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We establish a relation between two uniform models of random k-graphs (for constant

k � 3) on n labelled vertices: H
(k)(n, m), the random k-graph with exactly m edges, and

H
(k)(n, d), the random d-regular k-graph. By extending the switching technique of McKay

and Wormald to k-graphs, we show that, for some range of d = d(n) and a constant c > 0, if

m ∼ cnd, then one can couple H
(k)(n, m) and H

(k)(n, d) so that the latter contains the former

with probability tending to one as n → ∞. In view of known results on the existence of a

loose Hamilton cycle in H
(k)(n, m), we conclude that H

(k)(n, d) contains a loose Hamilton

cycle when d � log n (or just d � C log n, if k = 3) and d = o(n1/2).

2010 Mathematics subject classification: Primary 05C65, 05C80

Secondary 05C38

1. Introduction

A k-uniform hypergraph (or k-graph for short) on a vertex set V = {1, . . . , n} is a family

of k-element subsets of V . A k-graph H = (V , E) is d-regular if the degree of every vertex
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is d:

deg(v) := |{e ∈ E : v ∈ e}| = d, v = 1, . . . , n.

Let H(k)(n, d) be the family of all such graphs. Further we tacitly assume that k divides nd.

By H
(k)(n, d) we denote the regular random graph, which is chosen uniformly at random

from H(k)(n, d). Let

M := nd/k

stand for the number of edges of H
(k)(n, d).

Let us recall two more standard models of random k-graphs on n vertices. For p ∈ [0, 1],

the binomial random k-graph H
(k)(n, p) is a random k-graph obtained by including each

of the
(
n
k

)
possible edges with probability p independently of the others. For integer

m ∈ [0,
(
n
k

)
], the uniform random graph H

(k)(n, m) is chosen uniformly at random among

k-graphs with precisely m edges.

We study the behaviour of random k-graphs as n → ∞. Parameters d, m, p are treated

as functions of n. We use the asymptotic notation O(·), o(·),Θ(·),∼ (as it is defined in,

say, [15]), with respect to n tending to infinity and assume that implied constants may

depend on k. Given a sequence of events (An), we say that An happens asymptotically

almost surely (a.a.s.) if P(An) → 1, as n → ∞.

The main result of the paper is that we can couple H
(k)(n, d) and H

(k)(n, m) so that the

latter is a subgraph of the former a.a.s.

Theorem 1.1. For every k � 3, there are positive constants c and C such that if d � C log n,

d = o(n1/2) and m = �cM	 = �cnd/k	, then one can define a joint distribution of random

graphs H
(k)(n, d) and H

(k)(n, m) in such a way that

H
(k)(n, m) ⊂ H

(k)(n, d) a.a.s.

To prove Theorem 1.1, we consider a generalization of a k-graph that allows loops and

multiple edges. By a k-multigraph on the vertex set [n] we mean a multiset of k-element

multisubsets of [n]. An edge is called a loop if it contains more than one copy of some

vertex and otherwise it is called a proper edge.

The idea of the proof and the structure of the paper are as follows. In Section 2 we

generate two models of random k-multigraphs by drawing random sequences from [n]

and cutting them into consecutive segments of length k. By accepting an edge only if it

is not a loop and does not coincide with a previously accepted edge, after m successful

trials we obtain H
(k)(n, m). On the other hand, by allowing d copies of each vertex, and

accepting every edge, after dn/k steps we obtain a d-regular k-multigraph H
(k)
∗ (n, d). Then

we show that H
(k)
∗ (n, d) a.a.s. has no multiple edges and relatively few loops. In Section 3

we couple the two random processes in such a way that H
(k)(n, m) is a.a.s. contained in an

initial segment of H
(k)
∗ (n, d), which we call red. In Section 4 we eliminate at once all red

loops of H
(k)
∗ (n, d) by swapping them with randomly selected non-red (green) proper edges.

Finally, in Section 5, we eliminate the green loops one by one using a certain random

procedure (called switching) which does not destroy the previously embedded copy of
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H
(k)(n, m) and, at the same time, transforms H

(k)
∗ (n, d) into a k-graph H̃

(k)(n, d), which is

distributed approximately as H
(k)(n, d), that is, almost uniformly. Theorem 1.1 follows by

a (maximal) coupling of H̃
(k)(n, d) and H

(k)(n, d).

A consequence of Theorem 1.1 is that H
(k)(n, d) inherits from H

(k)(n, m) properties that

are increasing, that is to say, properties that are preserved as new edges are added. An

example of such a property is Hamiltonicity, that is, containment of a Hamilton cycle.

