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Abstract. We we give a polynomial time randomized algorithm that
proves that, for every integer d ≥ 3 and suitable constant C = Cd, as n→
∞, asymptotically almost all graphs with n vertices and bCn2− 1

d log
1
d nc

edges contain as subgraphs all graphs with n vertices and maximum
degree at most d.

1 Introduction

Given graphs H and G, an embedding of H into G is an injective edge-
preserving map f : V (H) → V (G), that is, for every e = {u, v} ∈ E(H),
we have f(e) = {f(u), f(v)} ∈ E(G). We shall say that a graph H is
contained in G as a subgraph if there is an embedding of H into G. Given
a family of graphs H, we say that G is universal with respect to H, or
H-universal, if every H ∈ H is contained in G as a subgraph.

The construction of sparse universal graphs for various graph families
has received a considerable amount of attention; see, e.g., [1,3,4,5,6,7,8,10]
and the references therein. One is particularly interested in (almost) tight
H-universal graphs, i.e., graphs whose number of vertices is (almost) equal
to maxH∈H |V (H)|.

Let d ∈ N be a fixed constant and let H(n, d) = {H ⊂ Kn : ∆(H) ≤
d} denote the class of (pairwise non-isomorphic) n-vertex graphs with
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maximum degree bounded by d andH(n, n; d) = {H ⊂ Kn,n : ∆(H) ≤ d}
be the corresponding class for balanced bipartite graphs.

By counting all unlabeled d-regular graphs on n vertices one can easily
show that every H(n, d)-universal graph must have

Ω(n2−2/d) (1)

edges (see [3] for details). This lower bound was almost matched by a
construction from [4], which was subsequently improved in [2] and [1].
Those constructions were designed to achieve a nearly optimal bound and
as such they did not resemble a “typical” graph with the same number of
edges. To pursue this direction, in [3], the H(n, d)-universality of random
graphs was also investigated.

For random graphs a slightly better lower bound than (1) is known.
Indeed, anyH(n, d)-universal graph must contain as a subgraph the union
of b n

d+1c vertex-disjoint copies of Kd+1, and, in particular, all but at
most d vertices must each belong to a copy of Kd+1. Therefore, recalling
the threshold for the latter property (see, e.g., [14, Theorem 3.22 (i)]),
we conclude that the expected number of edges needed for the H(n, d)-
universality of Gn,p must be

Ω
(
n2−2/(d+1)(log n)1/(

d+1
2 )
)
, (2)

a quantity bigger than (1).
We say that Gn,p possesses a property P asymptotically almost surely

(a.a.s.) if P[Gn,p ∈ P] = 1 − o(1). In [3], it was proved that for a suffi-
ciently large constant C:

– (almost spanning universality) G(1+ε)n,p is a.a.s. H(n, d)-universal if

p = Cn−
1
d log

1
d n;

– (bipartite universality) Gn,n,p is a.a.s. H(n, n, d)-universal if p =

Cn−
1
2d log

1
2d n.

Note that the first result above deals with embeddings of n-vertex graphs
into random graphs with larger vertex sets, which makes the embedding
somewhat easier. On the other hand, the second result deals with tight
universality at the cost of requiring the graphs to be bipartite and with
a less satisfactory bound.

Those results were improved by the authors in [9,11], where it was

shown that Gn,n,p is a.a.s. H(n, n, d)-universal if p = Cn−
1
d log

1
d n, and

Gn,p is a.a.s. H(n, d)-universal if p = Cn−
1
2d log

1
2d n. In this paper, mak-

ing use of an additional randomization step in the embedding algorithm



involved, we improve the latter result, by establishing a density threshold
for H(n, d)-universality of Gn,p which matches (up to the log factor) the
best previous bounds for both the bipartite tight universality and the
almost tight universality in the general case.

Theorem 1. Let d ≥ 3 be fixed and p = p(n) = C n−
1
d log

1
d n for

some sufficiently large constant C. Then the random graph Gn,p is a.a.s.
H(n, d)-universal.

Observe that there is still a gap between the lower bound (2) and the
upper bound given by Theorem 1.

Remark 1. In Theorem 1 we assume that d ≥ 3 since for d = 2 our proof
would require a few modifications. On the other hand, we feel that the
true bound is much lower. Possibly as low as (2), which, as proved by
Johannson, Kahn, and Vu [16], is also a threshold for the triangle-factor
in G(n, p). The case d = 2 will be dealt with elsewhere.

This paper is organized as follows. In the next section we describe a
randomized algorithm that seeks, for any H ∈ H(n, d) and any n-vertex
graph G, an embedding f : V (H) → V (G). Crucially, at the beginning
of our algorithm, a collection of pairwise vertex-disjoint d-cliques is sam-
pled from a certain subset of vertices of G, uniformly at random. This
randomization allows us to verify a Hall-type condition that we use to
embed the final group of vertices. This is formally stated in Lemma 4,
which is proved in the appendix (Section 5.3).

In Section 4, we prove that our algorithm succeeds with high probabil-

ity for every H ∈ H(n, d) when run on Gn,p, as long as p = Cn−
1
d log

1
d n

and C = Cd is a large enough constant. Several relevant properties of Gn,p
for such a p is singled out in Section 3.

Throughout the paper we will use the following notation. For v ∈ V ,
let G(v) denote the neighborhood of the vertex v in G. For T ⊂ V , let

G(T ) = {v ∈ V \ T : G(v) ∩ T 6= ∅} =
⋃

u∈T
G(u) \ T

denote the neighborhood of the set T in G. For T ⊂ V , let G[T ] denote
the subgraph of G induced by T .

2 The embedding

Let

ε = ε(d) =
1

100d4
(3)
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be fixed and n = n(d) be a sufficiently large integer. Given an n-vertex
graph G, set V := V (G) and let

V = V0 ∪R1 ∪ · · · ∪Rd2+2, where |Ri| = εn for all i, (4)

be a fixed partition of V .
Without loss of generality, we will assume that H is a maximal graph

from H(n, d) in the sense that adding any edge to H increases its max-
imum degree beyond d. Since in such a graph the vertices with degrees
smaller than d must form a clique, there are at most d of them.

