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Abstract. We prove that asymptotically (as n → ∞) almost all graphs with n vertices and

Cd n2− 1
2d log

1
d n edges are universal with respect to the family of all graphs with maximum degree

bounded by d. Moreover, we provide an efficient deterministic embedding algorithm for finding copies
of bounded degree graphs in graphs satisfying certain pseudorandom properties. We also prove a
counterpart result for random bipartite graphs, where the threshold number of edges is even smaller
but the embedding is randomized.
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1. Introduction. Given graphs H and G, an embedding of H into G is an
injective edge-preserving map f : V (H)→ V (G), that is, for every e = {u, v} ∈ E(H),
we have f(e) = {f(u), f(v)} ∈ E(G). We shall say that a graph H is contained in G
as a subgraph if there is an embedding of H into G. Given a family of graphs H, we
say that G is universal with respect to H, or H-universal, if every H ∈ H is contained
in G as a subgraph.

Consider the probability space of all graphs on n labeled vertices in which every
pair of vertices forms an edge, randomly and independently, with probability p. We
use the notation Gn,p to denote a graph chosen randomly according to this probability
measure; i.e., for any graph G on n labeled vertices and with m edges, P[Gn,p = G] =

pm(1−p)(
n
2)−m. We say that Gn,p possesses a property Q asymptotically almost surely

(a.a.s.) if P[Gn,p ∈ Q] = 1− o(1).
The construction of sparse universal graphs for various families of graphs has

received a considerable amount of attention; see, e.g., [1, 2, 3, 6, 8, 10, 13, 18] and
their references. One is particularly interested in (almost) tight H-universal graphs,
i.e., graphs whose number of vertices is equal (or close) to maxH∈H |V (H)|.

In [6] it is proved that for all ε > 0 and d > 0 there exists c > 0 such that
a.a.s.Gn,p, p = c/n, is T = T

(
d, (1−ε)n

)
-universal, where T is the family of trees with

(1 − ε)n vertices and maximum degree at most d. (See [7] for a recent improvement
of this result.) In a related paper [11], the authors obtained an algorithm for finding
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bounded degree trees in subgraphs of (n, d, λ)-graphs; in particular, the result of [6]
is turned into an embedding algorithm. In this paper we study the universality of
random graphs with respect to the family of all bounded degree graphs.

Let d ∈ N be a fixed constant, let H(n, d) = {H ⊂ Kn : Δ(H) ≤ d} denote
the class of (pairwise nonisomorphic) n-vertex graphs with maximum degree bounded
by d, and let H(n, n; d) = {H ⊂ Kn,n : Δ(H) ≤ d} be the corresponding class for
balanced bipartite graphs.

By counting all unlabeled d-regular graphs on n vertices one can easily show that
every H(n, d)-universal graph must have

(1) M = Ω(n2−2/d)

edges (see [1] for details). This lower bound was almost matched by a construction
from [2], which was subsequently improved in [3] and [4]. Those constructions were
quite special and do not resemble a typical, or random, graph with the same number
of edges. For that reason, in [1], the universality of random graphs was also studied.

For random graphs, slightly better lower bounds than (1) are known. Owing1 to
the threshold for the property that every vertex should belong to a copy of Kd+1

(see [15, Theorem 3.22(i)]), the expected number of edges guaranteeing H(n, d)-
universality of Gn,p must be at least n2−2/(d+1)(logn)1/(

d+1
2 ), and similarly, by [15,

Theorem 4.9], it must be at least n2−2/(d+1) for H(n, d)-universality of G(1+ε)n,p.
Similar bounds apply to the random bipartite graph Gn,n,p.

In [1], it was proved that Gn,n,p is a.a.s. H(n, n, d)-universal if p = cn− 1
2d log

1
2d n

and c is large enough and that G(1+ε)n,p is a.a.s. H(n, d)-universal if p = cn− 1
d log

1
d n

if c is large enough.
In this paper we prove two related results. The first one significantly pushes down

the edge density p guaranteeing the universality of Gn,n,p.

Theorem 1. For every d ∈ N there exists C such that if p = p(n) ≥ Cn−1/d log1/d

n, then the random bipartite graph Gn,n,p is a.a.s. H(n, n, d)-universal.
The second result, at the cost of increase in p, establishes a tight universality of

Gn,p (and not of G(1+ε)n,p) and provides, as opposed to Theorem 1, a deterministic
embedding.

Theorem 2. For every d ∈ N there exists C such that if p = p(n) ≥ C n−1/(2d)

log1/d n, then the random graph G = Gn,p is a.a.s. H(n, d)-universal. Moreover,
for any H ∈ H(n, d), the embedding H ↪→ G can be constructed in deterministic
polynomial time.

Remark 3. Using the asymptotic equivalence between the two standard models
of random graphs [15, Corollary 1.16] one can deduce from Theorem 2 that almost all

graphs on n vertices with at least Cdn
2−1/(2d) log1/d n edges are H(n, d)-universal.

It would be interesting to establish the actual thresholds for the H(n, n; d)-
universality of Gn,n,p and the H(n, d)-universality of Gn,p.

In this paper we restrict our attention to d ≥ 2 since the case d = 1 reduces
to the threshold of containing a matching of maximum size (namely, a matching of
size �n/2�). It is well known [15, Chapter 4.1] that this threshold is p ∼ logn/n.

The proof of Theorem 1 is based on ideas from [20] and [19]. The embedding
scheme used to prove Theorem 2 is inspired by the algorithmic version of the blow-
up lemma of Komlós, Sárközy, and Szemerédi [17]. In their setting, they essentially

1Alternatively, we could use the threshold for the appearance of a Kd+1-factor in a random
graph, which was determined by Johansson, Kahn, and Vu [16].
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provided an algorithm to embed bounded degree spanning (bipartite) graphs into
super-regular, dense, bipartite graphs. In our setting, we deal with sparse random
graphs.

In section 2 we establish several typical properties of random graphs which imply
universality. The proofs of Theorems 1 and 2 are presented in sections 3 and 4,
respectively.

2. Properties of random graphs. In this section we establish properties of
random graphs which will then be shown to guarantee the universality property with
respect to bounded degree subgraphs.

We begin with some definitions.
Definition 4. Given a graph G, a vertex v ∈ V (G), and a subset ∅ �= S ⊂ V (G),

denote by G(v) the neighborhood of v in G and by

G∩(S) =
⋂
v∈S

G(v)

the joint neighborhood of S in G. Moreover, we let G∩(∅) = V (G).

Lemma 5. For all d ∈ N, d ≥ 2, and γ, ν > 0, if p ≥ C n−1/d log1/d n, where
Cd ≥ d+2

γν , then the random bipartite graph G = Gn,n;p with classes U and W together

with a fixed subset W ′ ⊆W , where |W ′| ≥ γn a.a.s. satisfies the following properties:
(i) For every A ⊂ U (or A ⊂W ) with |A| ≤ d

(1− ν)p|A|n ≤ |G∩(A)| ≤ (1 + ν)p|A|n.

(ii) For every U ′ ⊂ U with |U ′| ≥ n/2 there are at most 20
p vertices w ∈ W such

that |G(w) ∩ U ′| < p
2 |U ′|.

(iii) For every disjoint family F ⊂
(
U
d

)
and a subset T ⊂ W ′, with |F| ≤ (1 −

ν)|W ′|, and |T | = |W ′| − |F| ≥ ν|W ′|, there exists a vertex w ∈ T and a set
A ∈ F such that A ⊂ G(w).