A loose Hamilton cycle on n vertices is a set of edges e1, . . . , el such that, for some cyclic

order of the vertices, every edge ei consists of k consecutive vertices, |ei ∩ ei+1| = 1 for

every i ∈ [l], where el+1 := e1. A necessary condition for the existence of a loose Hamilton

cycle on n vertices is (k − 1)|n, which we will assume whenever relevant.

The history of Hamiltonicity of regular graphs is rich and exciting (see [21]). However,

we state only the final results here. Asymptotic Hamiltonicity was proved by Robinson and

Wormald [20] in 1994 for any fixed d � 3, by Krivelevich, Sudakov, Vu and Wormald [16]

in 2001 for d � n1/2 log n, and by Cooper, Frieze and Reed [7] in 2002 for C � d � n/C

and some large constant C .

The threshold for existence of a loose Hamilton cycle in H
(k)(n, p) was determined by

Frieze [12] (for k = 3) as well as Dudek and Frieze [8] (for k � 4) under a divisibility

condition 2(k − 1)|n, which was relaxed to (k − 1)|n by Dudek, Frieze, Loh and Speiss [10].

However, we formulate these results for the model H
(k)(n, m), such a possibility being

provided to us by the asymptotic equivalence of models H
(k)(n, p) and H

(k)(n, m) (see, e.g.,

Corollary 1.16 in [13]).

Theorem 1.2 ([12], [10]). There is a constant C > 0 such that if m � Cn log n, then

H
(3)(n, m) contains a loose Hamilton cycle a.a.s.

Theorem 1.3 ([8], [10]). Let k � 4. If n log n = o(m), then

H
(k)(n, m) contains a loose Hamilton cycle a.a.s.

Theorems 1.1, 1.2, and 1.3 immediately imply another main result of this paper.

Theorem 1.4. There is a constant C > 0 such that if C log n � d = o(n1/2), then

H
(3)(n, d) contains a loose Hamilton cycle a.a.s.

For every k � 4 if log n = o(d) and d = o(n1/2), then

H
(k)(n, d) contains a loose Hamilton cycle a.a.s.

2. Preliminaries

We say that a k-multigraph is simple if it is a k-graph, that is, if it contains neither multiple

edges nor loops.
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Given a sequence x ∈ [n]ks, s ∈ {1, 2, . . . }, let H(x) stand for a k-multigraph with s edges

xki+1 . . . xki+k, i = 0, . . . , s − 1.

In what follows it will be convenient to work directly with the sequence x rather than with

the k-multigraph H(x). Recycling the notation, we still refer to the k-tuples of x which

correspond to the edges, loops, and proper edges of H(x) as edges, loops, and proper edges

of x, respectively. We say that x contains multiple edges if H(x) contains multiple edges,

that is, some two edges of x are identical as multisets. By λ(x) we denote the number of

loops in x.

Let X = (X1, . . . , Xnd) be a sequence of i.i.d. random variables, each distributed uniformly

over [n]:

P(Xi = j) =
1

n
, 1 � i � nd, 1 � j � n.

Set

L := n1/4d1/2.

Proposition 2.1. If d → ∞ and d = o(n1/2), then a.a.s. X has no multiple edges and λ(X) �L.

Proof. Both statements hold a.a.s. by Markov’s inequality, because the expected number

of pairs of multiple edges in X is at most(
M

2

)
k!

nk
= O(d2n2−k) = o(1),

and the expected number of loops in X is

Eλ(X) � M

(
k

2

)
n−1 = O(d) = o(n1/4d1/2).

Let S ⊂ [n]nd be the family of all sequences in which every value i ∈ [n] occurs precisely

d times. Let Y = (Y1, . . . , Ynd) be a sequence chosen from S uniformly at random. One can

equivalently define Y as a discrete time process determined by the conditional probabilities

P
(
Yt+1 = v |Y1, . . . , Yt

)
=

d − degt(v)

nd − t
, v = 1, . . . , n, t = 0, . . . , nd − 1, (2.1)

where

degt(v) := |{1 � s � t : Ys = v}|.

Assuming k|(nd), we define a random d-regular k-multigraph

H
(k)
∗ (n, d) := H(Y).

Note that for every H ∈ H(k)(n, d) the number of sequences giving H is the same, namely,

M!(k!)M . Therefore H
(k)(n, d) can be obtained from H

(k)
∗ (n, d) by conditioning on simplicity.