We set X := V (H) and n := |X|, and fix an integer t = τn, where

τ = 2ε =
1

50d4
. (5)

In the embedding algorithm we will use the following procedure of pre-
processing H with a given t.

The pre-processing of H: Select vertices x1, . . . , xt ∈ X in such
a way that they all have degree d and form a 3-independent set in H,
that is every pair of distinct vertices xi, xj is at distance at least four.
(Owing to our choice of t, we may find these t vertices by a simple greedy
algorithm.) Let Si = H(xi) for all i = 1, . . . , t, and set

X0 :=
t⋃

j=1

Sj .

Note that by the 3-independence, for all i 6= j not only Si ∩ Sj = ∅, but
also there is no edge between Si and Sj in H, that is, eH(Si, Sj) = 0.

Next, consider the square H2 of the graph H obtained from H by
adding edges between all pairs of vertices at distance two. Since the max-
imum degree of H2 is at most d2, by the Hajnal–Szemerédi Theorem (see
[12]) applied to H2, there is a partition

X = X ′1 ∪X ′2 ∪ · · · ∪X ′d2+1,

such that each set X ′i, 1 ≤ i ≤ d2 + 1, is independent in H2, and thus, 2-
independent in H, and has roughly the same size, that is,

∣∣|X ′i|−|X ′j |∣∣ ≤ 1
for all i, j. (In fact, we apply here an algorithmic version from [17] (see
also [18]) which yields a polynomial time algorithm.) Finally, set

Xi = X ′i \ {x1, . . . , xt} \X0, i = 1, . . . , d2 + 1,

and Xd2+2 = {x1, . . . , xt}. Hence, we obtain a partition

X = X0 ∪X1 ∪ · · · ∪Xd2+2, (6)



where, for i = 1, . . . , d2 + 1, the sets Xi are 2-independent and

|Xi| ≥
n

d2 + 1
− 1− t(d+ 1) ≥ n

2d2
> t, (7)

while Xd2+2 is 3-independent, |Xd2+2| = t, and X0 is a (disjoint) union of
the d-element neighborhoods of the vertices in Xd2+2. (See Figure 1 for an
illustration of this partition.) The numbering of the sets X0, . . . , Xd2+2

Fig. 1. The partition of V (H)

corresponds to the order in which these sets will be embedded into a
graph G by the embedding algorithm.

Another building block of our embedding algorithm is a procedure
which, given a partial embedding fi−1 of H[X0 ∪ · · · ∪ Xi−1] into G,
constructs an auxiliary graph Ai displaying information about current
candidates among selected vertices of G for images of the vertices from
Xi.

The auxiliary graph Ai: For i = 1, . . . , d2+2 and a partial embed-
ding fi−1 : X0 ∪ · · · ∪Xi−1 → V , let Ai be a bipartite graph with classes
Xi and

Wi := V \ im(fi−1) \
d2+2⋃
j=i+1

Rj

and the edge set{
(x, v) ∈ Xi ×Wi : fi−1

(
H(x)

)
⊂ G(v)

}
. (8)

Observe that Ai(x) is the set of all vertices v ∈ Wi for which x 7→ v
is a valid extension of the embedding fi−1, while Ai(v) is the set of all
vertices x ∈ Xi for which v is a valid image.

Since the set Xi is independent, the embedding of Xi can be done
at once and it corresponds to a matching in Ai saturating Xi. (The 2-
independence of Xi’s will only be used in the analysis of the algorithm



for random-like graphs as inputs.) Note that |Wd2+2| = |Xd2+2|, while for
i ≤ d2 + 1, the set Wi is much bigger than the set Xi. Indeed,

|Wi| = n−
∑
j<i

|Xj | −
∑
j>i

|Rj | = |Xi|+
∑
j>i

(|Xj | − |Rj |) ≥ |Xi|+ εn. (9)

The embedding will be done in d2 + 2 rounds split into three phases:

– Phase 1: The sets S1, . . . , St are mapped randomly onto disjoint
cliques of G[V0].

– Phase 2: The sets Xi, i = 1, . . . , d2 + 1, are embedded, one by one,
into sets Wi.

– Phase 3: The set Xd2+2 is mapped one-to-one onto the set Wd2+2 of t
remaining vertices of G.

A potential problem for our proposed embedding scheme is that the
candidate set for a given vertex x ∈ X = V (H) may be depleted before we
have a chance to embed x. If that happens, there is no hope to complete
the embedding. Similarly, a vertex v ∈ V = V (G) may lose all of its
neighbors in the auxiliary graph as a result of an unfortunate sequence of
extensions. In other words, v can be excluded from all candidate sets and
thus cannot be used in the embedding. Since we have to use all vertices
of v ∈ V in the embedding, we must prevent this event as well. Our
algorithm incorporates two devices that help to address these problems.

Buffer vertices in G (used in Phases 2 and 3). We will make
sure that for each i = 1, . . . , d2 + 2, im(fi−1) ∩ Ri = ∅ (see line 5 of
Algorithm 1). This way the vertices of Ri will be reserved as a buffer to
help embed the set Xi, provided the sets Ri will satisfy certain properties
in G – see Section 3.)

Buffer vertices in H (used in Phase 3). Since the neighborhoods
Sj of the vertices xj from Xd2+2 are embedded during Phase 1, the sets
Ai(v) ∩ Xd2+2, v ∈ V , remain the same throughout Phase 2. This will
help to ensure the existence of a perfect matching in Ad2+2 in Phase
3, provided the random choices of f(Sj) satisfy certain properties – see
Lemma 4.

Now we present our embedding algorithm.