Proof. The first two properties are obtained by standard applications of the
Chernoff inequality. Indeed, in (i), ZA := |G∩(A)| has a binomial distribution with
expectation EZA = np|A| ≥ Cd logn, and so

d∑
a=1

(
n

a

)
× P(|ZA − EZA| ≥ νEZA) = o(1)

for sufficiently large C. To prove (ii) suppose that for some U ′ there is a subset S ⊂W
of 20/p vertices w ∈W with |G(w) ∩ U ′| < p

2 |U ′|. Then there are fewer than 10|U ′|
edges between S and U ′, while the expected number of such edges is 20|U ′|. Thus,

P

(
|G(w) ∩ U ′| < p

2
|U ′|

)
≤ exp{− 1

820|U
′|} ≤ exp{− 5

4n}.

There are no more than 2n choices of U ′ and n20/p choices of S and so the probability
of the event opposite to that stated in part (ii) is o(1). We will now prove property (iii).

Let s, t ≥ 1 be such that t ≥ ν |W ′| and s + t = |W ′|. For some fixed disjoint
family F ⊂

(
U
d

)
and T ⊂W ′ with |F| = s and |T | = t, the probability that there are

no pairs(w,A) ∈ T ×F such that A ⊂ G(w) is

(1 − pd)st ≤ exp{−pdst}.
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The probability that there is a disjoint family F ⊂
(
U
d

)
and T ⊂ W ′ failing (iii)

is at most

[∗] :=
|W ′|−1∑
t=ν |W ′|

(
|W ′|
t

)(
|U |
d

)|W ′|−t

exp{−pdt(|W ′| − t)}

≤
∑
t

exp{(|W ′| − t) logn+ (|W ′| − t)d log n− pdt(|W ′| − t)}

≤
∑
t

exp
{
(|W ′| − t)

[
(d+ 1) logn− pdt

]}
.

(2)

Observe that

pdt ≥ pdν |W ′| ≥ Cdνγ logn ≥ (d+ 2) logn,

and consequently [∗] ≤
∑ν|W ′|

j=1 n−j = O(n−1) = o(1).
Lemma 6. For all d ∈ N, d ≥ 2, and ε > 0 there exists C > 0 such that if p ≥

C n−1/(2d) log1/d n, then the random graph G = Gn,p a.a.s. satisfies the following
properties:
(i) δ(G) ≥ (1− ε)pn.
(ii) For every pair of sets A,B ⊂ V (G) with p |A||B| ≥ 100ε−3n there are at

least (1− ε)|B| vertices v ∈ B such that

(1− ε)p|A| ≤ |G(v) ∩ A| ≤ (1 + ε)p|A|.
(iii) For every k ≤ d, T ⊂ V (G) with |T | ≥

√
n and every disjoint family X ⊂(

V (G)\T
k

)
with |X | ≥

√
n, we have

(3) (1− ε)pk|T | |X | ≤
∣∣∣{(w,X) ∈ T ×X : X ⊂ G(w)

}∣∣∣ ≤ (1 + ε)pk|T | |X |.
Proof. The first two properties are obtained by standard applications of the

Chernoff inequality. We will now prove property (iii).
Let k ≤ d be fixed. For a choice of set T and family X , the number of pairs (w,X)

being counted is a binomial variable with mean pk|T | |X |. By the Chernoff inequality,
the probability this variable deviates by more than εpk|T | |X | from the mean is at most

exp{−cpk|T | |X |} ≤ exp{−cpd|T | |X |}
for a constant c = c(ε).

On the other hand, the number of possible choices for T and the family X with
predetermined cardinalities t = |T | and r = |X | (t, r ≥

√
n) is at most (nd)rnt ≤

exp{d(r + t) logn}.
Since pdtr ≥ max{Cdr logn,Cdt logn}, a large enough C = C(d, ε) implies that

(4) cpdtr ≥ 2d(r + t) logn.

Therefore, we have

d∑
k=1

∑
T : |T |≥√

n

∑
X : |X |≥√

n

P[(3) fails for T,X ]

≤
d∑

k=1

∑
t≥√

n

∑
r≥√

n

exp{d(r + t) logn− cpktr}

(4)

≤ dn2 exp{−2d
√
n logn} = o(1).

(5)

Property (iii) then follows by the union bound.
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3. Universality of bipartite graphs. In this section we prove a slight strength-
ening of Theorem 1. Given d, d′ ∈ N, and a bipartite complete graph Kn,n with vertex
classes X and Y , |X | = |Y | = n, let

H(n, n, d′, d) =
{
H ⊂ Kn,n : degH(x) ≤ d′ for x ∈ X and

degH(y) ≤ d for y ∈ Y
}
.

Theorem 7. For all d, d′ ∈ N, 2 ≤ d ≤ d′, there exists C such that if p =
p(n) ≥ Cn−1/d log1/d n, then the random bipartite graph Gn,n;p is a.a.s. H(n, n, d′, d)-
universal.

Let H(n, n, d′,= d) be defined as H(n, n, d′, d) but with the additional condition
that all vertices y ∈ Y have degree exactly d. Note that if n is sufficiently larger than
d′, then for every H ′ ∈ H(n, n, d′, d) there is an H ∈ H(n, n, d′ + 1,= d) such that
H ′ ⊆ H . Thus, it suffices to show that Gn,n;p is a.a.s. H(n, n, d′ + 1,= d)-universal.

Let the two vertex classes of Gn,n;p be U and W , |U | = |W | = n. For technical
reasons we will need a partition of W . A partition in which the cardinalities of any
two parts differ by at most 1 is called an equipartition. Let W = W1 ∪W2 ∪ · · · ∪WD

be a fixed equipartition of W with

D := dd′ + 1.

Notice that for every i = 1, . . . , D, we have

|Wi| ≥
⌊ n

D

⌋
>

n

D
− 1 ≥ n

D + 1
,

where the last inequality holds for n ≥ D(D + 1).
Let

(6) ν =
1

8
(48e)−d, γ =

1

D + 1
,

and let C > 0 be such that

Cd ≥ d+ 2

γν
.

In particular, for our choice of p = Cn−1/d log1/d n, Lemma 5 applies to Gn,n;p.
Further, let G be a bipartite graph that for each i = 1, . . . , D satisfies properties (i)–
(iii) from Lemma 5 with W ′ = Wi. We will show that G contains all H ∈ H(n, n, d′+
1,= d) as subgraphs, and consequently that G is H(n, n, d′, d)-universal. Theorem 7
will follow, since Gn,n;p a.a.s. satisfies properties (i)–(iii) from Lemma 5.

Let us fix H ∈ H(n, n, d′ + 1,= d). In order to avoid certain dependency issues
later in the proof, it would be convenient to assume that the d-element sets H(y),
y ∈ Y , are pairwise disjoint. This is not true in general, but it is possible to partition
the set Y into finitely many subsets, each satisfying the above demand. A family of
pairwise disjoint sets will be called a disjoint family.

Consider the auxiliary graph

J = (Y, {uv : u, v ∈ Y, distH(u, v) = 2})

and note that Δ(J) ≤ dd′. Similarly as in [14] we apply the Hajnal–Szemerédi Theo-
rem [14] to J , thus obtaining an equipartition of V (J) with D parts:

Y = Y1 ∪ · · · ∪ YD,
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Fig. 1. The idea of the proof of Theorem 7.

where each Yi is independent in J . Observe that by construction, for every i =
1, . . . , D, {H(y) : y ∈ Yi} is a disjoint family of d-element sets. We renumber the
sets Wi so that |Yi| = |Wi| for all i = 1, . . . , D.