Probably a more popular way to define H
(k)
∗ (n, d) is via the so-called configuration model,

which, for k = 2, first appeared implicitly in Bender and Canfield [2] and was given in
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its explicit form by Bollobás [3] (its generalization to every k is straightforward). A

configuration is a partition of the set [n] × [d] into M sets of size k, say, P1, . . . , PM . Then

H
(k)
∗ (n, d) is obtained by taking a configuration uniformly at random and mapping every

set Pi = {(v1, w1), . . . , (vk, wk)} to an edge v1 . . . vk .

The idea of obtaining H(k)(n, d) from a random sequence for k = 2 was used independ-

ently by Bollobás and Frieze [5] and Chvátal [6].

What makes studying d-regular k-graphs a bit easier than graphs, at least for small d,

is that a.a.s. Y has no multiple edges. However, they usually have a few loops, though, as

it turns out, not too many. Throughout the paper, for r = 0, 1, . . . and x ∈ R, we use the

standard notation (x)r := x(x − 1) . . . (x − r + 1). Recall that L = n1/4d1/2.

Proposition 2.2. If d → ∞, and d = o(n1/2), then each of the following statements holds

a.a.s.:

(i) Y has no multiple edges,

(ii) Y has no loop with a vertex of multiplicity at least 3,

(iii) Y has no loop with two vertices of multiplicity at least 2,

(iv) λ(Y) � L.

Proof. The first three statements hold because the expected number of undesired objects

tends to zero.

(i) The expected number of pairs of multiple edges in Y is

(
M

2

) ∑
k1+...+kn=k

(
k

k1 ,...,kn

)2( nd−2k
d−2k1 ,...,d−2kn

)
(

nd
d,...,d

) � n2d2nk
k!2d2k

(nd)2k
= O(n2−kd2) = o(1).

(ii) The expected number of loops in Y having a vertex of multiplicity at least 3 is at

most

M

(
k
3

)
n
(

nd−3
d−3,d,...,d

)
(

nd
d,...,d

) � nd
k3nd3

(nd)3
= O(n−1d) = o(1).

(iii) Similarly the expected number of loops in Y having at least two vertices of multiplicity

at least 2 is at most

M

(
k
2

)(
k−2

2

)
n2

(
nd−4

d−2,d−2,d,...,d

)
(

nd
d,...,d

) � nd
k4n2d4

(nd)4
= O(n−1d) = o(1).

(iv) This follows from the Markov inequality, since

Eλ(Y) � M

(
k
2

)
n
(

nd−2
d−2,d,...,d

)
(

nd
d,...,d

) � nd
k2nd2

(nd)2
= O(d) = o(n1/4d1/2).

In a couple of forthcoming proofs we will need the following concentration inequality

(see, e.g., McDiarmid [17, §3.2]). Let SN be the set of permutations of [N] and let Z

be distributed uniformly over SN . Suppose that function f : SN → R satisfies a Lipschitz
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property, that is, for some b > 0,

|f(z) − f(z′)| � b,

whenever z′ can be obtained from z by swapping two elements. Then

P
(
|f(Z) − Ef(Z)| � t

)
� 2e−2t2/b2N, t � 0. (2.2)

We set r := 2k + 1 and c := 1/(2r + 1). For the rest of the paper let

m := �cM	.

Colour the first rm edges of Y red and the remaining M − rm edges green. Define

Yred = (Y1, . . . , Ykrm) and Ygreen = (Ykrm+1, . . . , Ynd). Consider a function ϕ : S → Z defined

by

ϕ(y) :=

n∑
v=1

(deggreen(y; v))2,

where deggreen(y; v) := |{i ∈ [rkm + 1, kM] : yi = v}| is the green degree of v. It can be

easily checked that

Eϕ(Y) = n(d)2
(kM − rkm)2

(kM)2
= Θ(nd2). (2.3)

Suppose that sequences y, z ∈ S can be obtained from each other by swapping two

coordinates. Since such a swapping affects the green degree of at most two vertices and

for every such vertex the green degree changes by at most one, we get

|ϕ(y) − ϕ(z)| � 2 max
1�r�d

{(r)2 − (r − 1)2} = 2((d)2 − (d − 1)2) < 4d.

Thus, treating Y as a permutation of nd elements, (2.2) implies

P(|ϕ(Y) − Eϕ(Y)| � x) � 2 exp

{
− x2

8nd3

}
, x > 0. (2.4)

3. Embedding H
(k)(n, m) into H

(k)
∗ (n, d)

A crucial step towards the embedding is to couple the processes (Xt) and (Yt), t = 1, . . . , nd,

in such a way that a.a.s. X and Y have many edges in common. For this, let I1, . . . , Ind be

an i.i.d. sequence of symmetric Bernoulli variables independent of X:

P(It = 0) = P(It = 1) = 1/2, t = 1, . . . , nd.

