to L = x1 … xk+1 and L′ = x′1 … x′k+1 and then we use Lemma 4.1 to show
that there are many possibilities to connect L and L′.

We remedy this by first selecting (k + 1)-cliques L and L′ in G − Z such that KL and L′K form
(k+1)-walks. In fact, since 𝛿(G−Z) ≥

( k
k+1

+ 𝜀

2

)
n we infer that k+1 applications of (3.1) for j = k+1

in G − Z give rise to at least (𝜀n∕2)k+1 such ordered (k + 1)-cliques L. Similarly, there are at least
(𝜀n∕2)k+1 such ordered (k + 1)-cliques L′. For two such ordered cliques L and L′ let L+ be the last k
vertices in L and let L′

− be the first k vertices in L′.
For k ≥ 1 the graph G−Z satisfies the assumption of Lemma 4.1 with 𝜀∕2 instead of 𝜀 and, hence,

the lemma yields 𝜚k|V ∖Z|𝓁 k-walks connecting L+ and L′
− in G−Z with 𝓁 = (k+1)(2k+1 −2) internal

vertices. For k = 0 we have 𝓁 = 0 and we note that for the 0-cliques L+ and L′
− and the empty path

might be considered as a 0-path connecting those.
Consequently, for any value of k there are 𝜚k|V∖Z|𝓁 k-walks connecting L+ and L′

− for all considered
(k + 1)-cliques L and L′. Going over all such (k + 1)-cliques L and L′ this gives rise to(

𝜀

2
n
)2k+2

⋅ 𝜚k

(1
2

n
)𝓁

such k-walks x1 … xk+1y1 … y𝓁x′1 … x′k+1. Since at most (2k + 𝓁)𝓁n𝓁−1 of these k-walks may repeat a
vertex, that is, walks where the vertices y1,… , y𝓁 are not pairwise different or they are not distinct
from K or from K′, for sufficiently large n, we may assume that at least half of these k-walks are indeed
k-paths disjoint from K and K′. This verifies the assumptions of Corollary 3.3, which with probability
at least 1 − 4−n yields a desired (k + 1)-path connecting K and K′ in H = G ∪ G(n, p)

Finally, the union bound over up to at most n2k+2 choices for K and K′ and at most 2n choices for Z
shows that a.a.s. H = G ∪ G(n, p) enjoys the conclusion of Proposition 2.1. ▪

5 PROOF OF THE RESERVOIR LEMMA

Proof of Proposition 2.2 Consider a random subset R ⊆ V with |R| = 𝛾2n chosen uniformly at
random. Since 𝛿(G) ≥ ( k

k+1
+ 𝜀)n, it follows from a version of Chernoff’s inequality appropriate for
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hypergeometric distributions that for each vertex v ∈ V the bad event that |N(v) ∩ R| < ( k
k+1

+ 𝜀

2
)|R|

holds has probability e−Ω(n). Thus, by the union bound, the probability that there exists some v ∈ V
for which this bad event occurs is o(1).

This proves, in particular, that there exists some set R ⊆ V with |R| = 𝛾2n and

|N(v) ∩ R| ≥ ( k
k + 1

+ 𝜀

2

) |R| for every v ∈ V . (5.1)

For the rest of the proof we fix some such set R ⊆ V having these properties. Notice that (5.1)
immediately entails that

|N(J) ∩ R| ≥ 1
2
𝜀|R| holds for all J ∈ V (k+1). (5.2)

Let us now fix two ordered (k + 1)-cliques K and K′ in G − R as well as a subset S ⊆ R with|S| ≤ 1
4
𝜀|R|. Consider the bad event  that there is no (k + 1)-path in H connecting K with K′ having

𝓁 = (k + 1)2k+1

internal vertices all of which belong to R ∖ S. It suffices to prove that

P() ≤ 4−n . (5.3)

This is because there are at most nk+1 possibilities for each of K and K′ and at most 2n possibilities
for S, meaning that once (5.3) is established it will follow that the probability that H fails to have the
desired property is at most n2k+22n ⋅ o(4−n) = o(1), as desired.

