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Abstract. In this paper we survey recent results on Ramsey properties of random
graphs and their deterministic consequences and counterparts. In addition to that, we

present two proofs (one for complete graphs and one in general case) of the following
result.

Theorem. For every graph G which is not a star forest there exists a constant c > 0

such that if p = cn−1/m
(2)
G , where m

(2)
G = maxH⊆G,vH>2

eH−1
vH−2

, then

lim
n→∞

P (K(n, p) → (G)22) = 0 .

The corresponding upper bound, establishing the existence of C > 0 such that

lim
n→∞

P (K(n, p) → (G)22) = 1 whenever p = Cn−1/m
(2)
G ,

is proved elsewhere.

1.Introduction. Applications of probabilistic methods to Ramsey theory begun

with the seminal paper of Erdős [Er 47], long before the theory of random graphs

was born. The probabilistic method introduced in [Er 47] in order to set a lower

bound on Ramsey numbers was already formulated in terms of a random graph.

Over the years, random graphs have become a powerful tool in Ramsey theory, and

the theory of random graphs itself has bloomed rapidly. While many graph theoretic

concepts have been studied in the probability context , no paper focused directly

on investigating Ramsey properties of random graphs. The excellent monograph

on random graphs [Bo 85] contains entire chapter devoted to the applications to
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by grant KBN 2 1087 9101

Typeset by AMS-TEX

1
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Ramsey theory, but the question about Ramsey properties of random graphs in not

raised there. Perhaps the first paper that includes both these aspects is [FR 86].

Already in the seventies, E. Szemerédi and the authors of [FR 86] observed that

random graphs with n vertices and cn3/2 edges can, after certain deletions, serve

as examples of K4-free graphs that arrow K3 and have reasonably few vertices (see

Section 4 for more on this subject). On their way they proved the following result.

Let K(n, p) be the binomial random graph obtained from the complete graph Kn

by independent deletion of edges, each with probability 1− p. The standard arrow

notation F → (G)ir, i = 1, 2, means that for every r-coloring of the vertices (i = 1)

or edges (i = 2) of the graph F there is a subgraph of F isomorphic to G such that

all its vertices (edges) are colored by the same color.

Theorem 1a. There exists a constant C such that if p = p(n) = Cn−1/2 then

lim
n→∞

P (K(n, p) → (K3)22) = 1 .

This is the best possible in the sense that, as proved in [ LRV 92],

Theorem 1b. There is a constant c such that if p = p(n) = cn−1/2 then

lim
n→∞

P (K(n, p) → (K3)22) = 0 .

Such a sharp threshold behavior is a typical feature of random graphs.

A systematic treatment of Ramsey properties of random graphs appears first in

[ LRV 92]. In fact, it started back in 1986 after H. Lefmann coined that kind of

question in a discussion with B. Voigt and the second author. The first goal was

to find the threshold for the property K(n, p) → (G)1r. It was already known that

if p = p(n) goes to zero slower than n−1/mG , where mG = maxH⊆G
eH
vH

(here and

throughout the paper eG and vG stand for the number of edges and vertices of a

graph G) then almost surely (=with probability approaching 1 as n → ∞) there is

at least one copy of G in K(n, p) (see [Bo 81]). But to enjoy the Ramsey property,

K(n, p) needs to contain at least about n copies of G. What order of p gives that?
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It is not hard to see that when p = n−1/m
(1)
G , where m

(1)
G = maxH⊆G,vH≥2

eH
vH−1 ,

then the expected number of copies of every subgraph of G is of order at least n.

And indeed, this turned out to be the right threshold. A matching is a graph whose

edges are pairwise disjoint.

Theorem 2 [ LRV 92]. For every graph G which is not a matching and for every

integer r there are constants CG and cG such that

(a) lim
n→∞

P (K(n,CGn
−1/m

(1)
G ) → (G)1r) = 1

and

(b) lim
n→∞

P (K(n, cGn
−1/m

(1)
G ) → (G)1r) = 0 .

The proof of a strenghening of part (b) in a special case can be found in Section

2 below. A one-line proof of part (a) relies on the exponential bound from [J LR

90, p.75]:

P (K(n, p) ̸⊃ G) ≤ exp{−cϕn(G)} ,

for some c > 0, where ϕn(G) = minH⊆G Exp(XH), the expected number of the

“least likely” subgraph of G. (Here and throughout the paper XH stands for the

number of copies of H in K(n, p).) In our case ϕn(G) is of the order of n and,

noticing that each color class is G-free, we have

P (K(n, p) ̸→ (G)1r) < 2nP (K(n/r, p) ̸⊃ G) < 2ne−C′n = o(1) ,

for CG big enough, where C ′ is a function of CG.