We define Y1, Y2, . . . inductively. Fix t � 0. Suppose that we have already revealed the

values Y1, . . . , Yt. If

2
d − degt(v)

nd − t
− 1

n
� 0 for every v ∈ [n], (3.1)
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then generate an auxiliary random variable Zt+1 independently of It+1 according to the

following distribution (note that the left-hand side of (3.1) sums over v ∈ [n] to 1)

P
(
Zt+1 = v |Y1, . . . , Yt

)
= 2

d − degt(v)

nd − t
− 1

n
, v = 1, . . . , n.

If (3.1) holds, set Yt+1 = It+1Xt+1 + (1 − It+1)Zt+1. Otherwise generate Yt+1 directly

according to the conditional probabilities (2.1). The distribution of Zt+1 is chosen precisely

in such a way that (2.1) holds for any values of variables Y1, . . . , Yt, regardless of whether

(3.1) is satisfied or not. This guarantees that Y = (Y1, . . . , Ynd) is actually uniformly

distributed over S .

The following lemma states that we can embed H
(k)(n, m) in the red subgraph of

H
(k)
∗ (n, d).

Lemma 3.1. For every k � 3, there is a constant C > 0 such that if d � C log n and d =

o(n1/2), then one can define a joint distribution of H
(k)(n, m) and Y in such a way that

H
(k)(n, m) ⊂ H(Yred) a.a.s.

Proof. Let

W = {0 � i � rm − 1 : Iki+1 = · · · = Iki+k = 1}

and let X′ be the subsequence of X formed by concatenation of the edges (Xki+1, . . . , Xki+k),

i ∈ W . Define the events

A = {X has no multiple edges, λ(X) � L, |W | � m + L},
B = {inequality (3.1) holds for every v ∈ [n] and t < krm}.

Suppose that A holds. Then all edges of X′ are distinct and at least m of them are proper.

By symmetry, we can take, say, the first m of these edges to form H
(k)(n, m). If A fails, we

simply generate H
(k)(n, m) independently of everything else.

Further, if B holds, then for every i ∈ W we have

(Yki+1, . . . , Yki+k) = (Xki+1, . . . , Xki+k),

which is to say that H(X′) is a subgraph of H(Yred). Consequently,

P(H(k)(n, m) ⊂ H(Yred)) � P(A ∩ B),

so it is enough to show that each of the events A and B holds a.a.s.

By Proposition 2.1, the first two conditions defining A hold a.a.s. As for the last

one, note that |W | ∼ Bi(rm, 2−k), therefore E|W | = (1 + 2−k)m and Var |W | = O(m). Since

L = o(m), Chebyshev’s inequality implies that, for n large enough,

P(|W | < m + L) � Var |W |
(2−km − L)2

= O(m−1) = o(1).

Concerning the event B, if for some t < krm and some v ∈ [n] inequality (3.1) does not hold,

then degt(v) > d/2, and consequently degkrm(v) > d/2. Note that degkrm(v), v = 1, . . . , n,
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are identically distributed hypergeometric random variables. Let X := degkrm(1). The

probability that B fails is thus at most

P(degkrm(v) > d/2 for some v ∈ [n]) � nP(X > d/2).

We have EX = krm/n � rcd. Since c < 1/2r, applying, say, Theorem 2.10 from [13], we

obtain

P(X > d/2) � exp{−ad} � exp{−aC log n},

for some positive constant a. Choosing C > a−1 we get nP(X > d/2) = o(1), thus con-

cluding the proof.

4. Getting rid of red loops

Let E be the family of sequences in S with no multiple edges and containing at most L

loops, but no loops of type other than x1x1x2 . . . xk−1 (up to reordering of vertices), where

x1, . . . , xk−1 are distinct. By Proposition 2.2 we have that Y ∈ E a.a.s. Partition E according

to the number of loops into sets

El := {y ∈ E : λ(y) = l}, l = 0, . . . , L.

Let Gl be the family of those sequences in El which contain no red loops. Note that

G0 = E0 consists precisely of those sequences y ∈ S for which H(y) is simple.

Condition on Y ∈ E and let Y′ be a sequence obtained from Y by swapping the red

loops of Y (if any) with a subset of green proper edges chosen uniformly at random.