For the proof of (5.3) we note that due to (5.2) we can greedily extend K to a (k + 1)-path KL,
where L denotes some ordered (k+1)-clique in G[R∖S]. More precisely, since |S| ≤ 1

4
𝜀|R| each vertex

of such a clique L can be chosen in at least 1
4
𝜀|R| many ways and thus the set  containing all such

cliques L satisfies || ≥ ( 1
4
𝜀|R|)k+1.

Applying the same reasoning to backwards extensions of K′ we infer that the set ′ consisting of
all ordered (k + 1)-cliques L′ in G[R ∖ S] for which L′K′ is a (k + 1)-path in G has at least the size|′| ≥ ( 1

4
𝜀|R|)k+1.

Now let  be the collection of all k-paths in G[R∖S] having 𝓁 vertices that start with a member of 
and end with a member of ′. To derive a lower bound on || we note that as a consequence of (5.1)
the graph G[R ∖ S] satisfies the assumptions of Lemma 4.1 with 𝜀∕4 here in place of 𝜀 there. Thus for
some sufficiently small choice of 𝜚k > 0, Lemma 4.1 guarantees that for every L ∈  and L′ ∈ ′

there are at least 𝜚k|R ∖S|𝓁−2k−2 k-walks with 𝓁−2k−2 internal vertices connecting the last k vertices
of L with the first k vertices of L′. Without loss of generality we may assume that 𝜚k ≪ 𝜀2k+2∕2𝓁 and
since most of these walks are indeed paths for sufficiently large n, this shows that

|| ≥ 𝜚k

2
|||′||R ∖ S|𝓁−2k−2 ≥

𝜚k

2

(
𝜀

4

)2k+2 (
1 − 𝜀

4

)𝓁 |R|𝓁 ≥ 𝜚2
k|R|𝓁 . (5.4)

Consequently, we can invoke Corollary 3.3 for 𝓁, k, and 𝜚 = 𝜚2
k , which yields (5.3) and thereby

Proposition 2.2 is proved. ▪
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6 PROOF OF THE ABSORBING LEMMA

The present section is dedicated to the proof of Proposition 2.3. As in many earlier applications of
the absorbing method the core idea is to take a random collection of Ω(n) small configurations called
absorbers, which are then connected by means of the Connecting Lemma to form the desired path A.

The absorbers we shall use later will simply be (k+1)-paths on 2k+2 vertices. When such a path P
appears in the neighborhood of some vertex x, we have the liberty to insert x in the middle of P, thus
creating a longer (k+1)-path. In other words, the path P can absorb x. Now the plan is to construct A so
as to contain many disjoint absorbers and to make sure that for every x ∈ V there will be at least 2𝛾2n
absorbers in A capable of absorbing x.

For standard reasons in the area detailed more fully below, the task of proving Proposition 2.3 gets
thus reduced to estimating the number of such absorbers in H. This requires to deal with the interplay
of the deterministic part G and the random part G(n, p) of H. It turns out to be convenient to insist that
our absorbers are entirely contained in G, except for their “middle edges,” which will have to be taken
from G(n, p). It thus becomes necessary to argue that G(n, p) is likely to “complete” many x-absorbers
for every x ∈ V and for doing so we exhibit auxiliary graphs Bx with Ω(n2) edges and show that
a.a.s. G(n, p) intersects each of them in Ω(n) edges.

Accordingly, the proof of Proposition 2.3 consists of four steps.

• Define for each x ∈ V a graph Bx on V of size Ω(n2) depending only on G.
• State properties G(n, p) is likely to have that will imply the existence of A in a deterministic sense.
• Perform a random selection of Ω(n) absorbers.
• Connect these absorbers, thus obtaining A.