To show that G ⊇ H , our strategy is to find a bijection π : X → U which can
be extended to an embedding f of H into G by selecting the images of vertices in Y .
More precisely, given π, we will find a map f : X ∪ Y → U ∪W such that

• f |X = π,
• f(Yi) = Wi for all i = 1, . . . , D, and, most importantly,
• for all y ∈ Y

π(H(y)) ⊆ G(f(y)).

Let π : X → U be a random bijection and let Aπ
i be the auxiliary bipartite graph

with classes Yi and Wi containing as edges all pairs (y, w) ∈ Yi ×Wi for which the
π-image of the H-neighborhood of y is contained in the G-neighborhood of w (see
Figure 1). Namely,

(7) E(Aπ
i ) = {(y, w) ∈ Yi ×Wi : π(H(y)) ⊆ G(w)}.

Suppose that each Aπ
i , i = 1, . . . , D, contains a perfect matching Mi and set M =⋃D

i=1 Mi. Extend π to an embedding ofH into G by letting, for every y ∈ Y , f(y) = w,
where (y, w) is the edge of M incident to y. We claim that such an extension is an
embedding of H into G.
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The extension f is clearly a bijection. It remains to show that f is also edge-
preserving. For an edge e = (x, y) ∈ E(H), let ie be such that y ∈ Yie . By construc-
tion, (y, f(y)) ∈ Aπ

ie
, which implies that π(H(y)) ⊆ G(f(y)) and thus π(x) ∈ G(f(y)).

Consequently, (f(x), f(y)) = (π(x), f(y)) ∈ E(G) and the map f is edge-preserving.
Therefore, in order to complete the proof of Theorem 7 it suffices to show the

following probabilistic lemma. (Notice that the graph G in that lemma is fixed and
the probability space in consideration refers to the random bijection π.)

Lemma 8. For every i = 1, . . . , D, if G satisfies the properties listed in Lemma 5
with W ′ = Wi, then the graph Aπ

i a.a.s. contains a perfect matching.
Proof. Let us fix an index i throughout this proof and set

m := |Yi| = |Wi|.

Recall that

γn =
n

D + 1
≤ m ≤ n

D − 1
=

n

dd′

for n ≥ D(D + 1), where D = dd′ + 1. We will verify Hall’s condition in order to
establish the result. To simplify notation, for every V ⊆ V (Aπ

i ) = Yi ∪Wi we set

(8) N(V ) =
⋃
v∈V

Aπ
i (v).

It is well known that it suffices to show for some integer m′ ≥ 0 that
• |N(S)| ≥ |S| for all S ⊆ Yi with |S| ≤ m′ and
• |N(T )| ≥ |T | for all T ⊆Wi with |T | ≤ m−m′.

Set m′ = (1 − ν)m and fix an arbitrary bijection π : X → U . Observe that
{π(H(y)) : y ∈ Yi} is a disjoint family. For all S ⊂ Yi and T ⊂Wi such that |S| ≤ m′

and |T | = m− |S|, property (iii) from Lemma 5 yields that setting FS = {π(H(y)) :
y ∈ S} ⊂

(
U
d

)
, there is (w,A) ∈ T ×FS satisfying A ⊆ G(w). In particular, it follows

that for every π we have |N(S)| ≥ |S| for all sets S ⊂ Yi with |S| ≤ m′.
In remains to verify that Hall’s condition holds a.a.s. for all sets T ⊆Wi with |T | ≤

m − m′ = νm. We will divide this range of t := |T | into two parts and prove the
following two statements:

(I) a.a.s. every T ⊂Wi,
100
p ≤ t ≤ ν |Wi|, satisfies |N(T )| ≥ t;

(II) a.a.s. every T ⊂Wi, t ≤ 100
p , satisfies |N(T )| ≥ t.

Proof of (I). Let Yi = {y1, y2, . . . , ym}. Consider a fixed set T ⊂ Wi with
100/p ≤ t = |T | ≤ ν |Wi|. We will be partially revealing π by exposing π(H(yk)) one
step at a time for k = 1, 2, . . . ,m. For convenience, set Hk := H(yk). Notice that if
π(Hk) ⊆ G(w) for some w ∈ T , then (yk, w) ∈ Aπ

i and thus yk ∈ N(T ).
Suppose that π(Hj) has been exposed for all j < k. The set π(Hk) is then a

uniformly chosen d-subset of Uk = U \
⋃

j<k π(Hj) (see Figure 2). We have

|Uk| ≥ n−md ≥ n− n

d′
≥ n

2
.

Therefore, by property (ii) from Lemma 5,

(9)

∣∣∣∣
{
w ∈ T : |G(w) ∩ Uk| ≥

1

2
p |Uk| >

pn

4

} ∣∣∣∣ ≥ t− 20

p
≥ 0.8t.

Let

Ak =
⋃
w∈T

(
G(w) ∩ Uk

d

)
.
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Fig. 2. Illustration to the proof of Lemma 8, case (I).

Note that yk ∈ N(T ) iff π(Hk) ∈ Ak. We are going to subdivide the range of t even
further and assume first that t ≤ 1

2(12p)d .

Claim 9. For all k = 1, 2, . . . ,m and t ≤ 1
2(12p)d

, we have

|Ak| ≥ Q
def.
=

t

2

(
pn/4

d

)
.

Proof. By Bonferroni’s inequality, we have∣∣Ak

∣∣ ≥ ∑
w∈T

(
|G(w) ∩ Uk|

d

)
−

∑
w 	=w′∈T

(
|G(w) ∩G(w′) ∩ Uk|

d

)
.

From (9) we conclude that∑
w∈T

(
|G(w) ∩ Uk|

d

)
≥ 0.8t

(
pn/4

d

)
.

On the other hand, using property (i) from Lemma 5 applied to sets with two
elements, we have

|G(w) ∩G(w′)| ≤ (1 + ν)p2n ≤ (3/e)p2n

for every w �= w′. Therefore, using the standard estimates (M/l)l ≤
(
M
l

)
≤ (eM/l)l,

∑
w 	=w′∈T

(
|G(w) ∩G(w′) ∩ Uk|

d

)
≤

(
t

2

)(
(3/e)p2n

d

)

≤ 1

2
t2
(
3p2n

d

)d

≤ 1

2
t2(12p)d

(
pn/4

d

)
.

Under the assumption that t ≤ 1
2(12p)d , the above inequalities imply the claim.
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For every k = 1, 2, . . . ,m, let Bk ⊆ Ak be a fixed set with exactly Q elements (for
concreteness, take the lexicographically first Q sets of Ak). Further, define

Ik = I[π(Hk) ∈ Ak] and Jk = I[π(Hk) ∈ Bk].

Let

ZT =

m∑
k=1

Ik and Z ′
T =

m∑
k=1

Jk.

Observe that since Ik ≥ Jk for all k,

ZT = |N(T )| ≥ Z ′
T .

It is easy to see that the variables Jk are independent and hence Z ′
T is a generalized

binomial random variable with mean

μ′
T = E[Z ′

T ] =

m∑
k=1

Q(|Uk|
d

) .
By Claim 9 we bound

(10) μ′
T ≥ mQ

(
n

d

)−1

≥ pdmt

2(4e)d
≥ Cdγt logn

2(4e)d
≥ 16t logn

by our choice of C.
Applying Chernoff’s bound [15, Theorem 2.8] to Z ′

T yields

P
[
Z ′
T ≤ μ′

T /2
]
≤ exp{−μT /8} ≤ n−2t.