More formally, let f1, . . . , fr be the red loops and let e1, . . . , eg be the green proper edges

of Y in the order they appear in Y. Pick a set of indices 1 � i1 < · · · < ir � g uniformly

at random, and swap fj with eij for j = 1, . . . , r, preserving the order of vertices inside the

edges. Note that this does not change the underlying k-multigraph, that is, H(Y) = H(Y′).

Proposition 4.1. Y′ is uniform on each Gl , l = 0, . . . , L.

Proof. Fix l. Clearly Y′ ∈ Gl if and only if Y ∈ El . Also, Y is uniform on El . For integer

r ∈ [0, l], every z ∈ Gl can be obtained from the same number (say, br) of y in El with

exactly r red loops. On the other hand, for every y with exactly r red loops there is the

same number (say, ar) of z in Gl that can be obtained from y. Hence, for every z ∈ Gl ,

P
(
Y′ = z | Y ∈ El

)
=

l∑
r=0

br

ar|El |
,

which is the same for all z ∈ Gl .

The following technical result will be used in the next section. Let

S̃ := {y ∈ S : |ϕ(y) − Eϕ(Y)| � n3/4d}.



Loose Hamilton Cycles in Regular Hypergraphs 187

Proposition 4.2. If d = o(n1/2), then

P(Y′ ∈ S̃) = 1 − o(1).

Proof. Suppose z is obtained from y by swapping a red loop with a green proper edge.

This affects the green degree of at most 2k − 1 vertices v, and for every such v we have

|(deggreen(y; v))2 − (deggreen(z; v))2| = O(d),

uniformly for all such y, z. Hence, uniformly

|ϕ(Y) − ϕ(Y′)| = O(Ld), Y ∈ E .

By Proposition 2.2 we have that Y ∈ E a.a.s. Hence,

P(Y′ /∈ S̃) � P
(
|ϕ(Y) − Eϕ(Y)| > n3/4d − O(Ld) | Y ∈ E

)
∼ P

(
|ϕ(Y) − Eϕ(Y)| > n3/4d − O(Ld)

)
.

Finally, since d = o(n1/2), the last probability tends to zero by (2.4).

5. Getting rid of green loops

In this section we complete the proof of Theorem 1.1, deferring the proofs of two

technical results to the next section. By Lemma 3.1, which we proved in Section 3, the

random k-multigraph H(Yred) contains H
(k)(n, m) a.a.s. As H

(k)(n, m) ⊂ H(Y) implies that

H
(k)(n, m) ⊂ H(Y′), it remains to define a procedure which a.a.s. transforms Y′ (leaving the

red edges of Y′ intact) into a random k-graph distributed approximately as H
(k)(n, d).

For this we define an operation which decreases the number of green loops one at a

time. Two sequences y ∈ Gl , z ∈ Gl−1 are said to be switchable if z can be obtained from

y by the following operation, called a switching, which is a generalization (to k � 3) of a

switching defined by McKay and Wormald [18] for k = 2. Among the edges of y, choose

a loop f and an ordered pair (e1, e2) of green proper edges: see Figure 1(a). Putting

s = |e1 ∩ e2| and ignoring the order of the vertices inside the edges, one can write

f = vvx1 . . . xk−2, e1 = w1 . . . wsy1 . . . yk−s, e2 = w1 . . . wsz1 . . . zk−s.

Loop f contains two copies of v, the left one and the right one (with respect to their order

in the sequence y). Select vertices y∗ ∈ {y1, . . . , yk−s} and z∗ ∈ {z1, . . . , zk−s}, and swap y∗
with the left copy of v and z∗ with the right one. The effect of switching is that f, e1, and

e2 are replaced by three proper edges (see Figure 1(b)):

e′
1 = e1 ∪ {v} − {y∗}, e′

2 = e2 ∪ {v} − {z∗}, e′
3 = f ∪ {y∗, z∗} − {v, v}.

A backward switching is the reverse operation that reconstructs y ∈ Gl from z ∈ Gl−1.

It is performed by choosing a vertex v, an ordered pair of green proper edges e′
1, e

′
2

containing v, one more green proper edge e′
3, choosing a pair of vertices y, z ∈ e′

3, and

swapping y with the copy of v in e1 and z with the one in e2.

Note that, given f, e1, e2, not every choice of y∗, z∗ defines a forward switching, due to

possible creation of new loops or multiple edges. We say that the choices of y∗, z∗ which
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Figure 1. Edges affected by a switching (a) before and (b) after.

do define a switching are admissible. Similarly a choice of y, z is admissible with respect

to v, e′
1, e

′
2, and e′

3 if it defines a backward switching.