Proof of Proposition 2.3 We work with a hierarchy

k−1, 𝜀 ≫ 𝛽 ≫ 𝛾 ≫ C−1

and we consider an n-vertex graph G = (V ,E) with 𝛿(G) ≥ ( k
k+1

+ 𝜀)n.

The graphs Bx

Let P denote the (k + 1)-path on 2k + 2 vertices 1,… , 2k + 2 and let P− be the graph obtained from P
by deleting the middle edge between k + 1 and k + 2. Notice that the chromatic number of P− is
(at most) k + 1, an admissible coloring being the map 𝜑∶ V(P−) −→ [k + 1] assigning the colors
1,… , k + 1, k + 1, 1,… , k in this order to the vertices of P−, that is, explicitly

𝜑(i) =
⎧⎪⎨⎪⎩

i if 1 ≤ i ≤ k + 1,

k + 1 if i = k + 2,

i − k − 2 if k + 3 ≤ i ≤ 2k + 2.

We claim that for every vertex x ∈ V there are at least

𝛽n2k+2 ordered copies of P− in G[N(x)] . (6.1)

This is clear for k = 0, as in this case the graph P− has two vertices and no edges. If k > 0 we apply
Lemma 3.1 to J = {x} and learn that the graph G[N(x)] has order at least k

k+1
n and minimum degree
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at least ( k−1
k

+ 𝜀)|N(x)|. So by the Erdős-Stone theorem there is at least one copy of P− in G[N(x)] and
by supersaturation (see, e.g., [11]) there are indeed at least 𝛽n2k+2 ordered copies of P− in G[N(x)],
which completes the proof of (6.1).

Let Bx be a graph on V whose edges are the pairs vv′ with the property that there are at least 𝛽n2k

injective graph homomorphism 𝜑∶ P− → G[N(x)] with 𝜑(k + 1) = v and 𝜑(k + 2) = v′. It follows
from the discussion above that

e(Bx) ≥ 𝛽n2∕2 . (6.2)

Properties of G(n, p)

We will now check that the following statements hold a.a.s.

1. G(n, p) has at most Cn edges.
2. There are at most 2C2n ordered pairs (e, e′) of intersecting edges in G(n, p).
3. For every R ⊆ V with |R| ≤ 𝛾2n and every v ∈ V at least 𝛽Cn∕4 edges of Bx − R appear in

G(n, p).

Notice that (1) is straightforward by Chernoff’s inequality. For (2) we remark that the random vari-
able counting such pairs has expected value and variance OC(n) and, therefore, Chebyshev’s inequality
applies. Finally, for every R and x as in (3) we have e(Bx − R) ≥ 𝛽n2∕2 − |R|n ≥ 𝛽n2∕3 by (6.2) and
𝛾 ≪ 𝛽. Thus the expected value of the number XR,x of edges that G(n, p) and Bx − R have in common
is at least 𝛽Cn∕3. In view of Chernoff’s inequality (see [15, Section 2.1]) and C ≫ 𝛽−1 it follows that

P(XR,x < 𝛽Cn∕4) < e−𝛽Cn∕96 < 4−n .

Taking the union bound over all choices for the pair (R, x) we infer that (3) fails with a probability of
at most n2n ⋅ 4−n = o(1).

Having thus proved (1)-(3) to hold a.a.s. we shall henceforth regard G(n, p) as a fixed graph having
these properties, for which, moreover, the conclusion of Proposition 2.1 is valid.

As we shall see, these assumptions imply the existence of the desired absorbing path. Let us fix a
set R ⊆ V with |R| ≤ 𝛾2n from now on.

Selection of absorbers

An ordered copy ⇀v = (v1,… , v2k+2) ∈ (V ∖ R)2k+2 of P− in G − R with vk+1vk+2 ∈ E(G(n, p)) is called
an absorber. Notice that by (1) there exist at most Cn2k+1 absorbers.