Algorithm 1: The embedding algorithm
Input : A graph H with n vertices and ∆(H) ≤ d and a graph G together

with a vertex partition (4).
Output: An embedding f : V (H)→ V (G) (or the algorithm fails).
// Phase 1

1 Pre-process H, obtaining a partition X = X0 ∪ · ∪Xd2+2 as in (6), where
X0 = S1 ∪ · · · ∪ St, Xd2+2 = {x1, . . . , xt}, and H(xj) = Sj , j = 1, . . . , t.

2 Randomly select from V0 a sequence of pairwise disjoint d-element sets
T1, . . . , Tt such that, for each i = 1, . . . , t, G[Ti] is a clique, with all such
sequences equiprobable.

3 Define a map f0 : X0 →
⋃t

i=1 Ti in such a way that f0(Si) = Ti for each
i = 1, . . . t.
// Phase 2

4 for i = 1 to i = d2 + 1 do

5 Set Wi = V \ im(fi−1) \
d2+2⋃
j=i+1

Rj ;

6 Construct the auxiliary bipartite graph Ai between the sets Xi and Wi,
and find therein a matching Mi of size |Mi| = |Xi|.

7 Define the extension fi of fi−1 by setting fi(x) = v for all x ∈ Xi, where
(x, v) ∈Mi, and fi(x) = fi−1(x) for all x ∈ X0 ∪ · · · ∪Xi−1.

// Phase 3

8 Set Wd2+2 = V \ im(fd2+1) (⊃ Rd2+2).
9 Construct the auxiliary bipartite graph Ad2+2 between sets Xd2+2 and Wd2+2,

and find therein a perfect matching Md2+2.
10 Define the output embedding f by setting f(x) = v for all x ∈ Xd2+2, where

(x, v) ∈Md2+2, and f(x) = fd2+1(x) for all x ∈ X \Xd2+2.

This algorithm finds a desired embedding of H into G as long as it is
successful in lines 2, 6 and 9. The sets Si are embedded into V0 by uni-
formly sampling a sequence of pairwise disjoint d-subsets T1, . . . , Tt ⊂ V0
such that every set Ti induces a clique in G. Thus, one (trivial) necessary
condition for the success of the algorithm is that G contains at least t dis-
joint cliques Kd. Notice that the map f0 is an embedding, since the edges
within Si are clearly preserved (G[Ti] is a clique), while eH(Si, Sj) = 0
holds for all j 6= i by construction.

Two more demanding conditions are that the auxiliary bipartite graphs
Ai from lines 6 and 9 do possess the required matchings. Superficially, we
could have combined the last two phases by including round d2 + 2 into
the loop, however we chose not to do so, because of the much more in-
volved analysis of the last round. Indeed, it is a lot harder to prove the
existence of a perfect matching in Ad2+2 than the existence of a matching
saturating one side of Ai when the other side is much bigger.



It is worth pointing out that the success of Phase 3 relies entirely on
the (random) outcome of Phase 1. The algorithm’s goal in Phase 3 is to
find a perfect matching in the auxiliary bipartite graph Ad2+2 (which has
classes Xd2+2 and Wd2+2). Recall that the neighborhoods Sj = H(xj) of
the vertices xj ∈ Xd2+2 are completely embedded in Phase 1. Since fd2+1

is an extension of f0, for each xj ∈ Xd2+2 we have fd2+1(Sj) = f0(Sj) =
Tj . This implies that for every v ∈ Wd2+2, by definition, {xj , v} ∈ Ad2+2

if and only Tj ⊂ G(v) if and only if {xj , v} ∈ A1. Thus,

Ad2+2 = A1[Xd2+2 ∪Wd2+2]. (10)

This observation will be utilized in the analysis of Algorithm 1 in Sec-
tion 4.

3 Random graphs

In this section we show that a random graph Gn,p with p = p(n) as
in Theorem 1 a.a.s. satisfies several properties with respect to the dis-
tribution of edges and cliques. These properties are selected in order to
jointly guarantee tight H(n, d)-universality. More specifically, in Section 4
we will show that Algorithm 1 is a.a.s. successful on all pairs of input
graphs (H,G), where H ∈ H(n, d) and G satisfies all these properties.
But first we need some more notation.

– Given a graph G, V (G) = V , and a subset of vertices U ⊂ V , denote
by (

U

Kd

)
the family of all d-element sets T ⊂ V such that the subgraph of G
induced by T is complete, that is, G[T ] ∼= Kd.

– Given a family X = {J1, . . . , Jr} of pairwise disjoint subsets of V and
a set U ⊂ V , let B = B(X , U) be a bipartite graph with vertex classes
X and UX := U \

⋃r
i=1 Ji, where an edge (Ji, v) is included whenever

G(v) ⊃ Ji. Furthermore, let

α(X , U) = |{v ∈ UX : degB(v) ≥ 1}|.

If all sets Ji are singletons, then we write B(Y,U) instead of B(X , U)
and α(Y,U) instead of α(X , U), where Y =

⋃
Ji. Note that in this

special case α(Y,U) = |G(Y ) ∩ U |.
– We write a = (1± δ)b whenever (1− δ)b ≤ a ≤ (1 + δ)b.



– Set
ω = C log n. (11)

Let ε = ε(d) > 0 be as in (3). Set V = [n] and fix a partition

V = V0 ∪R1 ∪ · · · ∪Rd2+2

satisfying (4). By (3),

|V0| = n− (d2 + 2)εn ≥ 3n

4
. (12)

The following lemma, proved in the appendix (Section 5.1), summarizes
several relevant properties of Gn,p.

Lemma 1. For every δ > 0, there exists C > 0 such that the random
graph G = Gn,p with p ≥ Cn−1/d log1/d n a.a.s. satisfies Properties (I)–
(V) below.

(I) (a) For all y ∈ V ,

|G(y) ∩ V0| = (1 + o(1))p|V0|.

(b) For all y 6= y′ ∈ V ,

|G(y) ∩G(y′) ∩ V0| = (1 + o(1))p2|V0|.