Therefore, by the union bound

P

[
there exists T,

100

p
≤ t ≤ 1

2(12p)d
: Z ′

T ≤
μ′
T

2

]

≤
1/[2(12p)d]∑
t=100/p

(
m

t

)
n−2t ≤

m∑
t=1

n−t = o(1).

(11)

Hence, a.a.s. every T with 100
p ≤ t ≤ 1

2(12p)d
satisfies

|N(T )| ≥ Z ′
t ≥

1

2
μ′
T ≥ 8t logn ≥ t.

Consider now a set T with 1
2(12p)d ≤ t ≤ νm. Let T0 ⊂ T be an arbitrary set with

cardinality 1
2(12p)d

. We have

|N(T )| ≥ |N(T0)| = ZT0 ≥ Z ′
T0
≥

μ′
T0

2

(10)

≥ pdm

4(4e)d
|T0| = νm.

It follows that a.a.s. every T with 100
p ≤ t ≤ νm satisfies |N(T )| ≥ t and thus (I) is

proved.
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Proof of (II). Since in this case the sets T are small (i.e., t = |T | < 100/p), we
will change our strategy and consider the inverse of the random mapping π. Recall
that N(T ) has been defined in (8) and γ was defined in (6). Our aim will be to prove
that a.a.s.

(12) |N(T )| ≥ pd
γn

2 · 4d · t for all T ⊂Wi , t = |T | ≤
γ

p
.

This will also imply that a.a.s. all sets T with γ
p < t ≤ 100

p satisfy

|N(T )| ≥ pd
γn

2 · 4d ·
γ

p
≥ 100

p
≥ t.

To prove (12), we fix a set T = {w1, . . . , wt} ⊂ Wi , t ≤ γ
p , and begin by

constructing a disjoint familyN = {Nk ⊆ G(wk) : k = 1, . . . , t} such that |Nk| = pn/2
for every w ∈ T .

Claim 10. There is a disjoint family N = {Nk ⊆ G(wk) : k = 1, . . . , t} such
that |Nk| = pn/2 for every k = 1, . . . , t.

Proof. We will construct the desired family using a simple matching argument.
A folklore corollary of Hall’s theorem states that if for some integer s∣∣∣∣ ⋃

w∈T ′
G(w)

∣∣∣∣ ≥ s |T ′|

for every T ′ ⊆ T , then there exists in G a star-matching saturating T , that is, a forest
whose components are stars with s arms and centers at every w ∈ T .

For any T ′ ⊆ T , property (i) from Lemma 5 and Bonferroni’s inequality yield
that ∣∣∣∣ ⋃

w∈T ′
G(w)

∣∣∣∣ ≥ ∑
w∈T ′

|G(w)| −
∑

w 	=w′∈T ′
|G(w) ∩G(w′)|

≥ |T ′|(1− ν)pn− |T ′|2(1 + ν)p2n

≥ 1

2
pn |T ′|,

(13)

where the third inequality holds by our assumption on t. The existence of family N
follows from (13) and the above mentioned corollary of Hall’s theorem.

We will estimate |N(T )| from below by counting how many elements y ∈ Yi are
such that for some k = 1, . . . , t we have H(y) ⊆ π−1(Nk). Indeed, this containment
implies that

π(H(y)) ⊆ Nk ⊆ G(wk),

which by (7) means that (y, wk) ∈ E(Aπ
i ) and thus y ∈ N(T ).

For k = 1, . . . , t set

Rk = |{y ∈ Yk : H(y) ⊆ π−1(Nk)}|.

Further, let RT = R =
∑t

k=1 Rk. Since the family N is disjoint, |N(T )| ≥ R.
Claim 11. For a sufficiently large constant C, we have

(14) P

[
RT <

t

2

(p
4

)d

m
]
≤ n−2t.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

UNIVERSALITY OF RANDOM GRAPHS 363

Observe that (12) follows directly from Claim 11 and the union bound. Indeed,

P

[
∃ T : t = |T | ≤ γ/p and RT <

t

2

(p
4

)d

m
]

≤
γ/p∑
t=1

(
m

t

)
n−2t <

∑
t

n−t = o(1).

Therefore (II) will be established after we prove Claim 11.

Proof. Let Ik = I
[
Rk ≥

(
p
4

)d
m
]
for every k, and let Z =

∑t
k=1 Ik. Clearly,

P

[
R <

t

2

(p
4

)d

m
]
≤ P[Z < t/2].

For any a ∈ {0, 1}t we have

(15) P[Ik = ak for all k] =
∏
k=1

P
[
Ik = ak

∣∣ I1 = a1, . . . , Ik−1 = ak−1

]
.

We will show that

(16) P
[
Ik = 0

∣∣ I1 = a1, . . . , Ik−1 = ak−1

]
≤ n−6

regardless of the values a1, a2, . . . , ak−1. Let |a| =
∑t

k=1 ak. In view of (15) and (16),

P[Z < t/2] =
∑

a : |a|<t/2

P[Ik = ak for all k]

≤
∑

a : |a|<t/2

n−6 (t−|a|) ≤ 2tn−3t < n−2t.
(17)

This proves that (16) implies (14). It remains to show (16).
To this end, the inverse of the random map π will be exposed in steps by reveal-

ing π−1(Nk) one at a time. For 1 ≤ k ≤ t, let

(18) Xk = X \
k−1⋃
j=1

π−1(Nj) and Fk = {y ∈ Yi : H(y) ⊂ Xk}.

By the definition of Fk, for every y ∈ Yi \Fk we have H(y)∩ (X \Xk) �= ∅. Since
by construction the family {H(y) : y ∈ Yi} is disjoint, it follows that

|Yi \ Fk| ≤ |X \Xk| = (k − 1)
pn

2
≤ t

pn

2
≤ γn

2
≤ m

2
,

and thus |Fk| ≥ m/2 (see Figure 3).
Suppose that π−1(Nj) has been exposed for all 1 ≤ j ≤ k − 1. In particular,

I1, I2, . . . , Ik−1 are determined. We need to compute the probability that Ik = 0
conditional on the exposed part of π. In this conditional space, the set π−1(Nk) is
uniformly chosen among all pn

2 -subsets of Xk.
It will be convenient to switch to a different model where independent choices are

made for each vertex of Xk. Formally, consider a process which selects vertices of Xk

independently with probability

q =
pn

2 |Xk|

to form a random subset of Xk denoted by (Xk)q.
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Fig. 3. Illustration to the proof of Lemma 8, case (II).

To link the two random models, we use Pittel’s inequality [15, p. 17]. Let

Q =
{
S ⊆ Xk : |{y ∈ Yk : H(y) ⊆ S}| ≥

(p
4

)d

m
}

and notice that Rk <
(
p
4

)d
m is equivalent to π−1(Nk) /∈ Q. Pittel’s inequality then

yields

P

[
Ik = 0

]
= P

[
π−1(Nk) /∈ Q

]
≤ 3

√
pn

2
· P

[
(Xk)q /∈ Q

]
,

where all probabilities are conditional upon π−1(N1), . . . , π
−1(Nk−1).