In case all vertices of an absorber ⇀v are in NG(x) for some vertex x ∈ V we say that ⇀v is an
x-absorber. As explained earlier, the rationale behind this terminology is that if the path A we are about
to construct happens to contain an x-absorber ⇀v = (v1,… , v2k+2), then we may replace this part of A
by the (k + 1)-path (v1,… , vk+1, x, vk+2,… , v2k+2) whenever we wish to “absorb” x into A. Later we
shall refer to this option as the absorbing property of ⇀v. We contend that

for every x ∈ V there are at least 𝛽2Cn2k+1∕4 many x-absorbers. (6.3)

Notice that by (3) this would follow from the fact that for every edge vv′ that Bx−R and G(n, p) have
in common there are at least 𝛽n2k∕2 many x-absorbers having v and v′ in their (k + 1)st and (k + 2)nd
position, respectively. Now for vv′ ∈ e(Bx) there are actually at least 𝛽n2k such configurations in V
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and at most 2k|R|n2k−1 of them can fail to be x-absorbers for the reason of containing a vertex from R.
Due to |R| ≤ 𝛾2n and 𝛾 ≪ 𝛽 at most 𝛽n2k∕2 candidates get discarded in this way, and thereby (6.3) is
proved.

Now let  be a random set of absorbers containing each absorber independently and uniformly at
random with probability q = 𝛾3∕2C−1n−2k. Since

E[| |] ≤ Cn2k+1 ⋅ q = 𝛾3∕2n ,

Markov’s inequality entails

P(| | ≤ 3𝛾3∕2n) > 2∕3 . (6.4)

An ordered pair (⇀v, ⇀w) of absorbers is said to be overlapping if they have a vertex in common.
When two absorbers overlap, then either their middle edges are disjoint or they are not. The first case
appears at most (Cn)2 ⋅ 4k2n4k−1 many times by (1), while the second case appears at most 8C2n ⋅ n4k

times by (2). So altogether there are at most (4k2 + 8)C2n4k+1 pairs of overlapping absorbers. Hence,
the expected number of overlapping pairs (⇀v, ⇀w) ∈ 2 is at most (4k2 +8)𝛾3n, and a further application
of Markov’s inequality yields

P(there are at most 𝛾5∕2n overlapping pairs in 2) > 2∕3 . (6.5)

Since for each x ∈ V the expected number of x-absorbers in  is by (6.3) at least 𝛽2𝛾3∕2n∕4,
Chernoff’s inequality implies

P(there are at least 3𝛾2n many x-absorbers in  for every x ∈ V) > 2∕3 . (6.6)

In view of (6.4)-(6.6) there is an instance ⋆ of  having the three properties whose probabilities
were just shown to be larger than 2∕3. Delete from ⋆ all absorbers belonging to an overlapping pair
and denote the resulting set of absorbers by ⋆⋆. Notice that ⋆⋆ enjoys the following properties

• |⋆⋆| ≤ 3𝛾3∕2n,
• no two absorbers in ⋆⋆ overlap, and
• for each x ∈ V there are at least 2𝛾2n many x-absorbers in ⋆⋆.

Building the absorbing path

An iterative application of Proposition 2.1 allows us to connect the members of ⋆⋆ into a single path
A ⊆ G − R with |V(A)| ≤ (2k + 2)|⋆⋆| + (k + 1)2k+1(|⋆⋆| − 1) ≤ 𝛾n∕2 .

In each of those applications of the Connecting Lemma, we take K and K′ to be end-sets of the
two (k+1)-paths we wish to connect, and we let Z be the union of the other vertices in the path system
we currently have with R. Since at every moment the (k + 1)-paths we are currently dealing with will
have at most 𝛾n∕2 vertices in total and |R| ≤ 𝛾2n, we will have |Z| ≤ 𝛾n in each of our |⋆⋆| − 1
applications of Proposition 2.1, as required.