In the edge coloring case, a reasonable prediction was that the threshold should

be when the number of copies of the “least likely” subgraphs of G in K(n, p) reaches

the order of magnitude of the number of edges in K(n, p). This happens exactly

when p = p(n) = n−1/m
(2)
G , where m

(2)
G = maxH⊆G,vH≥3

eH−1
vH−2 .

Recently we proved
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Theorem 3. For every graph G which is not a star forest, there exist constants

CG and cG such that

(a) lim
n→∞

P (K(n,CGn
−1/m

(2)
G ) → (G)22) = 1

and

(b) lim
n→∞

P (K(n, cGn
−1/m

(2)
G ) → (G)22) = 0 .

It is expected that the same threshold holds for an arbitrary number of colors.

This is already confirmed in case of triangles (see [RR 94]).

The aim of this paper is to give a proof of part (b) of Theorem 3. The proof of

part (a), which has a different flavor and is based on Szemerédi’s regularity lemma,

will appear elsewhere ([RR **]). For a class of graphs including complete graphs a

strengthening of part (b) of Theorem 2 leads to a short proof of Theorem 3b. This

will be shown in Section 2. Section 3 contains the proof of general case.

In addition to that, in Section 4 we discuss deterministic consequences of our

results with respect to local and global densities of Ramsey graphs.

2. Lower Bound For Complete Graphs.

Here we prove part (b) of Theorem 3 for complete graphs Kk, k ≥ 4, only.

However, the same method can be applied to all graphs G for which m
(2)
G is attained

by a subgraph H with a vertex of degree vH in H. Let us introduce a simplified

notation K(n, p) → k for K(n, p) → (Kk)22 and K(n, p)
v→ k for K(n, p) → (Kk)12.

For complete graphs, Theorem 3b reads as follows.

Proposition 1. For each k ≥ 3 there exists c > 0 such that if p = cn− 2
k+1 then

lim
n→∞

P (K(n, p) → k) = 0 .

We will heavily rely on the following lemma which is a refinement of Theorem

2b in case G = Kk.
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Lemma. For all k ≥ 3 there exists a > 0 such that if p = an− 2
k then

P (K(n, p)
v→ k) = O(n− k+2

k ) .

We shall prove the lemma at the end of this section.

Proof of Proposition 1.

For k = 3 Proposition 1 was already proved in [ LRV 92], so throughout the proof

we assume that k ≥ 4.

For ε > 0, by Chernoff’s inequality, a fixed vertex of K(n, p) has degree within

the range (1±ε)cn
k−1
k+1 , with probability 1−o( 1

n ). Denote by N(v) the graph spanned

in K(n, p) by the neighbors of v and call v bad if N(v)
v→ (k − 1) and call it good

otherwise. The expected number of bad vertices is nP (N(1)
v→ k − 1). Observe

that a typical neighborhood is itself a random graph K(m, p) with m ≍ n
k−1
k+1 , and

p = p(m) ≍ m− 2
k−1 (the symbol “≍” reads “asymptotically equal up to a constant

factor”), to which our lemma can be applied with k− 1 instead of k. Conditioning

on N(1) and using the lemma, we thus obtain

P (N(1)
v→ k − 1) = o(1/n) + O((n

k−1
k+1 )−

k+1
k−1 ) = O(1/n) .

Hence, the expectation of bad vertices is O(1) and, by Markov’s inequality,

almost surely, there are less than say, log log n bad vertices in K(n, p). On the

other hand, for every ε > 0, almost surely, no subgraph H on log log n or less

vertices has its density eH
vH

bigger than k+1
2 + ε. Indeed, the expected number of

such subgraphs is

(1) O

(
log log n∑

t=1

2(t
2)ntp(

k+1
2 +ε)t

)
= o(1) .

We shall use (1) to show that almost surely the following coloring procedure colors

all the edges of K(n, p) without producing a monochromatic Kk.

Procedure: Order good vertices arbitrarily, v1, v2, . . . , vt, n− log log n ≤ t ≤ n.

We know that there exists a Kk−1-free coloring of the vertices of N(v1). Thus we

color the edges incident to v1 in the same manner, i.e. the edge {v1, u} receives the
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color of u. Suppose we have already colored all the edges incident to v1, . . . , vi. We

color the yet uncolored edges incident to vi+1 following a Kk−1-free coloring of the

vertices of N(vi+1). Our construction guaranties that none of v1, ..., vi will ever be

a part of a monochromatic Kk, and so the same can be said about vi+1. The first

phase of the procedure ends when all the edges incident to v1, . . . , vt are colored.

So far, no monochromatic Kk has been created. Moreover, we can be sure that no

matter how we will color the remaining edges, there is no danger of obtaining a

monochromatic Kk with any of the good vertices involved.