Let Qk = |{y ∈ Yk : H(y) ⊆ (Xk)q}|. Observe that Qk has a binomial distribution
with parameters |Fk| and qd and thus with mean

μk := |Fk| qd ≥
m

2

(p
2

)d

since q ≥ p
2 . Indeed, Qk is the sum of indicator random variables I[H(y) ⊆ (Xk)q],

where y ∈ Fk. The independence of the variables stems from the fact that {H(y) :
y ∈ Yi} is a disjoint family.

Finally, Chernoff’s inequality [15, Theorem 2.1] yields, for d ≥ 2,

P
[
(Xk)q /∈ Q

]
= P

[
Qk <

(p
4

)d

m
]
≤ P

[
Qk <

1

2
μk

]
≤ exp

{
−γnpd

2d+4

}
≤ n−7

by our choice of C and the fact that m ≥ γn. Therefore, (16) holds and the claim is
proved.

We have proved that both (I) and (II) hold and therefore Lemma 8 and conse-
quently Theorem 7 follow.
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Fig. 4. An illustration of the definition given by (19).

4. An embedding scheme for bounded degree graphs. In this section we
prove Theorem 2 by providing a scheme that embeds any graph H with Δ(H) ≤ d
and |V (H)| = n into any given graph G satisfying properties (i)–(iii) from Lemma 6.
Throughout the proof we assume that d ≥ 2.

The embedding is done in two phases. It starts by embedding one vertex at a
time until almost all the vertices of the graph are embedded. The rest of the graph
is embedded by finding a perfect matching in some auxiliary graph. The first phase
is greedy (it never regrets a decision) but takes into consideration a few invariants
that guarantee that the embedding of the whole graph can be done. This structure
is quite similar to [17]. However, several differences and subtleties are inherent to the
sparse random graph case.

In the first phase we construct a sequence of partial embeddings f0, f1, f2, . . . , fk
for some k ≥ n− n

d2+1 , where each embedding extends the previous by one vertex. In
the second phase all the remaining vertices are embedded in a single step.

Let G be a fixed graph satisfying properties (i)–(iii) from Lemma 6 with ε = ε(d)
sufficiently small. Fix a graph H with Δ(H) ≤ d and n vertices. Label the vertices
ofH using the elements in [n] = {1, 2, . . . , n} in such a way that form = n−n/(d2+1),
the labels {m+1,m+2 . . . , n} are assigned to 2-independent vertices, that is, every two
vertices are at distance at least 3 from each other. This labeling is indeed possible
since the graph J = H ∪ H2 has degrees bounded by d2. By Brooks’s theorem,
there is a proper (d2 +1)-coloring of J . Label some elements in the largest color class
with m+1,m+2, . . . , n. By construction, vertices with the same color are at distance
at least 3 from each other.

Before we describe the embedding, we introduce some notation. Denote by Uj

the set of vertices of H which are not embedded by fj . Similarly, let Vj be the set of
vertices in G which are not in the image of fj. Define Ij to be a bipartite graph with
classes (Uj , Vj), where for each x ∈ Uj the neighborhood of x,

(19) Ij(x) = G∩
(
fj
(
H(x) \ Uj

))
∩ Vj ,

consists of all “candidates” for fj+1(x). More precisely, the set Ij(x) consists of all
elements v ∈ Vj such that mapping x to v produces a valid extension of fj. Indeed,
in order for the edges incident to x in H to be preserved under the extension, the
image of x must be adjacent (in G) to all vertices in fj(H(x) \ Uj). See Figure 4 for
an illustration of the candidate set’s definition.

In view of (19), the neighborhood of a vertex v ∈ Vj is completely determined. In-
deed, x ∈ Ij(v) iff v ∈ Ij(x), which means that v ∈ G∩(fj(H(x)\Uj)

)
. Consequently,
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one must have fj(H(x) \ Uj) ⊂ G(v). In particular, for every v ∈ Vj ,

(20) Ij(v) = {x ∈ Uj : fj(H(x) \ Uj) ⊂ G(v)}.

The aim of the first phase is to produce an embedding fk which embeds enough
vertices of H so that Uk ⊂ {m+1, . . . , n} is 2-independent. The fact that the vertices
in Uk are independent in H implies that their images may be chosen independently
(they just need to be distinct for each vertex).

In the second phase we will find a perfect matching in Ik which will define the
extension of fk into a complete embedding of H into G.

4.1. Phase 1. In this section we introduce an induction hypothesis which is
maintained for each fj , j = 0, 1, . . . , k. The induction step (embedding extension) is
introduced in section 4.1.1. The induction is formally proved in section 4.1.3.

Induction Hypothesis. For every x ∈ Uj we have

(21) |Ij(x)| ≥ cj(x)
def.
=

(p
4

)|H(x)\Uj | n

4d2
.

Moreover, for every v ∈ Vj , we have

(22) |Ij(v)| ≥ pd
n

8d5
and |G(v) ∩ Vj | ≥

pn

4d2
.

The embedding f0 is an empty map and since G∩(∅) = V (G), it follows that I0 =
K(U0, V0), the complete bipartite graph with classes U0 = V (H) and V0 = V (G).
It is clear that (21) and the first part of (22) are satisfied for j = 0. Moreover,
since G(v)∩V0 = G(v), property (i) from Lemma 6 implies that the second condition
of (22) holds as well. In particular, the induction hypothesis is true for the base
case j = 0.

Let us now consider how the auxiliary graph Ij+1 evolves from Ij . Suppose
that fj+1 extends fj by mapping xj+1 �→ vj+1. For any x ∈ Uj+1, the candidate
set Ij+1(x) satisfies

(23) Ij+1(x) =

{
Ij(x) \ {vj+1} if x /∈ H(xj+1),

Ij(x) ∩G(vj+1) if x ∈ H(xj+1).

Indeed, when x /∈ H(xj+1) we have fj+1(H(x)\Uj+1) = fj(H(x)\Uj) and since Vj+1 =
Vj \ {vj+1}, we infer by (19) that Ij+1(x) = Ij(x) \ {vj+1}. On the other hand, if x ∈
H(xj+1), then fj+1(H(x)\Uj+1) = fj(H(x)\Uj)∪{vj+1} and consequently Ij+1(x) =
Ij(x) ∩G(vj+1).

Observe that every vertex v ∈ Vj+1 satisfies

(24) Ij+1(v) =

{
Ij(v) \ {xj+1} if v ∈ G(vj+1),

Ij(v) \
(
{xj+1} ∪H(xj+1)

)
if v /∈ G(vj+1).

Indeed, for every x ∈ Ij(v) with x ∈ H(xj+1) we infer by (23) that x ∈ Ij+1(v) iff
v ∈ G(vj+1). In the case x ∈ Ij(v) with x /∈ H(xj+1), x �= xj+1, we have x ∈ Ij+1(v).

Notice that a vertex v may lose at most d + 1 neighbors after a single vertex
extension. Therefore, the only neighborhoods that ever shrink considerably are the
neighborhoods of vertices in H(xj+1) ∩ Uj+1.
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4.1.1. Induction step: Extending the embedding. Here we describe how
the embeddings are extended. We postpone the proof of the induction step to sec-
tion 4.1.3. A succinct description of the embedding scheme is stated as Algorithm 1.

Suppose that the partial embedding fj has been constructed (recall that f0 is
an empty embedding) and satisfies the induction hypothesis. If the set Uj is 2-
independent, we immediately end the first phase and execute Phase 2.

In each extension, we will look for vertices which are dangerously close to failing
the induction hypothesis. For this, we distinguish three cases in the extension. We
say that an extension is

H-critical if there exists a vertex x ∈ Uj such that |Ij(x)| < 2cj(x),
G-critical if there exists a vertex v ∈ Vj for which either |Ij(v)| < pdn/(4d5)

or |G(v) ∩ Vj | < pn/(2d2), and
normal otherwise.