Using the absorbing property of x-absorbers in a greedy manner one sees immediately that the
(k + 1)-path A just constructed has the required property. ▪
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7 PROOF OF THE COVERING LEMMA

This section deals with the proof of Proposition 2.4. Roughly speaking, our strategy is as follows. By
known results [7, 9] the minimum degree condition imposed on G is more than enough to guarantee
that we can cover essentially all vertices of G′ = G − Q with vertex-disjoint copies of the graph K−

k+2
which arises from a clique of order k + 2 by the deletion of a single edge. A standard application of
the regularity method for graphs would allow to strengthen this result so as to obtain, for any bounded
number m, a covering of an overwhelming proportion of the vertices of G′ by vertex-disjoint copies
of the m-blow-up K−

k+2(m) of a K−
k+2. Explicitly, this is the graph arising from a K−

k+2 upon replacing
each of its vertices x by an independent set Vx of size m and each of its edges xy by a complete bipartite
graph Km,m joining Vx and Vy. An important point here is that there is a tremendous amount of flexibility
in the construction of such an almost-covering of G′ by copies of K−

k+2(m).
Now for any K−

k+2(m) in G it may happen that an appropriate path on 2m vertices in G(n, p) augments
it to a graph containing a spanning (k+ 1)-path in H. Of course, for any particular K−

k+2(m) in G this is
an extremely unlikely event having a probability of only o(1). However, owing to the aforementioned
flexibility in the construction of an almost K−

k+2(m)-covering of G′, it becomes asymptotically almost
surely possible to ensure that we only take copies K−

k+2(m) for which such a path in G(n, p) is available.
In the two subsequent subsections we provide some of the background alluded to in the two

foregoing paragraphs, while the proof of Proposition 2.4 will be given in Section 7.3.

7.1 K−
r -factors

For r ≥ 3 let K−
r denote the graph obtained from the clique Kr by deleting one edge. A K−

r -factor of
a graph G is a spanning subgraph of G each of whose connected components is isomorphic to K−

r . It
was proved by Enomoto, Kaneko, and Tuza [9] that every sufficiently large connected graph G with
𝛿(G) ≥ 1

3
|V(G)| whose number of vertices is divisible by 3 contains a K−

3 -factor. For larger values of r
the tight minimum degree condition ensuring the existence of a K−

r -factor was determined by Cooley,
Kühn, and Osthus [7]. By combining the results in those two references one obtains the following.

Theorem 7.1 For every integer r ≥ 3 there exists an integer n0 such that every connected graph G
with n ≥ n0 vertices, r ∣ n, and

𝛿(G) ≥
(

1 − r − 1
r(r − 2)

)
n

contains a K−
r -factor.

For the application we have in mind the following “imperfect” consequence of this result, where
we omit the divisibility assumption on n and allow a bounded number of left-over vertices, will be
more convenient.

Corollary 7.2 For every integer k ≥ 1 there exists n0 ∈ N such that every graph G with n ≥ n0

vertices and

𝛿(G) ≥
(

1 − k + 1
k(k + 2)

)
n

contains a collection of vertex disjoint copies of K−
k+2 which together cover all but at most (k + 2)2

vertices of G.
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Proof We check that the number n0 provided by Theorem 7.1 suffices. Let r be the integer satisfying
0 ≤ r ≤ k + 1 and n ≡ r (mod k + 2). Add k + 2 − r > 0 new vertices to G and connect them to
all other vertices (and to each other). The graph thus obtained satisfies the assumptions of Theorem
7.1, and hence it contains a K−

k+2-factor. When returning to G we can “lose” at most k + 2 − r copies
of K−

k+2, wherefore at most (k + 2)2 vertices remain uncovered by the “surviving” copies of K−
k+2. ▪