Given y ∈ Gl , let F(y) and B(y) be the number of ways to perform forward switching

and backward switching, respectively.

Let Sw denote a (random) operation which, given y ∈ Gl , applies to it a forward

switching, chosen uniformly at random from the F(y) possibilities. Let Y′′ ∈ G0 be the

sequence obtained from Y′ by applying Sw until there are no loops left, namely, λ(Y′)

times. Suppose for a moment that for every l and y ∈ Gl functions F(y) and B(y) depend

on l, but not on the actual choice of y. If this were true, then, as one could easily show,

Y′′ would be uniform over G0. As we will see, we are not far from this idealized setting,

because Proposition 5.1(a) below implies that F(y) is essentially proportional to l = λ(y).

On the other hand, Proposition 5.1(b) shows that B(y) depends on a more complicated

parameter of y, namely on ϕ(y) defined in Section 2.

To make B(y) essentially independent of y, we will apply switchings not to every element

of G0 ∪ · · · ∪ GL, but to a slightly smaller subfamily. Let

G̃l := Gl ∩ S̃ , l = 0, . . . , L,

where S̃ has been defined in the previous section.

We condition on Y′ ∈ S̃ and deterministically map Y′′ to a simple k-graph

H̃
(k)(n, d) := H(Y′′).

Note that switching does not affect the green degrees, and thus does not change the value

of ϕ. Therefore, if one applies a forward or backward switching to a sequence y ∈ S̃ , the
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resulting sequence is also in S̃ . Moreover, Proposition 4.2 shows that by restricting Y′ to

S̃ , we do not exclude many sequences.

The following proposition quantifies the amount by which a single application of Sw

distorts the uniformity of Y′.

Proposition 5.1. If 1 � d = o(n1/2), then

(a) for y ∈ Gl , 0 < l � L,

k2l(M − rm)2

(
1 − O

(
L + d2

M

))
� F(y) � k2l(M − rm)2;

(b) for y ∈ Gl , 0 � 1 < L,(
k

2

)
(ϕ(y) − 2kLd)(M − rm)

(
1 − O

(
L + d2

M

))
� B(y) �

(
k

2

)
ϕ(y)(M − rm);

(b′) for y ∈ G̃l , 0 � 1 < L,(
k

2

)
Eϕ(Y)(M − rm)

(
1 − O

(
n3/4d

Eϕ(Y)
+

L + d2

M

))

� B(y) �
(
k

2

)
Eϕ(Y)(M − rm)

(
1 + O

(
n3/4d

Eϕ(Y)

))
.

Finally, we need to show that the final step of the procedure, that is, the mapping of

Y′′ to H(Y′′), has negligible influence on the uniformity of the distribution. For this, set

PH := |H−1(H) ∩ G̃0| = |{y ∈ G̃0 : H(y) = H}|, H ∈ H(k)(n, d).

Proposition 5.2. If d = o(n1/2), then uniformly for every H ∈ H(k)(n, d)

(1 − o(1))M!(k!)M � PH � M!(k!)M.

Proofs of Propositions 5.1 and 5.2 can be found in Section 6.

Lemma 5.3. There is a sequence εn = o(1) such that, for every H ∈ H(k)(n, d),

P(H̃(k)(n, d) = H) = (1 ± εn)|H(k)(n, d)|−1.

Proof. Clearly it is enough to show that for some function p = p(n, l) we have

P
(
H̃

(k)(n, d) = H | Y′ ∈ G̃l

)
= (1 + o(1))p(n, l) (5.1)

uniformly for l � L and H ∈ H(k)(n, d). Indeed,

P(H̃(k)(n, d) = H) =

L∑
l=0

P
(
H̃

(k)(n, d) = H | Y′ ∈ G̃l

)
P(Y′ ∈ G̃l) = (1 + o(1))p(n),

where p(n) :=
∑

l p(n, l)P(Y′ ∈ G̃l) is independent of H .
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Let Fl = k2l(M − rm)2 and B =
(
k
2

)
Eϕ(Y)(M − rm) be the asymptotic values of the

bounds in Proposition 5.1, (a) and (b′), respectively.

By Proposition 4.1, we can treat Y′ as a uniformly chosen element of G̃l = Gl ∩ S̃ . Every

realization of l switchings that generate Y′′ produces a trajectory

(y(l), . . . , y(0)) ∈ G̃l × · · · × G̃0,

where y(k) is switchable with y(k−1) for k = 1, . . . , l. The probability that a particular such

trajectory occurs is

1

|G̃l |F(y(l)) . . . F(y(1))
=

(
1 + O

(
L + d2

M

))l

|G̃l |−1
l∏

i=1

F−1
i

= (1 + o(1))|G̃l |−1
l∏

i=1

F−1
i ,

(5.2)

the first equation following from Proposition 5.1.