In our analysis we will show that few extensions are critical (see Lemma 14). (If the
conditions for both H- and G-critical extensions hold, we use the convention that the
extension is H-critical.)

In an H-critical extension, we choose the vertex x ∈ Uj satisfying |Ij(x)| < 2cj(x)
with the smallest label to be embedded. We apply Lemma 12 to such x in order to
obtain v ∈ Ij(x) and extend fj by setting x �→ v. In case the extension is normal,
take x ∈ Uj with the smallest label and use Lemma 12 to define the image of x.

If the extension is G-critical, we choose v ∈ Vj to be any of the vertices satisfying
either |Ij(v)| < pdn/(2d2) or |G(v) ∩ Vj | < pn/(2d2). We apply Lemma 13 to the
chosen vertex v in order to find x ∈ Ij(v) and extend the embedding fj by setting
x �→ v.

Lemma 12 asserts that for any vertex x ∈ Uj there is a candidate v ∈ Ij(x) which
ensures that no candidate set shrinks too much (see (23)).

Lemma 12. For any x ∈ Uj there exists v ∈ Ij(x) such that

|Ij(x′) ∩G(v)| ≥ p

2
|Ij(x′)| ≥ p

2
cj(x

′)

for all x′ ∈ H(x) ∩ Uj.
Proof. We may assume that H(x) ∩ Uj �= ∅ since otherwise the lemma holds

trivially. Let x′ ∈ H(x) ∩ Uj and consider the sets A = Ij(x
′), B = Ij(x) ⊂ V (G).

Notice that |H(x)\Uj |, |H(x′)\Uj| ≤ d−1 (since x, x′ ∈ Uj are neighbors). It follows
by the induction assumption over fj that

p |A| |B| ≥ p
(p
4

)2d−2( n

4d2

)2

> 100ε−3n.

Applying property (ii) from Lemma 6 to the sets A, B we conclude that all but at
most ε |B| vertices v ∈ B = Ij(x) fail to satisfy |Ij(x′) ∩G(v)| ≥ p |Ij(x′)|/2.

Repeating the same argument for every element in H(x) ∩ Uj shows that there
are at most ε |Ij(x)| |H(x) ∩ Uj | ≤ εd |Ij(x)| vertices in Ij(x) that fail to satisfy the
conditions of the lemma. Because of our choice of ε� 1/d the lemma is proved.

Lemma 13 asserts that for any v ∈ Vj there is some x ∈ Ij(v) such that extending
the embedding by x �→ v does not shrink any candidate set too much.

Lemma 13. For any v ∈ Vj there exists x ∈ Ij(v) ⊂ Uj such that |Ij(x′)∩G(v)| ≥
p cj(x

′) for all x′ ∈ H(x) ∩ Uj.
Proof. Suppose that the statement fails for some v ∈ Vj . In particular, for each

vertex x ∈ Ij(v) there is some witness

(25) x′ ∈ H(x) ∩ Uj for which |Ij(x′) ∩G(v)| < p cj(x
′).
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We assume that the induction hypothesis holds for fj and thus

(26) |G(v) ∩ Vj | ≥ pn/(4d2) and |Ij(v)| ≥ pdn/(8d5).

Let W be the set of all witnesses for v. Since a vertex x′ ∈ W can only be
a witness to a neighbor x ∈ H(x′), and there are |Ij(v)| choices for x, we must
have |W | ≥ |Ij(v)|/d. Let

W =
{
fj
(
H(x′) \ Uj

)
: x′ ∈W

}
.

Observe that each witness x′ has a neighbor in Ij(v) ⊂ Uj and thus the sets inW have
at most d − 1 elements each. We claim that every witness x′ must have a neighbor
which was already embedded. Indeed, otherwise H(x′) \ Uj = ∅ and, in view of (19)
and (21), this implies that Ij(x

′) = Vj and cj(x
′) = n/4d2, which, by the induction

assumption, then implies

|Ij(x′) ∩G(v)| = |G(v) ∩ Vj |
(26)

≥ pn/(4d2) = p cj(x
′),

contradicting (25). We have thus shown that ∅ /∈ W . We will now find a disjoint
subfamily X ⊂ W with

|X | > |W |
d3
≥ |Ij(v)|

d4

(26)

≥ pdn

8d9
�
√
n

in which every set has the same cardinality 1 ≤ 	 ≤ d− 1. For this, take W ∗ ⊂W ⊂
V (H) to be a maximal 2-independent set (with respect to H). The family W∗ ={
fj
(
H(x′) \ Uj

)
: x′ ∈ W ∗} is disjoint by construction and, moreover, |W∗| =

|W ∗| ≥ |W |
d2+1 . By the pigeonhole principle, there is 1 ≤ 	 ≤ d − 1 such that at

least |W∗|
d−1 sets of W∗ have cardinality 	. Let X ⊂ W∗ be the family of all 	-sets

of W∗. Clearly, |X | ≥ |W∗|
d−1 ≥

|W |
(d−1)(d2+1) >

|W |
d3 .

Apply property (iii) from Lemma 6 to T = G(v)∩Vj and X . By averaging, there
exists some X ∈ X for which #{w ∈ T : X ⊂ G(w)} ≥ (1−ε)p�|T |. This is equivalent
to |G∩(X)∩T | ≥ (1−ε)p�|T |. Let x′ ∈W be such thatX = fj(H(x′)\Uj). Notice that
by (19), Ij(x

′) = G∩(X)∩Vj and hence Ij(x
′)∩G(v) = G∩(X)∩Vj∩G(v) = G∩(X)∩T .

Since by (26) |T | ≥ pn
4d2 , it follows that

|Ij(x′) ∩G(v)| ≥ (1− ε)p�
pn

4d2
≥ (1 − ε)4p

(p
4

)� n

4d2
> p cj(x

′).

However this contradicts the fact that x′ is a witness.

4.1.2. Bounding the number of critical extensions. We now prove that
most of the extensions are normal. An extension that is either G-critical or H-critical
will simply be called critical. For the proof we do not need to assume that the
induction hypothesis holds.

Lemma 14. There are less than 2d3
√
n critical extensions during Phase 1.

Proof. Suppose for the sake of contradiction that the Cth critical extension,
where C = 2d3

√
n, occurs when extending fJ−1 to fJ . At each normal extension, the

embedded vertex is the one with the smallest label among all the vertices which have
not been embedded so far. In particular, all vertices with labels {1, 2, . . . , J −C − 1}
must have been embedded after fJ−1 was constructed and thus UJ−1 ⊂ [J − C, n].
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Observe that UJ−1 is not 2-independent as otherwise Phase 1 would have ended
before fJ was constructed. On the other hand, the set

[
n− n

d2+1+1, n
]
is 2-independent

by our particular choice of labels for V (H). Consequently,

(27) J ≤ n− n

d2 + 1
+ C.

Since |UJ | = |VJ | = n− J , (27) implies that |UJ | = |VJ | ≥ n
d2+1 − C.

The lemma follows immediately from Claims 15 and 16 which bound the number
of H- and G-critical extensions respectively.

Claim 15. The number of H-critical extensions before fJ is at most d(d2+1)
√
n.