Let B be the graph spanned in K(n, p) by the bad vertices. We need to properly

color the edges of B. By (1) we know that

mB = max
H⊆B

eH
vH

≤ k + 1

2
+ ε <

1

2
(k − 1)2 ,

since k ≥ 4 and ε is arbitrarily small. Proposition 2 of section 4, with χ = k and

r = 2, completes the proof of Proposition 1. �

Proof of the Lemma. A path in a hypergraph is a sequence of edges E1, ..., Et

such that Ei∩Ej ̸= ∅ if and only if |i−j| < 2. A path is called simple if |Ei∩Ej | ≤ 1

for all i ̸= j. A hypergraph is connected if for every two vertices x ̸= y there is a

path containing x and y.

Define the hypergraph

G = ([n], {V (G) : G ⊂ K(n, p), G is a copy of Kk}) .

Properties K(n, p)
v→ k and χ(G) ≥ 3 are equivalent. Suppose that χ(G) ≥ 3

and let G0 be a 3-critical subhypergraph of G. In order to have random variables

referring to G0 well defined we may think of G0 as of the lexicographically first

3-critical subhypergraph of G. Out of several properties of G0 we shall utilize three:

(i) G0 is connected,

(ii) G0 has no cut vertex, where by a cut vertex we mean a vertex v for which

there is a partition V (G0) \ {v} = V1 ∪ V2 into two nonempty classes such

that every edge of G0 is contained in Vi ∪ {v} for some i = 1, 2,

(iii) every vertex belongs to at least two edges.



LOWER BOUNDS ON PROBABILITY THRESHOLDS FOR RAMSEY PROPERTIES 7

Our strategy is to show that the existence of G0 implies that K(n, p) contains

subgraphs whose expectation is bounded by O(n− k+2
k ).

For a hypergraph H define the cluster hypergraph clus(H) in the following way.

Let A = A(H) be an auxiliary graph whose vertices are edges of H, and two vertices

E1 and E2 are adjacent if and only if |E1 ∩E2| ≥ 2. Let C be the set of connected

components of A. Then each C ∈ C corresponds to a maximal set of edges E1, ..., Et

such that for every partition [t] = I∪J there are i ∈ I and j ∈ J with |Ei∩Ej | ≥ 2.

The unions over these sets become edges of the cluster hypergraph, i.e.

clus(H) = (V (H), {
∪

E∈V (C)

E : C ∈ C}) .

Set H = clus(G0).

Remark 1. Since every edge of G0 is contained in some edge of H, properties

(i) and (ii) of G0 are preserverd in H, whereas (iii) still holds for vertices belonging

to edges of size k, i.e. edges in the set E(H) ∩ E(G0). �

As every edge of G0 is a vertex set of a copy of Kk and every edge E of H

is a union
∪

i∈I Ei of some edges of G0, we define the underlying graph of E as

G[E] =
∪

i∈I Gi, where Ei = V (Gi). For a subhypergraph H′ the underlying graph

is defined as G[H′] =
∪

E∈H′ G[E].

Remark 2. By the definition of H, subgraphs underlying its edges are pairwise

edge-disjoint. �

Let us introduce the graph function

f(H) = vH +
k + 2

k
− 2

k
eH .

As a linear function of vH and eH , f is modular, i.e.

(2) f(H1 ∪H2) = f(H1) + f(H2) − f(H1 ∩H2) .

The function f has been defined so to take care of all “small” subgraphs of K(n, p).

This feature of f is exhibited in
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Claim 1. For every graph H,

(a) if, for at least one H ′ ⊆ H, f(H ′) ≤ 0 then P (K(n, p) ⊃ H) = O(n− k+2
k ) ,

(b) if f(H ′) > 0 for all H ′ ⊆ H then H
v

̸→ k.

Proof.

If f(H ′) ≤ 0 and H ′ ⊆ H then, recalling that XH is the number of copies of

H in K(n, p), and applying Markov’s inequality, P (XH > 0) ≤ P (XH′ > 0) ≤

Exp(XH′) = O(nvH′peH′ ) = O(nvH′− 2
k eH′ ) = O(n− k+2

k ) .

Assume that f(H ′) > 0 for all H ′ ⊆ H and consider two cases. If vH′ ≤ 2k − 2

then, trivially, eH′
vH′

≤ 1
2∆(H ′) ≤ 1

2 (2k − 3). If v′H ≥ 2k − 1 then

eH′

vH′
<

k

2
+

k + 2

2vH′
≤ k − 1 = δ(Kk),

and so mH < k−1 = δ(Kk) = maxH′⊆Kk
δ(H ′). Consequently, by [ LRV 92, Lemma

1] (see also Theorem 5 in section 4 of this paper) H
v

̸→ k. �

Thus, according to Claim 1, for every natural t, with probability 1 −O(n− k+2
k ),

every subgraph H of K(n, p) with vH < t satisfies H
v

̸→ k. Subgraphs whose size

depends on n may not satisfy the above bound on the expected number of their

copies in K(n, p) and therefore Claim 1 is not applicable to them.