(II) (a) For all Y ⊂ V , |Y | ≤ δp−1,

|G(Y ) ∩ V0| = (1± 2δ)p |Y | |V0|. (13)

(b) For all Y ⊂ V with |Y | ≥ ωp−1 and U ⊂ V \ Y with |U | ≥ ωp−1,

|B(Y, U)| = (1± δ)p |Y | |U |. (14)

(III) (a) For all r ≤ δp−d, every family X = {J1, . . . , Jr} of pairwise dis-
joint d-subsets of V , and for every set
U ∈ {V0, R1, . . . , Rd2+2, V }, we have

α(X , U) = (1± δ)pdr |U |. (15)

(b) For all r ≥ ωp−d, every family X = {J1, . . . , Jr} of pairwise dis-
joint d-subsets of V , and U ⊂ V \

⋃r
i=1 Ji with |U | ≥ ωp−d,

|B(X , U)| = (1± δ)pdr |U |. (16)



(IV) Equation ∣∣∣∣( UKd

)∣∣∣∣ = (1± δ)p(
d
2)
(
|U |
d

)
. (17)

holds for all U ⊂ V such that

(a) U ⊂ G(v) for some v ∈ V , and |U | ≥ pn/3, or

(b) U = G(u) ∩G(v) for some distinct u, v ∈ V , or

(c) |U | ≥ |V |/4.

(V) For all v ∈ V0, the number of d-cliques in G[V0] containing vertex v
is

(1± δ) d

|V0|

∣∣∣∣(V0Kd

)∣∣∣∣.
4 The analysis of Algorithm 1

In this section we prove the following lemma that, together with Lemma 1,
implies Theorem 1.

Lemma 2. If ε and τ are as in (3) and (5), and a graph G on vertex
set V = [n] together with a partition V = R1 ∪ · · · ∪Rd2+2 ∪ V0 as in (4)
satisfy Properties (I)–(V) from Lemma 1 with δ = 0.01 and sufficiently
large C, then Algorithm 1 with input G is a.a.s. successful, that is, for
every H ∈ H(n, d) it a.a.s. outputs an embedding of H into G.

As mentioned before, Algorithm 1 is successful if it does not terminate
at lines 2, 6, or 9. To perform line 2 we need at least t disjoint d-cliques in
G[V0]. This follows from Property (IV)(c), since t ≤ 1

2dn. Lines 6 and 9
rely on the existence of saturating matchings in the auxiliary graphs Ai.
The existence of such matchings will follow from the next two lemmas. In
both, we implicitly assume that a fixed graph G satisfies Properties (I)–
(V) from Lemma 1, and that (3)–(5) hold.

Lemma 3. For i = 1, . . . , d2 + 2 and for every Q ⊂ Xi we have

|Ai(Q)| ≥ min{|Q|, |Wi| − ωp−d}. (18)

In particular, if |Wi| ≥ |Xi| + ωp−d, then |Ai(Q)| ≥ |Q| for all sets
Q ⊂ Xi.

In the next lemma the probability space corresponds to the random
choice of f0.



Lemma 4. The random embedding f0 of the sets Si, i = 1, . . . , t, is such
that a.a.s. for every set Y ⊂ V , |Y | ≤ δ(4p)−d,

|A1(Y ) ∩Xd2+2| ≥
1

2

(p
5

)d
t |Y |. (19)

The proof of Lemma 3 is given in appendix (Section 5.2), as is the
proof of Lemma 4 (Section 5.3), which is much more involved. The follow-
ing corollary of the above two lemmas completes the proof of Lemma 2.

Corollary 1. (i) For each i = 1, . . . , d2 + 1, the graph Ai has a matching
saturating set Xi. (ii) The graph Ad2+2 has a perfect matching a.a.s.

Proof. (i) Fix 1 ≤ i ≤ d2 + 1 and recall that

Wi = V \ im(fi−1) \
d2+2⋃
j=i+1

Rj

and, by (9), that |Wi| ≥ |Xi|+ εn. For C sufficiently large, we have εn ≥
C−d+1n = ωp−d. Thus, |Wi| ≥ |Xi|+ ωp−d, which, by Lemma 3, implies
that |Ai(Q)| ≥ |Q| for all Q ⊂ Xi. Consequently, by Hall’s theorem, there
is a matching in Ai covering Xi.

(ii) Set h = d2 + 2 for convenience. To prove that Ah has a.a.s. a
perfect matching, recall that, as a consequence of (10), Ah = A1[Xh∪Wh].
By Lemma 4, a.a.s. for every Y ⊂ Wh with |Y | ≤ δ(4p)−d, we have
(see (19)),

|Ah(Y )| = |A1(Y ) ∩Xh| ≥
1

2

(p
5

)d
t |Y | ≥ δ−14dω |Y |, (20)

provided C is large enough. We claim that the condition above ensures
that there is a perfect matching in Ah. Recall that |Xh| = |Wh| = t.
Let Q ⊂ Xh. If |Q| ≤ t − ωp−d then Lemma 3 implies that |Ah(Q)| ≥
|Q|. Assume then that |Q| ≥ t − ωp−d + 1 (for simplicity, we assume
that ωp−d is an integer), and suppose, for the sake of contradiction, that
|Ah(Q)| ≤ |Q| − 1, equivalently, that |Wh \ Ah(Q)| ≥ t − |Q| + 1. If
|Wh \ Ah(Q)| ≤ δ(4p)−d, take Y = Wh \ Ah(Q). Otherwise, take any
Y ⊂Wh \Ah(Q) with |Y | = δ(4p)−d. By (20),

|Ah(Y )| ≥ δ−14dω |Y | ≥ t− |Q|+ 1, (21)

where the last inequality is clear if Y = h\Ah(Q), while otherwise we ar-
gue, using the definition of Y and our assumption on |Q|, that δ−14dω |Y | =
ωp−d ≥ t−|Q|+1. Inequality (21) contradicts the fact that Ah(Y )∩Q = ∅.
Therefore, |Ah(Q)| ≥ |Q| for all Q ⊂ Xh and Hall’s condition guarantees
the existence of a perfect matching in Ah. ut
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5 Appendix

5.1 Proof of Lemma 1

Properties (I)(a) and (b) follow easily from the Chernoff bound.
(II)(a): Note that B(Y, V0) is a bipartite random graph with vertex

classes Y and V0 \ Y and edge probability p. We will establishing Prop-
erty (II)(a) by counting how many vertices of V0 \ Y are not isolated in
B(Y, V0).