On the other hand, by Propositions 5.1 and 5.2, the number of trajectories that lead to

a particular H ∈ H(k)(n, d) is

PHB
l

(
1 + O

(
n3/4d

Eϕ(Y)
+

L + d2

M

))l

= (1 + o(1))M!(k!)MBl, (5.3)

because Eϕ(Y) = Θ(nd2) by (2.3). Now the estimate (5.1) with

p(n, l) = M!(k!)MBl |G̃l |−1
l∏

i=1

F−1
i

follows by multiplication of (5.2) and (5.3).

Proof of Theorem 1.1. Let μ be a uniform distribution over H(k)(n, d) and let ν be the

distribution of H̃
(k)(n, d), that is,

μ(H) = |H(k)(n, d)|−1, ν(H) = P(H̃(k)(n, d) = H), H ∈ H(k)(n, d).

By Lemma 5.3 the total variation distance between the measures μ and ν is

dTV (μ, ν) :=
1

2

∑
H∈H(k)(n,d)

|μ(H) − ν(H)| � 1

2

∑
H

εnμ(H) = o(1).

Therefore a standard fact from probability theory (see, e.g., [1, p. 254]) implies that there

is a joint distribution of H̃
(k)(n, d) and H

(k)(n, d) such that

H̃
(k)(n, d) = H

(k)(n, d) a.a.s. (5.4)

By definition of H̃
(k)(n, d), if H

(k)(n, m) ⊂ H(Yred), then H
(k)(n, m) ⊂ H̃

(k)(n, d). Therefore,

Theorem 1.1 follows by Lemma 3.1 and Proposition 4.2.
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6. Remaining proofs

Proof of Proposition 5.1. (a) The upper bound follows from the fact that after we

choose (in one of at most l(M − rm)2 ways) a loop and two green edges, we have at most

k2 admissible choices of vertices y∗ and z∗.

We say that two edges e′, e′′ of a k-graph are distant from each other if they do not

intersect and there is no third edge e′′′ that intersects both e′ and e′′. Note that for any

edge e there are at most k2d2 edges not distant from e.

For the lower bound, let us estimate the number of triples (f, e1, e2) for which we have

exactly k2 admissible choices of y∗, z∗. For this it is sufficient that e1 ∩ e2 = ∅ and both e1

and e2 are distant from f in H(y). Given f, we can choose such e1 in at least

M − rm − l − k2d2 = (M − rm)(1 − O((L + d2)/M))

ways and then choose such e2 in at least

M − rm − l − k2d2 − kd = (M − rm)(1 − O((L + d2)/M))

ways. Hence the lower bound.

(b) We can choose a vertex v ∈ [n] and an ordered pair of edges e′
1, e

′
2 containing v in at

most ϕ(y) ways and then choose e′
3 in at most M − rm ways. The number of admissible

choices of vertices y, z ∈ e′
3 is at most

(
k
2

)
, which gives the upper bound.

For the lower bound, we estimate the number of quadruples v, e′
1, e′

2, e
′
3 for which there

are exactly
(
k
2

)
admissible choices of y, z. For this it is sufficient that e′

3 is distant from

both e′
1 and e′

2 in H(y). The number of ways to choose v, e′
1, e

′
2 is exactly∑

v∈[n]

(
deg′

green(y; v)
)

2
, (6.1)

where deg′
green(y; v) is the number of green proper edges containing vertex v. It is obvious

that (6.1) is at most ϕ(y) and, as one can easily see, at least ϕ(y) − 2kLd. The lower bound

now follows, since, given v, e′
1, e

′
2, we can choose e′

3 in at least

M − rm − l − 4k2d2 = (M − rm)(1 − O((L + d2)/M)

ways.

(b′) This is immediate from (b) and the definition of G̃l .

Proof of Proposition 5.2. The upper bound is just |H−1(H)|. For the lower bound, we

let Y|H be a sequence chosen uniformly at random from H−1(H) and show that the

probabilities

P(|ϕ(Y|H ) − Eϕ(Y)| > n3/4d), H ∈ H(k)(n, d),

uniformly tend to zero. Since ϕ does not depend on the order of vertices inside the edges

of Y, we can treat Y|H as a random permutation of the M edges of H , which we denote

by e1, . . . , eM . Since H is simple, we have

ϕ(Y|H ) =
∑
v∈[n]

∑
ei,ej�v
i�=j

I{ei,ej are green in Y|H},



192 A. Dudek, A. Frieze, A. Ruciński and M. Šileikis

whence

Eϕ(Y|H ) = n(d)2
(M − rm)2

(M)2
.