Claim 2. With probability 1 −O(n− k+2
k ), for every E ∈ H, |E| ≤ 3k + 1.

Proof. Let E ∈ H and L = G[E] =
l∪

i=1

Gi where the Gi’s are copies of Kk

labeled so that for every i = 2, . . . , l E(Gi ∩ Li−1) ̸= ∅, where Li =
i∪

j=1

Gj .

If V (Li) ̸⊆ V (Li−1) then we set H = Gi ∩ Li−1, where 2 ≤ vH ≤ k − 1. As

f(H) ≥ f(Kr), where r = vH , we infer by (2) that

f(Li) = f(Li−1 ∪Gi) = f(Li−1) + f(Gi) − f(H) ≤ f(Li−1) + f(Kk) − f(Kr) .

Since, in the range 2 ≤ r ≤ k−1, f(Kr) attains minimum at r = 2, and f(K2) = 3,

f(Kk) = 2 + 2
k , we have

(3) f(Li) − f(Li−1) ≤ f(Kk) − f(K2) ≤ 2 +
2

k
− 3 = −k − 2

k
.
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Let x = |{i : V (Li) ̸⊆ V (Li−1), i = 2, ..., l}| and suppose that vL ≥ 3k + 2.

Then, since |V (Li) \ V (Li−1)| ≤ k − 2 and vL1 = k, x must be so large that

k + x(k − 2) ≥ 3k + 2, giving

(4) x ≥ 2k + 2

k − 2
.

On the other hand, if V (Li) = V (Li−1) then, by the definition of function f ,

(5) f(Li) ≤ f(Li−1) .

By (3), (4) and (5),

(6) f(L) = f(L1)+

l∑
i=2

(f(Li)−f(Li−1)) ≤ f(Kk)−x
k − 2

k
≤ 2+

2

k
− 2k + 2

k
= 0 .

We cannot apply Claim 1.a directly to L as it may grow with n. However, let i be

the smallest index for which f(Li) ≤ 0. Then

vLi ≤ k +

⌈
2k + 2

k − 2

⌉
(k − 2) ≤ 4k

and the existence of Li in K(n, p) has, by Claim 1.a, probability at most O(n− k+2
k ). �

Now we shall analyse the cyclic structure of H. We define acycle as a sequence

of edges E1, ..., Et, such that

for t = 2, |E1 ∩ E2| ≥ 2 (these will be called 2-cycles),

for t = 3, Ei−1 ∩ Ei ̸= ∅, i = 1, ..., 3 (E0 = E3), and E1 ∩ E2 ∩ E3 = ∅,

for t ≥ 4, Ei−1 ∩Ei ̸= ∅, i = 1, ..., t (E0 = Et), and Ei ∩Ej = ∅ for all |i− j| ≥ 2

(modulo t).

A set of cycles is independent if the edge set of none of them is covered by the

union of edge sets of the other cycles in the set. An edge of H is complex if its

underlying graph is not Kk. Otherwise, it is called pure.

Claim 3. With probability 1 −O(n− k+2
k ),

(a) each cycle of H contains at most d = ⌈k+2
k−2⌉ complex edges,

(b) H contains at most two independent cycles.
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Before we turn to the proof of Claim 3, let us see how Claims 1-3 complete the

proof of the Lemma. All statements below hold with probability 1 − O(n− k+2
k ).

Properties (i) and (ii) of G0 are preserved in H – see Remark 1 above. Hence, if H

is a hypertree then, by prope rty (ii), it may only have one edge and the underlying

graph G[G0]
v

̸→ k by Claims 2 and 1.b. Otherwise H has a cycle. We claim that H

is either a single cycle or a union of two independent intersecting cycles.

To see this define H0 as a subhypergraph of H which achieves the maximum in

max
H∗⊆H

{|E(H∗)| : H∗ = C1 ∪ C2} ,

where H∗ is connected and C1, C2 are independent (if there are no two independent

intersecting cycles in H we let C1 = C2 to be any cycle). Suppose that H1 =

(V (H), E(H)\E(H0)) is not empty. If there is a path P ∈ H1 with |V (P)∩V (H0)| ≥

2, then, by the connectivity of H0, H0∪P contains a cycle C3 which is not contained

in H0 = C1 ∪ C2. As Ci, i = 1, 2, 3, are not independent (Claim 3.b), two of them

must cover the third one, and without loss of generality we have C1 ∪ C3 ⊇ C2 and

hence C1 ∪ C3 ⊇ C1 ∪ C2 = H0. As C3 \ (C1 ∪ C2) ̸= ∅, we infer that |C1 ∪ C3| > |H0|

violating the choice of H0. So, if there is any edge in H1, it must intersect V (H0)

in at most one vertex, which is impossible by property (ii) of H. Thus H = C1∪C2.