Let x1, . . . , xh ∈ V (H) be the vertices which were embedded in H-critical ex-
tensions before fJ was constructed. Let ji < J be such that xi was (first) embed-
ded by fji . By the definition of an H-critical extension, |Iji−1(xi)| < 2cji−1(xi).
Let Xi = fji−1

(
H(xi) \Uji−1

)
and notice that by (19), Iji−1(xi) = G∩(Xi)∩Vji−1 ⊇

G∩(Xi) ∩ VJ . In particular

|G∩(Xi) ∩ VJ | ≤ |Iji−1(xi)| < 2cji−1(xi)
(21)
= 2

(p
4

)|Xi| n

4d2
.

Notice that Xi �= ∅ since otherwise the above inequality implies that |VJ | < n
2d2 and

this contradicts the fact that |VJ | ≥ n
d2+1 − C.

Now we will construct a disjoint family X ⊂ {Xi : i = 1, . . . , h}, where all sets
have the same cardinality 	, 1 ≤ 	 ≤ d, and |X | ≥ h

d(d2+1) . To this end, we first

select a maximal set I ⊂ [h] for which {xi : i ∈ I} is 2-independent. Then we
take X ⊂ XI = {Xi : i ∈ I} to be a subfamily containing only the sets with the most
frequent cardinality in XI . Since XI is a disjoint family with |I| nonempty sets, it is
clear that

(28) |X | ≥ |I|
d
≥ h

d(d2 + 1)
.

We thus have a disjoint family X of 	-sets in V (G)\VJ such that for every X ∈ X ,

|G∩(X) ∩ VJ | < 2
(p
4

)� n

4d2
<

(p
4

)�

|VJ |.

Since w ∈ G∩(X) iff X ⊂ G(w), we obtain

#{(w,X) ∈ VJ ×X : X ⊂ G(w)} =
∑
X∈X

|G∩(X) ∩ VJ | < (p/4)�|VJ | |X |.

Because |VJ | ≥ n
d2+1 −C �

√
n, in view of property (iii) from Lemma 6, we conclude

that |X | < √n. Therefore, by (28) we have shown that h ≤ d(d2 + 1)
√
n, which

establishes Claim 15.
Claim 16. The number of G-critical extensions before fJ is at most 2

√
n.

By the definition of G-critical extensions, if a vertex v ∈ V (G) is the cause of the
G-critical extension from, say, f� to f�+1 (	 < J), then either

(I) pn/(2d2) > |G(v) ∩ V�| > |G(v) ∩ VJ | or
(II) |I�(v)| < pdn/(4d5).
Let B be the set of all vertices v ∈ V (G) which caused G-critical extensions

before fJ because they satisfy (I). Since

(1 − ε)p |VJ | ≥ (1− ε)p
( n

d2 + 1
− C

)
>

pn

2d2
,
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every vertex v ∈ B satisfies |G(v)∩VJ | < (1−ε)p |VJ |. By property (ii) from Lemma 6
applied to A = VJ and B, we must have

|B| < 100ε−3n

p |VJ |
= O(p−1) = o(

√
n).

Now consider any set T = {v1, . . . , vt} ⊂ V (G), t ≤ C, of vertices that cause a G-
critical extension before fJ because (II) holds. We will construct a disjoint family X
and use property (iii) from Lemma 6 to show that T must have fewer than

√
n

elements. Together with the upper bound on the size of |B|, the claim follows.
For every 1 ≤ i ≤ t, let ji < J be such that fji is the first embedding in which vi

appears in the image. For such vertices, we have

pdn/(4d5) > |Iji−1(vi)|
(20)
= #{x ∈ Uji−1 : fji−1(H(x) \ Uji−1) ⊂ G(vi)}
≥ #{x ∈ UJ : fJ(H(x) \ UJ) ⊂ G(vi)},

(29)

where the last inequality follows since UJ ⊂ Uji−1 and therefore H(x) \ Uji−1 ⊂
H(x) \UJ . Moreover, we also conclude by (20) that every x ∈ UJ with H(x) \UJ = ∅
must be in Iji−1(vi). In other words, for every i,

{x ∈ UJ : H(x) \ UJ = ∅} ⊂ Iji−1(vi).

It follows that all but at most pdn/(4d5) vertices x ∈ UJ are such that H(x)\UJ �= ∅.
Next we are going to construct a disjoint family X ⊂ {fJ(H(x) \ UJ) : x ∈ UJ}

where
(a) each set has the same cardinality 	, 1 ≤ 	 ≤ d,
(b) no set in X contains an element of T , and
(c) |X | ≥ (|UJ | − pdn− td)/(2d3) > n

3d5 .
Let U ′

J ⊂ UJ be the set of all vertices x ∈ UJ for which H(x) \ UJ �= ∅ and
fJ(H(x)\UJ )∩T = ∅—equivalently, x /∈ H(f−1

J (T )). There are at most pdn/(4d5)+
|H(f−1

J (T ))| < pdn+dt vertices in UJ \U ′
J . Let U

∗
J ⊂ U ′

J be a maximal 2-independent
subset of U ′

J . Take X ⊂ X ∗ = {fJ(H(x) \ UJ) : x ∈ U∗
J} to be a family containing

all the sets having the most frequent cardinality in X ∗. Since t ≤ C = 2d3
√
n, it is

simple to check that such X is a disjoint family satisfying (a)–(c). By construction,

#{(vi, X) ∈ T ×X : X ⊂ G(vi)} ≤
t∑

i=1

#{x ∈ U∗
J : fJ(H(x) \ UJ) ⊂ G(vi)}

(29)
< pd

n

4d5
|T |

(c)

≤ 3

4
p�|T | |X |.

(30)

Since |X | �
√
n, in view of property (iii) from Lemma 6, we conclude that t = |T | <√

n. Since the number of G-critical extensions before fJ is at most |B| + |T |, the
claim is proved.

Claims 15 and 16 contradict our assumption that there were C critical extensions
before fJ thus proving the lemma.

4.1.3. Proof of the induction step. Since f0 is an empty embedding, by (19)
the graph I0 is a complete bipartite graph with classes

(
U0 = V (H), V0 = V (G)

)
.

Moreover, property (i) from Lemma 6 ensures that every vertex v ∈ V0 satisfies |G(v)∩
V0| = |G(v)| > pn/2. Consequently, the induction hypothesis holds for f0.
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Suppose that the induction hypothesis holds for f0, f1, . . . , fj−1, j ≥ 1. The
hypothesis could fail for fj either because (21) fails for some x ∈ Uj or because (22)
fails for some v ∈ Vj . Claims 17 and 18 imply that neither (21) nor (22) fails, thus
verifying the induction step.

Claim 17. There is no vertex x ∈ Uj for which (21) fails.
Suppose that there is x ∈ Uj for which (21) fails, namely, |Ij(x)| < cj(x).
Let 	, 1 ≤ 	 ≤ j, be the largest index such that f� extends f�−1 by embedding a

neighbor x∗ of x. Such index exists as otherwise x would have no embedded neighbors
and this would imply that |Ij(x)| = |Vj | > cj(x). By construction, there are only two
ways in which a vertex of V (H) is embedded. For x∗ this means that either

(a) the image of x∗ under f� was chosen using Lemma 12 or
(b) x∗ was selected as the preimage f−1

� (v) of a vertex v ∈ V (G) using Lemma 13.
In case (a), Lemma 12 (applied with x ← x∗, j ← 	 − 1) provides v ∈ I�−1(x

∗) for
which f� : x

∗ �→ v. Lemma 12 together with (23) ensures that

|I�(x′)| = |I�−1(x
′) ∩G(v)| ≥ (p/2)c�−1(x

′)

for all x′ ∈ H(x∗) ∩ U�−1.
In case (b), similarly to (a), we use Lemma 13 and (23) to ensure that |I�(x′)| =

|I�−1(x
′) ∩ G(v)| ≥ p c�−1(x

′) for all x′ ∈ H(x∗) ∩ U�−1. In particular, because x ∈
H(x∗) ∩ U�−1, the conclusions hold for x′ = x and thus in either case (a) or (b), we
have

|I�(x)| ≥
p

2
c�−1(x)

(21)

≥ 2c�(x).