7.2 The graph regularity method

Mainly in order to fix some notation we shall now state a version of Szemerédi’s Regularity Lemma
from [25]. For two real numbers 𝛿 > 0 and 𝑑 ∈ [0, 1], a graph G and two nonempty disjoint sets
A,B ⊆ V(G), we say that the pair (A,B) is (𝛿, 𝑑)-quasirandom if for all X ⊆ A and Y ⊆ B the inequality

||e(X,Y) − 𝑑|X||Y||| ≤ 𝛿|A||B|
holds. The pair (A,B) is 𝛿-quasirandom if it is (𝛿, 𝑑)-quasirandom for 𝑑 = e(A,B)∕|A||B|.
Theorem 7.3 (Szemerédi’s Regularity Lemma) Given 𝛿 > 0 and t0 ∈ N there exists an integer T0

such that every graph G = (V ,E) on n ≥ t0 vertices admits a partition

V = V0 ∪⋅ V1 ∪⋅ · · · ∪⋅ Vt

of its vertex set such that

1. t ∈ [t0,T0], |V0| ≤ 𝛿|V|, and |V1| = · · · = |Vt|, and
2. for every i ∈ [t] the set

{
j ∈ [t] ∖ {i}∶ (Vi,Vj) is not 𝛿-quasirandom

}
has size at most 𝛿t.

Any partition as in Theorem 7.3 is called 𝛿-quasirandom or just quasirandom. In the literature one
often finds other versions of the Regularity Lemma, where instead of the second condition above one
requires that at most 𝛿t2 pairs (Vi,Vj) with distinct i, j ∈ [t] fail to be 𝛿-quasirandom. Applying such
a regularity lemma to appropriate constants 𝛿′ ≪ 𝛿 and t′0 ≫ max(t0, 𝛿−1), and relocating partition
classes involved in many irregular pairs to V0, one can obtain the version stated here.

Next we state the Counting Lemma accompanying Szemerédi’s Regularity Lemma.

Lemma 7.4 (Counting Lemma) Let F be a graph with vertex set [f ] and let G be another graph
with a partition V(G) = V1 ∪⋅ · · · ∪⋅ Vf such that (Vi,Vj) is 𝛿-quasirandom whenever ij ∈ F. Then the
number of ordered copies of F in G, that is, the number of f -tuples (v1,… , vf ) ∈ V1 × · · · × Vf such
that vivj ∈ G whenever ij ∈ F, equals(∏

ij∈F
𝑑ij ± e(F)𝛿

) f∏
i=1

|Vi|,
where 𝑑ij =

e(Vi,Vj)|Vi||Vj| is the density of (Vi,Vj), which is set to 0 in case Vi = ∅ or Vj = ∅.

7.3 The covering lemma

We are now ready for the proof of the covering lemma.
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Proof of Proposition 2.4 We begin by choosing several constants fitting into the hierarchy

k−1, 𝜀 ≫ 𝛾 ≫ m−1, 𝛿, t−1
0 ≫ T−1

0 ≫ 𝜏 ≫ C−1

and we consider an n-vertex graph G = (V ,E) with 𝛿(G) ≥ ( k
k+1

+ 𝜀)n.
Next we describe a deterministic property the random graph G(n, p) for p = C∕n is likely to have

and the remainder will then be dedicated to showing that this property implies the conclusion of our
Covering Lemma in a deterministic way.

For every sequence
⇀

X = (X1,… ,Xk+2) of disjoint subsets of V we define a family  (
⇀

X) of
2m-vertex paths with vertex set V as follows. Consider the set of all pairs (Y1,Y2) of m-sets with Y1 ⊆ X1

and Y2 ⊆ X2 such that there are further m-sets Yi ⊆ Xi for i ∈ [3, k + 2] such that Y1 ∪⋅ · · · ∪⋅ Yk+2 spans
a copy of K−

k+2(m) in G having all Yi-Yi′ edges for all 1 ≤ i < i′ ≤ k + 2 with (i, i′) ≠ (1, 2). For each
such pair (Y1,Y2) choose a spanning path P(Y1,Y2) on Y1 ∪⋅ Y2 that alternates between the two classes.
The family  (