It is possible that either of these cycles, or both, contains a 2-cycle. If the longer

cycle, C1 say, has at least d+ 30k + 15 edges, then by Claim 3.a it contains at least

30k + 15 pure edges and, as k ≥ 3 , each of them, except for those involved in

2-cycles, contains a vertex of degree 1 in C1. By Claim 2 and by Fact 1 below, C2

intersects C1 in at most 5b = 15k + 5 components. Let us discard all edges of C1

which are intersected by, but not contained in C2 (at most 30k + 10 edges), and

also those which are involved in a 2-cycle ( at most 4 edges). There will be still

at least one pure edge in C1 with a vertex of degree 1 in H. But then the degree

of that vertex in G0 is also 1, contradicting property (iii) of G0. Thus, the longer

cycle of H has at most d + 30k + 14 edges, and so |E(H)| ≤ 2d + 60k + 28. Hence,

the underlying graph H = G[H] = G[G0] has at most (2d + 30k + 28)(3k + 1)

vertices. Anyway, all what matters is that vH is bounded and therefore, by Claim
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1.b, H
v

̸→ k, contradicting the fact that χ(G0) = 3. �

Proof of Claim 3. Let C(L1, ..., Lt) be the number of cycles C = (E1, ..., Et) of

H such that G[Ei] = Li and |Ei| ≤ b = 3k + 1, i = 1, ..., t. Let us count how many

subgraphs of Kn underlie cycles counted here. There are at most nvL1 choices of

L1, then bnvL2
−1 choices of L2 and so on, until we reach the choice of the closing

graph Lt which can be picked in at most b2nvLt−2 ways. As each such a graph has

precisely
∑t

i=1 eLi edges (see Remark 2), we have

(7) ExpC(L1, . . . , Lt) ≤
t∏

i=1

(bnvLi
−1peLi ) = (ab)tn

∑t
i=1(f(Li)−(2+ 2

k )),

since

(8) vLi − 1 − 2

k
eLi = f(Li) − (2 +

2

k
) .

By (6) with x ≥ 1, for each complex edge E ∈ H, f(G[E]) ≤ 1+ 4
k . If E is pure then

f(G[E]) = f(Kk) = 2 + 2
k . Thus, if there are at least d complex edges among the

E1, ..., Et, then the exponent of n in (7) is not bigger than d(1+ 4
k−(2+ 2

k )) ≤ −k+2
k

and

ExpC(L1, ..., Lt) ≤ (ab)tn− k+2
k .

Let X be the number of all cycles in H with at least d complex edges and with all

edges of size not bigger than b. Furthermore, let c be the size of the family U of all

pairwise nonisomorphic graphs on up to b vertices which may underlie edges of H.

Note that c < 2(b
2). Then

P (X > 0) ≤ Exp(X) =
∑
t

∑
L1,...,Lt

ExpC(L1, ...Lt)

= O(n− k+2
k )
∑
t

(abc)t = O(n− k+2
k ) ,

for a < (bc)−1, where the inner sum extends over t-tuples of graphs from U , each

t-tuple containing at least d graphs which are not just plain Kk.

To prove part b of Claim 3 we need a couple of statements about hypergraphs.
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Fact 1. Suppose that F is a connected hypergraph with edges of size at most b,

containing at most l independent cycles. Then for any two cycles Ci = (Vi, Ei),

i = 1, 2, in F , their intersection C1 ∩ C2 = (V1 ∩ V2, E1 ∩ E2) consists of at most

(2l + 1)b connected components.

Proof. Fix an orientation of C2 and set E(C2) = {E1, ..., Et}, where the edges

are listed in the cyclical order. Call a path Q = Ei, ..., Ej , i ≤ j, good if E(Q) ⊆

E(C2) \ E(C1) and

(9) |V (Q) ∩ V (C1)| ≥ 2 ,

while neither Q′ = Ei+1, ..., Ej nor Q′′ = Ei, ..., Ej−1 satisfies (9). (Note that any

edge of C2 \ C1 intersecting V (C1) in at least 2 vertices is a good path on its own).

Suppose to the contrary that C1 ∩ C2 consists of at least (2l + 1)b + 1 connected

components. For each component K define the exit edge EK as the latest edge of C2

(in the cyclical order) satisfying EK ∩V (K) ̸= ∅ and EK ̸∈ E(K). Thus, if K is just

an isolated vertex then EK is the latest edge of C2 containing it. In fact, several

isolated vertices may have the same exit edge, but as the edges have size at most

b, there are, by the Pigeon-Hole Principle, 2l + 2 different exit edges Ei1 , ..., Ei2l+2

(listed in the cyclical order). Let us extend each Eij , j odd, to a good path Qj . By

taking every other Eij we guarantee that

(10) Eij ∈ Qj \ (Qj−2 ∪Qj+2) .