Moreover, since no neighbor of x was embedded after f�, by (21) we have c�(x) =
c�+1(x) = · · · = cj(x).

In view of (23), we conclude that |Ir(x) \ Ir+1(x)| ≤ 1 for all 	 ≤ r ≤ j − 1.
Since |I�(x)| ≥ 2cj(x) and |Ij(x)| < cj(x), for some 	 < r ≤ j − 1 we have 2cj(x) −
1 ≤ |Ir(x)| < 2cj(x). Consequently, |Ir(x)|, . . . , |Ij(x)| < 2cj(x). The vertex x is
a witness that every extension between the embeddings fr, fr+1, . . . , fj is H-critical.
Indeed, during each such extension, some vertex with label smaller than x satisfied
the conditions for an H-critical extension.

Observe that

j − r ≥ |Ir(x) \ Ij(x)| = |Ir(x)| − |Ij(x)| ≥ (2cj(x) − 1)− cj(x) = cj(x)− 1.

Consequently, our assumption that x fails (21) implies that at least j−r ≥ cj(x)−1�
2d3
√
n critical extensions occurred after fr. This contradicts Lemma 14. Hence, no

such x ∈ Uj exists and the claim is proved.
Claim 18. There is no v ∈ Vj for which (22) fails.
Suppose that (22) fails to hold for fj because there is v ∈ Vj which satisfies

either |Ij(v)| < pdn/(8d5) or |G(v) ∩ Vj | < pn/(4d2).
It is clear from (24) that for every 	 ≤ j,

|I�−1(v)| ≥ |I�(v)| ≥ |I�−1(v)| − (d+ 1).

Moreover, |V�−1 \ V�| = 1 for all 	. It follows that for 	 ≤ j, we have

(31) |I�(v)| ≤ |Ij(v)|+ (d+ 1)(j − 	)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

372 DELLAMONICA, JR., KOHAYAKAWA, RÖDL, AND RUCIŃSKI

and

(32) |G(v) ∩ V�| ≤ |G(v) ∩ Vj |+ (j − 	).

Let 	 < j be the largest index for which the extension from f� to f�+1 was
normal. By the conditions for a G-critical extension, we have |I�(v)| ≥ pdn/(4d5)
and |G(v) ∩ V�| ≥ pn/(2d2). From (31) and (32), we have

j − 	 ≥ max

{
|I�(v)| − |Ij(v)|

d+ 1
, |G(v) ∩ V�| − |G(v) ∩ Vj |

}

≥ max

{
pdn/(4d5)− |Ij(v)|

d+ 1
,
pn

2d2
− |G(v) ∩ Vj |

}
.

(33)

If |Ij(v)| < pdn/(8d5) we obtain j − 	 ≥ pdn/[8d5(d + 1)] and if |G(v) ∩ Vj | <
pn/(4d2) we obtain j − 	 ≥ pn/(4d2). Either way, the fact that v fails (22) and the
definition of p imply that j − 	 > pdn/(16d6) � 2d3

√
n. By the definition of 	, at

least j−	 critical extensions occurred during the embedding process, which contradicts
Lemma 14. Therefore no such v ∈ Vj exists and the claim is established.

We have shown that the induction hypothesis must hold for fj and therefore the
proof of the induction is complete.

4.2. Phase 2. Suppose that fk is the partial embedding constructed in Phase
1. The induction hypothesis ensures that

(34) |Ik(x)| ≥ ck(x) ≥
(p
4

)d n

4d2
> d
√
n

for all x ∈ Uj and

(35) |Ik(v)| ≥ pd
n

8d5
> d
√
n

for all v ∈ Vj .
Moreover, by construction, the set Uk is 2-independent in H . Consequently, the

family F = {H(x) : x ∈ Uk} is disjoint and each set H(x) is contained in V (H) \Uk.
We claim that if there exists a perfect matching M in Ik, the extension f of fk
produced by mapping x ∈ Uk to v ∈ Ik(v) for all (x, v) ∈ M is a valid embedding
ofH intoG. The mapping f is clearly a bijection. Moreover, for every e = xy ∈ E(H),
with both x, y /∈ Uk, the mapping fk is such that {fk(x), fk(y)} ∈ E(G). For e = xy ∈
E(H) with x ∈ Uk and y /∈ Uk, we have f(x) ∈ Ik(x) = G∩(fk(H(x)))∩Vk ⊂ G(f(y))
and thus {f(x), f(y)} ∈ E(G).

It remains to show that Ik contains a perfect matching. Set m = |Uk| = |Vk|
and assume that no perfect matching exists. Hall’s theorem implies that there are
sets A ⊂ Uk and B = Vk \ Ik(A) such that |A| > |Ik(A)| = m − |B|. This condition
also implies that Ik(B) ⊂ Uk \ A and thus |Ik(B)| ≤ m − |A| < |B|. Moreover, (34)
and (35) imply that |Ik(A)|, |Ik(B)| > d

√
n and thus |A|, |B| > d

√
n.

Consider a (disjoint) subfamily X ⊂ {fk(H(x)) : x ∈ A} in which every set
has the same cardinality and |X | ≥ |A|/d >

√
n. Given the fact that |X | >

√
n

and |B| >
√
n, after applying property (iii) from Lemma 6 to X and B ⊂ Vk we

infer that there must exist a pair (w,X) ∈ B × X with X ⊂ G(w)—equivalently,
w ∈ G∩(fk(H(x))) for x ∈ A such that X = fk(H(x)). In view of (19), this means
that there is an edge in Ik connecting w ∈ B to x ∈ A. This contradicts the definition
of B and therefore Ik must contain a perfect matching.
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Algorithm 1. Embedding graphs with bounded degree—Phase 1.

Input : A graph H with n vertices and Δ(H) ≤ d and a graph G satisfying
Properties (i)-(iii) from Lemma 6.

Output: A partial embedding fk : V (H)→ V (G).
1 j ← 0 ;
2 while Uj is not 2-independent do
3 if ∃ x ∈ Uj such that |Ij(x)| < 2cj(x) then

// H-critical extension

4 pick x ∈ Uj satisfying |Ij(x)| < 2cj(x) with the smallest label ;
5 pick v ∈ Ij(x) to satisfy the conclusion of Lemma 12 ;
6 set fj+1 : x �→ v ;

7 else if ∃ v ∈ Vj such that |Ij(v)| < pdn
4d5 or |G(v) ∩ Vj | < pn

2d2 then
// G-critical extension

8 let v ∈ Vj be any such vertex ;
9 pick x ∈ Ij(v) to satisfy the conclusion of Lemma 13 ;

10 set fj+1 : x �→ v ;

11 else
// normal extension

12 let x ∈ Uj be the vertex with smallest label ;
13 pick v ∈ Ij(x) to satisfy the conclusion of Lemma 12 ;
14 set fj+1 : x �→ v ;

15 j ← j + 1 ;
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