For each v ∈ V0 \Y , let Iv denote the indicator random variable of the
event degB(v) ≥ 1. Set y = |Y | and notice that Iv is a Bernoulli random
variable with expectation

q = 1− (1− p)y = (1± δ) yp,

where the last equation follows from the inequality 1 + x ≤ ex, provided
p = o(1). Also notice that the variables {Iv : v ∈ V0 \ Y } are mutually
independent. Therefore the distribution of

X :=

∣∣∣∣{v ∈ V0 \ Y : degB(v) ≥ 1

}∣∣∣∣
is binomial with parameters |V0 \ Y | = (1 + o(1))|V0| and q. The expec-
tation of X is therefore

(1 + o(1))(1± δ)y|V0|p.

By the Chernoff bound, we thus have X = (1±2δ)y|V0|p with probability
at least

1− exp{−cnyp}
for some c = c(δ) > 0 (recall that |V0| ≥ 3

4n).
On the other hand, the number of choices of the set Y is less than ny.

Consequently, the probability Property (II)(a) fails for Gn,p is at most∑
y≥1

ny exp{−cnyp} = o(1)

because cnp is of a much bigger order than log n.
(II)(b): Here we are just counting the edges of the bipartite graph

B(Y,U) defined above. Setting, y = |Y | and u = |U |, the expected number
of edges in B is yup. Hence, again by the Chernoff bound, the probability
that Property (II)(b) fails for Gn,p is at most∑

y

∑
u

ny+u exp{−cyup} = o(1)



for C > 0 large enough, because yp ≥ ω and up ≥ ω.
(III)(a) and (b): These proofs go mutatis mutandis along the lines

of the proofs of (II)(a) and (II)(b), respectively. The only differences are
that the edge probability in B is pd and, in part (a), the set U , besides
V0, could also be equal to V as well as to one of the sets Ri of size εn.
Therefore, the Chernoff constant c = c(δ, ε) depends also on ε. Note that
for C large enough, cnpd = cCd log n is still sufficiently bigger than log n.

(IV): Let X := X(d,m, p) be a random variable counting the number
of copies of Kd in Gm,p for some m ≤ n and p = p(m). Let δ > 0 be a
fixed small constant. From the results of [13] and [15, Corollary 1.7], it
follows that

P
[
|X−EX| ≥ δEX

]
≤ exp

{
−c(δ, d)m2pd−1

}
, (22)

provided p ≥ m−2/(d−1).
(a): For v ∈ V , expose the random neighborhood G(v). Let us condi-

tion on |G(v)| ≤ 1.01pn (which is an event occurring with probability at
least 1 − e−Θ(pn)). For any U ⊂ G(v), m = |U | ≥ pn/3, the graph G[U ]
is an instance of Gm,p. In particular, the assumption on p is satisfied and
the bound (22) applies to the random variable X =

(
U
Kd

)
. Moreover, there

are fewer than n 21.01pn < e2pn choices for v and the set U ⊂ G(v). In
view of (22) and the fact that pn = o(m2pd−1), the union bound yields
that with probability

1− e−Θ(pn) − e2pn exp
{
−c(δ, d)m2pd−1

}
= 1− o(1)

the equation (17) holds for all v ∈ V and all U ⊂ G(v), m = |U | ≥ pn/3.
(b): For distinct u, v ∈ V , expose the random common neighborhood

U = G(u) ∩ G(v) ⊂ V . Since a.a.s. |U | = (1 + o(1))p2n, we condition
on m = |U | > 0.99p2n. As p ≥ m−2/(d−1), we apply (22) to the random
variable X =

(
U
Kd

)
. It follows by the union bound that for all choices of

distinct u, v, the set U = G(u) ∩G(v) satisfies (17).
(c): This can be established by the union bound over all large subsets

U ⊂ V using the exponential bound given by (22).
(V): By (I)(a), a.a.s. every v ∈ V is such that |G(v) ∩ V0| = (1 +

o(1))p |V0|. Hence, applying (IV)(a) to U = G(v)∩V0 with d− 1 in place
of d yields (

G(v) ∩ V0
Kd−1

)
= (1 + o(1))p(

d−1
2 )
(

(1 + o(1))p |V0|
d− 1

)
= (1 + o(1))

d

|V0|

(
V0
Kd

)
,

where for the last equality we used (IV)(c) applied to U = V0. ut



5.2 Proof of Lemma 3

Since Xi is 2-independent, the neighborhoods H(x) are disjoint for all
x ∈ Xi. Let kx = |fi−1(H(x))|. To unify our approach, for each x with
kx < d we find a set Dx ⊂ im(fi−1) such that fi−1(H(x)) ⊂ Dx and all
Dx are pairwise disjoint. Define a subgraph A∗i ⊂ Ai by replacing H(x)
with Dx in (8), that is

A∗i =
{

(x, v) : fi−1
(
Dx

)
⊂ G(v)

}
. (23)

Clearly, for every Q ⊂ Xi we have |Ai(Q)| ≥ |A∗i (Q)|, and so, it suffices
to prove (18) for A∗i . For the ease of notation we will write Ai instead of
A∗i .

The proof is split into two cases according to whether Q is small
(|Q| ≤ ωp−d) or large (|Q| > ωp−d). First consider the case when Q is
small, and let Q′ ⊂ Q be an arbitrary subset with

|Q′| = min
{
δp−d, |Q|

}
≥ δ|Q|

ω
. (24)

Notice that

|Ai(Q′)| ≥ |Ai(Q′) ∩Ri| =
∣∣{w ∈ Ri : G(w) ⊃ fi−1(Dx) for some x ∈ Q′

}∣∣.
(25)

Applying Property (III)(a) to X = {fi−1(Dx) : x ∈ Q′} and U = Ri
yields that the cardinality of the last set in the above inequality is at least
(1− 2δ)pd|Ri| |Q′|. In particular, for C large enough, we have

|Ai(Q)| ≥ |Ai(Q′)|
(4)

≥ (1− 2δ)εpdn |Q′| ≥ δ−1ω |Q′| ≥ |Q|.