For j = 1, 3, ..., 2l + 1 there are paths Pj , E(Pj) ⊂ E(C1), such that C∗
j = Pj ∪ Qj

forms a cycle. By (10), Eij ∈ C∗
j \

∪
s̸=j,s odd C∗

s , j = 1, 3, ..., 2l + 1, and so the

cycles C∗
j , j = 1, 3, ..., 2l + 1, form a set of l + 1 independent cycles contradicting

our assumption on F . �

Definitions. For a hypergraph F , ic(F) is the largest number of independent

cycles in F . For E ∈ F , we denote by F − E the hypergraph of F obtained by

removing the edge E together with all vertices which belong only to E. We say

that F is l-minimal if F is connected and ic(F) = l but for every E ∈ F either

ic(F − E) < l or F − E is disconnected.
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Remark 3. Every connected hypergraph F with ic(F) ≥ l contains an l-

minimal subhypergraph. �

Remark 4. If F is l-minimal then there are l independent cycles C1, ..., Cl in

F such that every edge of F which lies on a cycle belongs to F0 =
∪l

i=1 Ci and

every edge of F intersects at leas t two other edges (no pendant edges). In other

words, all edges outside F0 are cut edges. When l = 2 or l = 3 the structure of

l-minimal hypergraphs can be described in a more transparent way. Namely, if

F0 is connected then F = F0. If F0 has two components then there is a simple

path P joining them and F = F0 ∪ P . (We say that a path joins two disjoint

subhypergraphs H1 and H2 if it shares exactly one vertex with each Hi, i = 1, 2,

and is minimal with this property.) Finally, if Ci, i = 1, 2, 3, are pairwise disjoint

(i.e. F0 consists of 3 components) there are two simple paths Pi, i = 1, 2, such

that, say, P1 joins C1 with C2 and P2 joins C3 with C1 ∪ C2 ∪ P1. In fact, P1 may

coincide with P2. This happens when all three cycles are connected via a single

edge. �We shall state Fact 2 in full generality, but due to the restricted range of

app lication and in order to clarify the exposition we shall prove it only in cases

l = 2 and l = 3.

Fact 2. The number of pairwise nonisomorphic l-minimal hypergraphs on v vertices

is at most Cv, for some constant C > 1.

Proof. According to Remark 4 every l-minimal hypergraph on v vertices, l ≤ 3,

can be obtained by “gluing together” at most 3 cycles Ci, i = 1, 2, 3, and at most two

paths Pi, i = 1, 2. As types of cycles and paths are dete rmined by the cardinalities

of their edges ( ranging from 3 to b ) and the car dinalities of consecutive edge-

intersections ( from 1 to b−1 ), there are at most
∑

j≤v((b−2)(b−1))j < b2v types

of cycles and at most
∑

j≤v(b− 2)j < bv types of paths on at most v vertices . In

view of Fact 1, the intersection of any two cycles consists of at most 7b components,

some of them are paths and others are isolated vertices. Each path-component is

determined by choosing the two end-edges (in at most v2 ways). This has to be

done on both “to-be-intersected” cycles. Hence, the number of nonisomorphic ways
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C1 intersects C2 on t components, s of which are isolated vertices, is bounded by

(vs+2(t−s))2 < v28b and the total number of ways C1 and C2 intersect is at most∑7b
t=0

∑t
s=0

(
t
s

)
v28b = O(v28b). Repeating the same estimates for intersections of C3

with Ci, i = 1, 2, gives the total number of types of F0 (see Remark 4) not bigger

than O(b6vv84b). Finally, in case when F0 is disconnected, we need to connect its

components by paths Pi, i = 1, 2, which brings the factor of b2vv4 as there are at

most v2 ways to “hook up” each path. (In case P1 = P2 = E, which happens when

all 3 cycles are connected via a single edge, this estimate goes down to O(v3).)

Altogether, the number of all nonisomorphic types of l-minimal hypergraphs is

bounded by O(b8vv84b+4) < Cv, for some C > 0. �

Finally, we will need

Fact 3. If a connected hypergraph F contains at least 3 independent cycles, then

|V (F)| ≤
∑
E∈F

(|E| − 1) − 2 .