⇀

X) consists of all these paths taken over all choices of (Y1,Y2) as above. Finally, let

𝒥 =
{⇀

X = (X1,… ,Xk+2)∶ | (
⇀

X)| ≥ 𝜏n2m} .
By Janson’s inequality (see Theorem 3.2), a sufficiently large choice of C guarantees

P
(
P ⊈ G(n, p)for allP ∈  (

⇀

X)
)
≤ o(2−(k+2)n)

for each
⇀

X ∈ 𝒥 . Since |𝒥 | ≤ 2(k+2)n holds trivially, the union bound informs us that the event  that
for every

⇀

X ∈ 𝒥 there is a path P ∈  (
⇀

X) with P ⊆ G(n, p) has probability 1 − o(1). Henceforth we
assume that  occurs.

Applying Theorem 7.3 to G′ = G − Q we obtain for some t ∈ [t0,T0] a 𝛿-quasirandom partition

V ∖ Q = V0 ∪⋅ V1 ∪⋅ · · · ∪⋅ Vt

of G′. Let Γ be the reduced graph with vertex set [t] defined in such a way that a pair ij ∈ [t](2) forms an
edge of Γ if and only if the pair (Vi,Vj) is 𝛿-quasirandom with density 𝑑ij = e(Vi,Vj)∕|Vi||Vj| ≥ 1

(k+1)2
.

We contend that

if k > 0, then 𝛿(Γ) ≥
(

1 − k + 1
k(k + 2)

)
t . (7.1)

For the proof of this estimate we consider an arbitrary i ∈ [t] and note that the minimum degree
condition imposed on G yields

e(Vi,V) ≥
( k

k + 1
+ 𝜀

) |Vi|n .
On the other hand, it readily follows from the definitions of a 𝛿-quasirandom partition and Γ that

e(Vi,V) ≤ e(Vi,Q ∪ V0) + 𝛿t|Vi|2 + 𝑑Γ(i)|Vi|2 + (t − 𝑑Γ(i))
|Vi|2

(k + 1)2

≤ (𝛾 + 𝛿)|Vi|n + 𝛿|Vi|n + 1
(k + 1)2

|Vi|n + k(k + 2)
(k + 1)2

⋅
𝑑Γ(i)

t
⋅ |Vi|n
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Provided that 𝛾 + 2𝛿 ≤ 𝜀 the combination of both estimates yields

𝑑Γ(i)
t

≥
(k + 1)2

k(k + 2)

(
k

k + 1
− 1

(k + 1)2

)
= 1 − k + 1

k(k + 2)

and thereby (7.1) is proved.
Now the main work that remains to be done is to show the following statement.

Claim 7.5 If K ⊆ V(Γ) induces a K−
k+2 and VK =

⋃
i∈K Vi, then all but at most 1

2
𝛾2|VK| vertices

of H[VK] can be covered by a family of vertex disjoint (k + 1)-paths each on (k + 2)m vertices.

Assuming for the moment that we already know this, the proof of Proposition 2.4 can be com-
pleted as follows. If k ≥ 1, then by Corollary 7.2 and (7.1) we know that Γ contains an almost perfect
K−

k+2-factor  covering all but at most (k + 2)2 vertices of Γ. As a K−
2 is the empty graph on two ver-

tices, such a factor  exists for k = 0 as well. Applying Claim 7.5 to each K−
k+2 in  we obtain a family

of vertex disjoint (k + 1)-paths in H − Q covering all but at most
(
𝛿 + (k+2)2

t0
+ 1

2
𝛾2
)
n vertices, and

by 𝛿, t−1
0 ≪ 𝛾 this is at most 𝛾2n. Moreover, the number of these (k + 1)-paths can be at most n