Consequently, (18) holds when Q is small.
When Q is large, that is, |Q| > ωp−d set U = Wi \Ai(Q) and suppose

that |U | ≥ ωp−d. Then, by Property (III)(b), there is an edge in Ai
between Q and U , a contradiction. Thus |U | < ωp−d which establishes
(18). ut

5.3 Proof of Lemma 4

Our goal is to prove that a.a.s. the random embedding f0 satisfies (19)
for all Y ⊂ V with |Y | ≤ δ(4p)−d. Recall that the images f0(Si) are
created by randomly selecting from V0 pairwise disjoint d-sets κ1, . . . , κt,
each inducing a clique in G, and then define f0 in any way that satisfies



f0(Si) = κi for all i. Let Ω be the space of all possible sequences κ =(
κ1, . . . , κt

)
. A sequence κ is sampled from Ω by first selecting a d-set

κ1 uniformly from
(
V0
Kd

)
, and selecting each subsequent κi, i = 2, . . . , t,

uniformly from (
V0 \

⋃i−1
j=1 κi

Kd

)
.

Fix

m ≤ δ(4p)−d (26)

and set

α = p(
d
2) and M = mα

(
pn/4

d

)
. (27)

From now on we will focus on a fixed set

Y ⊂ V with |Y | = m, (28)

and define a random variable CY = |A1(Y ) ∩Xd2+2|. Observe that

CY
(8)
=
∣∣{xi : f0(H(xi)) ⊂ G(y) for some y ∈ Y

}∣∣
=
∣∣{i ∈ [t] : κi ⊂ G(y) for some y ∈ Y }

∣∣. (29)

We will ultimately show that in the random model described above,
the inequality

CY ≥
1

2

(p
5

)d
tm (30)

fails with such a small probability that the union bound can be applied
over all possible choices for Y still yielding a failure probability o(1).
Consequently, a.a.s. (19) will hold for all choices of Y and thus Lemma 4
will follow.

In view of (30), we are interested in estimating how many d-sets κi
are contained in the neighborhood G(y) of some y ∈ Y . To this end, we
introduce two families of d-cliques. For each i = 1, . . . , t, given disjoint
d-cliques κ1, . . . , κi−1, define

FY (κ1, . . . , κi−1) =
⋃
y∈Y

(
(G(y) ∩ V0) \

⋃i−1
j=1 κj

Kd

)
. (31)

Note that

CY =
t∑
i=1

1[κi ∈ FY (κ1, . . . , κi−1)].



Now, define a family AY (κ1, . . . , κi−1) as follows. Let

N = |FY (κ1, . . . , κi−1)|.

If N ≥ M then set AY (κ1, . . . , κi−1) = FY (κ1, . . . , κi−1), otherwise let
AY (κ1, . . . , κi−1) be an enlargement of the family FY (κ1, . . . , κi−1) with
exactly M elements, each being a vertex set of a copy of Kd—for con-
creteness we can select the M − N lexicographically smallest4 elements
from (

V0 \
⋃i−1
j=1 κi

Kd

)
\ FY (κ1, . . . , κi−1).

Observe that because of Property (IV)(c), our choice of t in (5), and by
(26) and (27),∣∣∣∣(V0 \⋃i−1

j=1 κi

Kd

)∣∣∣∣ ≥ (1− δ)α
(∣∣V0 \⋃i−1

j=1 κi
∣∣

d

)
> α

(
n/2

d

)
> α

(n/4)d

d!

= αp−d
(pn/4)d

d!

(26)
> δ−1α4dm

(
pn/4

d

)
(27)
> M.

(32)

Consequently, we can always construct a family AY (κ1, . . . , κi−1).
Unlike the families FY (κ1, . . . , κi−1), the families AY (κ1, . . . , κi−1)

have a uniform lower bound of M for their cardinalities. Thus, we are
in position to use Proposition 1 in our analysis of AY (κ1, . . . , κi−1). In
Claim 5.3 below we will show that a.a.s.AY (κ1, . . . , κi−1) = FY (κ1, . . . , κi−1)
for all Y , which will allow us to apply the conclusions of that analysis to
F .

Let
Ai = 1[κi ∈ AY (κ1, . . . , κi−1)].

Notice that, again by Property (IV)(c),

P[Ai = 1 | κ1, . . . , κi−1] =
AY (κ1, . . . , κi−1)(V0\⋃i−1

j=1 κi
Kd

) ≥ M

(1 + δ)α
(
n
d

) > m
(p

5

)d
.

Since a sequence of d-sets (κ1, . . . , κi−1) determines the values of A1, . . . ,Ai−1,
the above inequality implies that for all i = 1, . . . , t,

P[Ai = 1 | A1,A2, . . . ,Ai−1] ≥ q1, where q1 = q1(m) := m
(p

5

)d
.

(33)

4 Recall that the vertex set V = [n] has a natural linear order.



Let A =
∑t

i=1Ai. Proposition 1(a) from Section 5.4 implies that

P[A ≤ tq1/2] ≤ exp{−c1tq1} (34)

for some constant c1 > 0.

Define Z = G(Y ) ∩ V0 and let s = |Z|. Note that κi might inter-
sect Z and not be contained in AY (κ1, . . . , κi−1). Since the κi’s must be
disjoint, this might effectively reduce the number of choices for κi+1 in
AY (κ1, . . . , κi).

To deal with this potential difficulty we introduce another random
variable B to keep track of how many vertices of Z are “consumed” by
the sequence κ. Let

Bi = 1[κi ∩ Z 6= ∅]

and

B =
t∑
i=1

Bi.