Proof. Consider an auxiliary bipartite graph B with V (F) and E(F) as the two

sets of vertices, and edges representing the incidences between verti ces and edges

of F . B is connected and every cycle of F correspo nds to a cycle of B. Moreover,

every 3 independent cycles of F correspond to 3 inde pendent cycles of B, as any

“private” edge of a cycle of F becomes a “privat e” vertex of the corresponding cycle

in B. Thus the cyclomatic number of B, eB−vB+1, is at least 3 ( see [Be 73] for the

definition). However, vB = |V (F)| + |F| and eB =
∑

v∈V (F) degF (v) =
∑

E∈F |E|,

which completes the proof. �

Now we can complete the proof of Claim 3. If ic(H) ≥ 3 then H contains a

3-minimal subhypergraph (see Remark 3). Let X be the number of subgraphs

of K(n, p) underlying 3-minimal subhypergraphs of H. Let Q be the event that

every edge of H consists of at most 3k + 1 vertices. By Claim 2 we know that

P (Q) = 1 − O(n− k+2
k ). Let X ′ be defined as X with the additional restriction

that all edges are smaller than 3k + 2. Then, by Markov’s inequality we have

P (X > 0) < O(n− k+2
k ) + ExpX ′. To estimate ExpX ′ we compute the number of
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subgraphs of the complete graph Kn which may underlie subhypergraphs F of H

counted by X ′. There are no more than

(11)
∑
t

∑
F :|E(F)|=t

∑
L1,...,Lt

n|V (F)|

such subgraphs. Here we sum over all sizes t = |E(F)|, all nonisomorphic types

of F , and all choices of graphs L1, ..., Lt to “fill” the edges of F . By Fact 3,

|V (F)| ≤
∑t

i=1(vLi − 1) − 2. To obtain an upper bound on Exp(X ′) we have to

multiply (11) by p|E(G[F ])|, where the exponent, |E(G[F ])| =
∑t

i=1 eLi , is the total

number of edges in the graph G[F ] (recall Remark 2 here). As p = an− 2
k , this gives

a factor of at most a(k
2)t < at (assuming a < 1), and the exponent of n becomes by

(8)

|V (F)| − 2

k
|E(G[F ])| = −2 +

t∑
i=1

(vLi
− 1 − 2

k
eLi

) = −2 +
t∑

i=1

(f(Li) − (2 +
2

k
)) ,

which by (6) with x = 0 is not bigger than −2. Hence

Exp(X ′) ≤ n−2
∑
t

at
∑

F :|E(F)|=t

1
∑

L1,...,Lt

1 .

As vLi ≤ b = 3k + 1 for all i = 1, ..., t,
∑

L1,...,Lt
1 < 2(b

2)t. Also, by Fact 2,∑
F 1 ≤ C|V (F)| < Cbt. Summarizing, for a = a(b, C) small enough,

Exp(X ′) < n−2
∑
t

(2(b
2)Cba)t = O(n−2) = o(n− k+2

k ) . �

3.General Case.

Let G be a graph on at least 3 vertices and recall that

m
(2)
G = max

H⊆G,vH≥3

eH − 1

vH − 2
.

A star forest is an acyclic graph whose every component is a star, i.e. a graph

with at most one vertex of degree bigger than 1. In this section we shall prove the

following result.
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Theorem 3b. For every graph G which is not a star forest there is a positive

constant cG such that

lim
n→∞

Prob(K(n, cGn
−1/m

(2)
G ) → (G)22) = 0 .

If G is a star forest with maximum degree d then the above threshold coincides,

by the Pigeon-Hole Principle, with that for apperance of vertices of degree 2d − 1

and, in general, of degree r(d− 1) + 1 when r colors are used. This threshold was

already found in [ER 60] to be n− r(d−1)+1
r(d−1) . This is the only known instance when

the threshold of a Ramsey property depends on the number of colors. All other

forests contain P4, a path of length 3. It is known (see again [ER 60]) that for c < 1,

almost surely, every component of K(n, c
n ) is either a tree or a unicyclic graph and

therefore its edges can be 2-colored without producing a monochromatic P4 and

the theorem is true for forests. From now on we assume that G contains a cycle,

or equivalently, that m
(2)
G > 1. By Proposition 1, Theorem 3b is already proved

for complete graph s. In particular, we assume that G ̸= K3 and G ̸= K4. As a

further simplification we may assume without loss of generality that G is strictly

balanced, i.e. the maximum m
(2)
G is achieved only by G itself. We may do so, since

we can always replace G by its smallest subgraph H with eH−1
vH−2 = m

(2)
G . Such an H

is clearly strictly balanced. It can be easily verified that a strictly balanced graph

must have minimum degree at least 2 and that it cannot have a 2-vertex cut set

which is an edge.

With no loss of generality we may further assume that for every edge of G there

is another edge in G which is vertex-disjoint from it. We shall call graphs with this

property spacious. It is not hard to see that the only strictly balanced graph which

is not spacious is the triangle K3.