Therefore (2.3) and simple calculations yield

Eϕ(Y|H ) − Eϕ(Y) = O(nd2M−1) = O(d).

Further, if y, z ∈ H−1(H) and z can be obtained from y by swapping two edges, then

|ϕ(y) − ϕ(z)| = O(d),

uniformly for all such y and z. Therefore (2.2) applies to f = ϕ with N = M and b = O(d).

To sum up,

P
(
|ϕ(Y|H ) − Eϕ(Y)| > n3/4d

)
� P

(
|ϕ(Y|H ) − Eϕ(Y|H )| > n3/4d − O(d)

)

� 2 exp

{
− (n3/4d − O(d))2

O(Md2)

}
= o(1),

the equation following from the assumption d = o(n1/2).

7. Concluding remarks

Remark 1. Theorem 1.1 is closely related to a result of Kim and Vu [14], who proved,

for d growing faster than log n but more slowly than n1/3/ log2 n, that there is a joint

distribution of H
(2)(n, p) and H

(2)(n, d) with p satisfying p ∼ d/n so that

H
(2)(n, p) ⊂ H

(2)(n, d) a.a.s. (7.1)

It is known (see, e.g., [4]) that H
(2)(n, p) is a.a.s. Hamiltonian, when the expected degree

(n − 1)p grows faster than log n. Therefore (7.1) implies an analogue of Theorem 1.4 for

graphs.

Remark 2. In [11] the authors used the same switching as in the present paper to

count d-regular k-graphs approximately for k � 3 and 1 � d = o(n1/2) as well as for

k � 4 and d = o(n). The application of the technique is somewhat easier there, because

there is no need to preserve the red edges. The restriction d = o(n1/2) that appears in

Theorem 1.1 also has a natural meaning in [11], since the counting formula there gives

the asymptotics of the probability pn,d := P(H(k)
∗ (n, d) is simple) for d = o(n1/2), while for

k � 4 and n1/2 � d = o(n) it just gives the asymptotics of log pn,d.

Remark 3. The lower bound on d in Theorem 1.1 is necessary because the second

moment method applied to H
(k)(n, p) (see [3, Theorem 3.1(ii)]) and asymptotic equivalence

of H
(k)(n, p) and H

(k)(n, m) yields that for d = o(log n) and m ∼ cM there is a sequence

Δ = Δ(n) such that d = o(Δ) and the maximum degree H
(k)(n, m) is at least Δ a.a.s.

Remark 4. For d greater than log n, however, the degree sequence of H
(k)(n, p) is closely

concentrated around the expected degree. Therefore it is plausible that Theorem 1.1 can
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be extended to d greater than n1/2. However, n1/2 seems to be an obstacle which cannot

be overcome without a proper refinement of our proof.

Remark 5. In view of Remark 3, our approach cannot be extended to d = O(log n).

Nevertheless, we believe that the following extension of Theorem 1.4 is valid.

Conjecture 1. For every k � 3 there is a constant d0 = d0(k) such that, for any d � d0,

H
(k)(n, d) contains a loose Hamilton cycle a.a.s.

Recall that Robinson and Wormald [19, 20] proved for k = 2 that as far as fixed

d is concerned, it suffices to take d � 3. Their approach is based on a very careful

analysis of variance of a random variable counting the number of Hamilton cycles in

the configuration model. Unfortunately, for k � 3 similar computations become extremely

complicated and involved, discouraging one from taking this approach.

Remark 6. In this paper, we were concerned only with loose cycles. One can also consider

a more general problem. Define an �-overlapping cycle as a k-uniform hypergraph in which,

for some cyclic ordering of its vertices, every edge consists of k consecutive vertices, and

every two consecutive edges (in the natural ordering of the edges induced by the ordering

of the vertices) share exactly � vertices. (Clearly, � = 1 corresponds to loose cycles.) The

thresholds for the existence of �-overlapping Hamilton cycles in H
(k)(n, p) have been

recently obtained in [9]. However, proving similar results for H
(k)(n, d) and arbitrarily

� � 2 seem to be hard. Based on results from [9] we believe that the following is true.

Conjecture 2. For every k > � � 2 if d � n�−1, then

H
(k)(n, d) contains an �-overlapping Hamilton cycle a.a.s.
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