By Property (V) it follows that

P[Bi = 1 | B1, . . . ,Bi−1] ≤ (1 + δ)
ds

|V0|

∣∣∣∣(V0Kd

)∣∣∣∣ · ∣∣∣∣(V0 \⋃i−1
j=1 κi

Kd

)∣∣∣∣−1. (35)

Note that

|V0 \
i−1⋃
j=1

κi| = |V0| − (i− 1)d > |V0| − td.

By our choice of τ , using the Bernoulli inequality, we may ensure that(
1− td

|V0|

)d
≥ 1− 8

3d2
≥ 19

27

as d ≥ 3. Thus, applying Property (IV)(c) to both, V0 and V0 \
⋃i−1
j=1 κi,

we conclude that the R-H-S of (35) is at most

(1 + δ)ds|V0|d

|V0|(|V0| − td)d
= (1+δ)

ds

|V0|

(
1− td

|V0|

)−d
≤ (1+ δ)

4ds

3n

27

19
<

2ds

n
:= q2,

for δ small enough. Consequently, Proposition 1(b) from Section 5.4 im-
plies that

P[B > 3dst/n] ≤ exp{−c2dst/n} (36)



for a constant c2 > 0. By (34) and (36)

P[A ≤ tq1/2 or B > 3dst/n] ≤ exp{−c1tq1}+ exp{−c2dst/n}. (37)

As it follows from the next (deterministic) claim, the second term on the
R-H-S of (37) is much smaller than the first one.

Claim.

q1n = o(s)

Proof. First consider the case when m = |Y | ≤ ωp−1. Let Y ′ ⊂ Y be
an arbitrary set of size |Y ′| = min{m, δ/p}. Observe that |Y ′| > δm

ω . By
Property (II)(a) applied to Y ′ we have

s ≥ |G(Y ′) ∩ V0| ≥ (1− 2δ)p |V0| |Y ′|

>
pn |Y ′|

2
≥ δpnm

2ω
�
(p

5

)d
mn = q1n.

Hence, if m ≤ ωp−1, it follows that q1n = o(s).

Now suppose that m = |Y | ≥ ωp−1 and let U = V0 \ (G(Y ) ∪ Y ). As
B(Y,U) = ∅, in order not to contradict Property (II)(b), we must have
|U | < ωp−1 = o(n). Since |U | ≥ |V0| − |Z| − |Y |, by (26),

s = |Z| ≥ |V0| −m− ωp−1 = Θ(n),

for C large enough. On the other hand, q1 = m(p/5)d ≤ (5dω)−1 = o(1).
Hence, again, q1n = o(s). ut

As a consequence of the above claim and (37),

P[A ≤ tq1/2 or B > 3dst/n] ≤ 2 exp{−c1tq1}. (38)

Our next deterministic claim shows that when B is small, the families
AY (κ1, . . . , κi−1) and FY (κ1, . . . , κi−1) coincide.

Claim. Suppose that κ = (κ1, . . . , κt) ∈ Ω is such that B = B(κ) ≤
3dst/n. Then

AY (κ1, . . . , κi−1) = FY (κ1, . . . , κi−1) for all i = 0, 1, . . . , t. (39)

In particular, there are A = A(κ) indices i1, . . . , iA ∈ [t] such that for
each j = 1, . . . ,A, we have κij ⊂ G(yj) for some yj ∈ Y .



Proof. Let W = Z ∩
⋃t
i=1 κi and observe that |W | ≤ td as well as

|W | ≤ Bd ≤ 3d2
st

n
. (40)

Let
Y ′ = {y ∈ Y : |G(y) ∩W | ≥ pn/3}.

We will now prove that

|Y ′| ≤ 4

pn
|W |. (41)

Let Ỹ ⊂ Y ′ be an arbitrary set with

|Ỹ | = min{|Y ′|, δ/p}. (42)

Set
T = {w ∈W : |G(w) ∩ Ỹ | ≥ 2}

and observe that by Properties (II)(a) and (b), and the definition of T ,

(1− 2δ)p |Ỹ | |V0| ≤ |G(Ỹ ) ∩ V0| ≤ |T |+ e(Ỹ , V0 \ T )

≤ e(Ỹ , V0)− e(Ỹ , T ) + |T |
≤ (1 + 2δ)p |Ỹ | |V0| − e(Ỹ , T )/2.

(43)

It follows that e(Ỹ , T ) ≤ 4δpn |Ỹ |. Since every vertex v ∈ Ỹ has at least
pn/3 neighbors in W ,

|W | ≥ |Ỹ | pn
(1

3
− 4δ

)
≥ pn

4
|Ỹ | (44)

and consequently, due to our choice of τ ,

|Ỹ | ≤ 4

pn
|W |≤ 4

pn
td < δ/p.

From the definition of Ỹ (see (42)) we thus have Ỹ = Y ′, and (41) follows
immediately from (44).

By (41) and (40),

|Y ′|
(41)

≤ 4

pn
|W |

(40)

≤ 4

pn
× d3 st

n
=

s

2pn
× (8d3τ).

On the other hand, by Property (II)(a), for every y ∈ Y ′

|G(y) ∩ V0| ≤ (1 + 2δ)p |V0| < 2pn



and thus

s = |G(Y ) ∩ V0| ≤ 2pnm.