(k+2)m
,

which by 𝛾 ≫ m−1 is indeed at most 𝛾3n.
It remains to prove Claim 7.5. To this end we may suppose that V(K) = [k+2] and that the (perhaps)

missing edge of the K−
k+2 is {1, 2}. Let  be a maximum collection of vertex-disjoint (k + 1)-paths

with (k + 2)m vertices in the (k + 2)-partite graph H[V1,… ,Vk+2]. For each i ∈ [k + 2] let Xi ⊆ Vi be
the set of vertices in Vi which are not used by these paths. Since each path in  needs to consist of m
vertices from each Vi, it follows that |X1| = · · · = |Xk+2| = x holds for some integer x. Now it suffices
to prove x ≤

1
2
𝛾2|V1|, so assume for the sake of contradiction that this fails.

We intend to derive | (
⇀

X)| ≥ 𝜏n2m from the alleged largeness of x, which will tell us that
⇀

X ∈ 𝒥 .
To this end we shall first obtain a lower bound on the number Ω of copies of K−

k+2(m) in G[X1,… ,Xk+2]
having

• m vertices in each Xi and
• all edges between the vertices in Xi and Xi′ for 1 ≤ i < i′ ≤ k + 2 with (i, i′) ≠ (1, 2).

For each i ∈ [k + 2] let Xi = Xi,1 ∪⋅ · · · ∪⋅ Xi,m be a partition of Xi into m sets of size x∕m.
Now for 1 ≤ i < i′ ≤ k + 2 with (i, i′) ≠ (1, 2) we have ii′ ∈ E(Γ), which indicates that the pair
(Vi,Vi′ ) is (𝛿, 𝑑ii′ )-quasirandom in G for some 𝑑ii′ ∈ [ 1

(k+2)2
, 1]. For j, j′ ∈ [m] we have |Xij| ≥ 𝛾2

2m
|Vi|

and |Xi′j′ | ≥
𝛾2

2m
|Vj| by our indirect assumption on x = |Xi| = |Xj| and thus the pair (Xij,Xi′j′ ) is

(𝛿⋆, 𝑑ii′ )-quasirandom in G, where 𝛿⋆ = 4m2𝛿

𝛾4
. By Lemma 7.4 applied to F = Kk+2(m) and the vertex

classes Xij with i ∈ [k + 2] and j ∈ [m] it follows that

Ω ≥

(
1

(k + 2)2e(K−
k+2(m)) − e

(
K−

k+2(m)
)
𝛿⋆

)( x
m

)m(k+2)
,

which by 𝜏 ≪ 𝛿,m−1,T−1
0 ≪ 𝛾 ≪ k−1 gives Ω ≥ 𝜏nm(k+2). In particular, there are at least 𝜏n2m

pairs of m-sets (Y1,Y2) with Y1 ⊆ X1 and Y2 ⊆ X2 which can be completed to a copy of K−
k+2(m) in

G[X1,… ,Xk+2] by appropriate further m-sets Yi ⊆ Xi for i ∈ [3, k + 2]. For these reasons, we have
indeed | (

⇀

X)| ≥ 𝜏n2m and
⇀

X ∈ 𝒥 .
Thus the occurrence of  supplies a path P ∈  (

⇀

X) with P ⊆ G(n, p). For i ∈ [3, k + 2] let Yi ⊆ Xi
be m-sets witnessing P ∈  (

⇀

X). Since V(P) ∪ Y3 ∪ · · · ∪ Yk+2 spans a (k + 1)-path in H[X1,… ,Xk+2],
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we get a contradiction to the maximality of the collection  chosen earlier. This concludes the proof
of Claim 7.5 and, hence, the proof of Proposition 2.4. ▪

Note added in proof

After the present work was submitted, Nenadov and Trujić [20] showed that Theorem 1.1 is true even
if one replaces k+1 by 2k+1. Independently, a more general result was recently obtained by Antoniuk
and the current authors [2].
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