Consequently,

|Y ′| ≤ 8d3τm. (45)

We are now ready to conclude the proof of Claim 5.3. Recall that

m = |Y | ≤ δ(4p)−d, |V0| ≥ 3
4n, and α = p(

d
2). By (31) and the Bonferroni

inequality, for every i,

N := |FY (κ1, . . . , κi−1)| ≥
∣∣∣∣ ⋃
y∈Y

(
(G(y) ∩ V0) \W

Kd

)∣∣∣∣∣
≥
∑
y∈Y

∣∣∣∣((G(y) ∩ V0) \W
Kd

)∣∣∣∣− ∑
y 6=y′∈Y

∣∣∣∣((G(y) ∩G(y′) ∩ V0) \W
Kd

)∣∣∣∣
≥

∑
y∈Y \Y ′

∣∣∣∣((G(y) ∩ V0) \W
Kd

)∣∣∣∣− ∑
y 6=y′∈Y

∣∣∣∣(G(y) ∩G(y′) ∩ V0
Kd

)∣∣∣∣.
For y ∈ Y \ Y ′, Property (I)(a) yields that

|(G(y)∩V0)\W | = |G(y)∩V0|−|G(y)∩W | ≥ (1+o(1))p |V0|−pn/3 > pn/3.

while for y 6= y′ ∈ Y , Property (I)(b) yields that

|G(y) ∩G(y′) ∩ V0| = (1 + o(1)p2|V0| < p2n.

Moreover, by (45) and (5),

|Y \ Y ′| ≥ (1− 8d3τ)m ≥ 1

2
m.

Consequently, by Properties (IV)(a) and (b), and by (26), we obtain

N ≥ (1 + o(1))

{
m

2
α

(
pn/3

d

)
−
(
m

2

)
α

(
p2n

d

)}
≥ (1 + o(1))

mα

2d!

{
(pn/3)d − (mpd)(pn)d

}
> mα

(
pn/4

d

)
= M.

(46)

It follows from the definition of AY (κ1, . . . , κi) and (46) that (39)
holds. Thus, by definition, there are A indices i1, . . . , iA such that κij ∈



AY (κ1, . . . , κij−1) for all j = 1, . . . ,A. Because of (39) and (31), for each
j = 1, . . . ,A, we have

κij ∈ FY (κ1, . . . , κij−1) ⊂
⋃
y∈Y

(
G(y)

Kd

)
.

Hence, κij ⊂ G(yj) for some yj ∈ Y . Therefore the claim is proved. ut

In view of (38), with probability at least 1− 2 exp{−c1tq1}, we have
A ≥ tq/2 and B ≤ 3dst/n. Hence, by our last claim, with such a prob-
ability, the number of sets κi = f(Si) contained in some neighborhood
G(y), y ∈ Y , is

A ≥ tq1
2

(33)
=

tm

2

(p
5

)d
.

In other words, with probability at least 1 − 2 exp{−c1tq1} the random
embedding f0 satisfies (30) for a fixed set Y (see (28)). We will now finish
the proof of Lemma 4 by using the union bound.

For a fixed m ≤ δ(4p)−d, the probability that there is some Y ⊂ V ,
|Y | = m, which fails to satisfy (19) is at most(

n

m

)
2 exp{−c3tmpd} ≤ 2 exp{m(log n− c3εCd)}≤2n−2, (47)

for C large enough, where c3 = c1/3
d. Hence, the probability that (30)

fails for some Y with |Y | = m ≤ δ(4p)−d = o(n) is o(n × n−2) = o(1).
This completes the proof of Lemma 4.

5.4 A probabilistic lemma

Here we prove an auxiliary probabilistic lemma needed for the proof of
Lemma 4.

Proposition 1. Let X1, . . . ,Xt be a sequence of Bernoulli random vari-
ables, X =

∑t
i=1Xi, δ > 0, and q1, q2 ∈ [0, 1].

(a) If for all i = 1, . . . , t

P[Xi = 1 | X1, . . . ,Xi−1] ≥ q1,

then
P[X ≤ (1− δ)tq] ≤ exp{−c1tq1} (48)

for some c1 = c1(δ) > 0.



(b) If for all i = 1, . . . , t

P[Xi = 1 | X1, . . . ,Xi−1] ≤ q2,

then
P[X ≥ (1 + δ)tq] ≤ exp{−c2tq2} (49)

for some c2 = c2(δ) > 0.

Proof. Let Y1, . . . ,Yt be i.i.d. random variables with uniform distribution
over the unit interval [0, 1]. In addition, we assume that Y1, . . . ,Yt are
jointly independent of X1, . . . ,Xt. For any 2 ≤ k ≤ t and (b1, . . . , bk−1) ∈
{0, 1}k−1, denote

p(b1, . . . , bk−1) = P[Xk = 1 | X1 = b1, . . . ,Xk−1 = bk−1].

(For completeness, define p(λ) = P[X1 = 1], where λ is the empty string.)
Notice that p(·) ≥ q1 by assumption (a) and p(·) ≤ q2 by assumption (b).

To prove part (a), for each 1 ≤ k ≤ t set

Zk = 1[Xk = 1] · 1[Yk ≤ q1/p(X1, . . . ,Xk−1)].

It is clear that Zk ≤ Xk for every k. Moreover, we claim that

P[Zk = 1 | Z1, . . . ,Zk−1] = q1. (50)

Indeed, since Z1, . . . ,Zk−1 are determined by {Xi,Yi : 1 ≤ i ≤ k − 1}
and Y1, . . . ,Yt are independent, it is enough to prove that

P[Zk = 1 | X1, . . . ,Xk−1] = q1.

For a fixed b ∈ {0, 1}k−1, denoting E = {X1 = b1, . . . ,Xk−1 = bk−1}, we
have

P[Zk = 1 | E ] = p(b1, . . . , bk−1) ·P[Yk ≤ q1/p(b1, . . . , bk−1)] = q1, (51)

which proves (50). Note that equation (50) implies that Z1, . . . ,Zt are
i.i.d. 0-1 random variables, and consequently, Z =

∑t
k=1 Zk is a binomial

random variable with parameters t and q1 and such that Z ≤ X. Inequality
(48) is derived from the Chernoff bound applied to Z.

To establish part (b) one defines the variables Zk by

Zk = 1

[
Xk = 1 or Yk ≥

1− q2
1− p(X1, . . . ,Xk−1)

]
and shows an analog of (50). Consequently, Z =

∑t
k=1 Zk is a binomial

random variable with parameters t and q2 and such that Z ≥ X. Inequality
(49) follows, again, by the Chernoff bound applied to Z.
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