It is convenient to view the copies of G that appear in K(n, p) as edges of a

hypergraph. Set G = (X, E), where X = E(K(n, p)) and

E = {E(G′) : G′ ⊂ K(n, p) , G′ is isomorphic to G} .
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But there is a danger associated with such a representation. Namely, the vertices of

K(n, p) become invisible and so the hypergraphic picture may be very misleading.

Also, the terms “edge” or “vertex” now become ambiguous. To avoid confusion

we will be often using the term “graph edge”. To distingiush between graph and

hypergraph vertices, the latter will be called elements and the set of elements of a

hypergraph H will be denoted by X(H).

The property K(n, p) → (G)22 is equivalent to χ(G) ≥ 3. For our proof we

shall need the following elementary property of 3-edge- critical hypergraphs. A

hypergraph is 3-edge-critical if it is 3-chromatic but removal of any edge decreases

the chromatic number.

Exercise. Show that if H is a 3-edge-critical hypergraph then for every E ∈ H and

every x ∈ E there exists E′ ∈ H such that E ∩ E′ = {x}. �

To proceed we need a couple of hypergraph definitions. A path is a sequence

of edges E1, ..., Ek, k ≥ 1, with Ei ∩ Ej ̸= ∅ if and only if |i − j| ≤ 1. A cycle

is a sequence E1, ..., Ek, k ≥ 3, with Ei ∩ Ej ̸= ∅ if and only if |i − j| ≤ 1 (mod

k) and, when k = 3, E1 ∩ E2 ∩ E3 = ∅. (Note that we do not consider pairs of

edges E1, E2 with |E1 ∩ E2| ≥ 2 as cycles as we did in Section 2.) A hypergraph

(path, cycle) is called simple if no two edges intersect in more than one element. A

subhypergraph H0 of H is said to have a handle if there is an edge E in H such that

2 ≤ |E∩X(H0)| < |E|. H0 is said to have a detour if there are x, y ∈ X(H0), x ̸= y,

and a simple path D = E1, ..., Ek such that X(H0) ∩X(D) = {x, y}, x ∈ E1 \ E2

and y ∈ Ek \ Ek−1. (In case k = 1, we set E0 = E2 = ∅ .) If H0 is a union of two

disjoin cycles, one containing x and the other y, we call such a detour a bridge.

The next two definitions refer to the hypergraph G of copies of G in K(n, p). Let

C = E(G1), ..., E(Gk) be a cycle in G. Denote by Hi the graph spanned in K(n, p)

by the graph edges belonging to E(Gi) ∩ E(Gi+1), i = 1, ..., k, ( here Gk+1 = G1).

We call C normal if V (H1) ∩ ... ∩ V (Hk) = ∅ and we call it bad if it is normal,

simple and there exist i, j, i ̸= j and a vertex v belonging to V (Gi) ∩ V (Gj) but

not belonging to V (Hi−1) ∪ V (Hi) ( here H0 = Hk).
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The idea of the proof is to show that χ(G) ≥ 3 implies existence of subgraphs of

K(n, p) which, on the other hand, are almost surely not there. So, naturally, our

proof splits into a deterministic and a probabilistic part.

Deterministic Lemma. If χ(G) ≥ 3 then G contains either

(i) a normal non-simple cycle, or

(ii) a normal cycle with a handle, or

(iii) a normal cycle with a detour, or

(iv) a pair of normal cycles sharing exactly one element, or

(v) a pair of disjoint normal cycles with a bridge, or

(vi) a bad cycle, or

(vii) (in case when G = C4) K(n, p) contains a subgraph H with vH ≤ 8 and

eH > 3
2vH .

Proof. Let P = (E1, ..., Ek) be the longest simple path of G0, a 3-edge-critical

subhypergraph of G. By Exercise, k ≥ 2. Denote by ei the common element of Ei

and Ei+1, i = 1, ..., k−1 and by Gi the copy of G in K(n, p) for which E(Gi) = Ei.

Because G is spacious, there exist e0 ∈ E1 and ek ∈ Ek such that both {e0, e1}

and {ek−1, ek} are vertex-disjoint pairs of graph edges. By Exercise, there are

E′, E′′ ∈ G0 such that E′ ∩ E1 = {e0} and E′′ ∩ Ek = {ek}. Let

I ′ = {2 ≤ i ≤ k : E′ ∩ (Ei \ {ei−1}) ̸= ∅}

and

I ′′ = {1 ≤ i ≤ k − 1 : E′′ ∩ (Ei \ {ei}) ̸= ∅} .

Both I ′ and I ′′ must be nonempty since otherwise we would obtain a simple path

in G, longer than P. Let i′ = min I ′ and i′′ = max I ′′. Note that both C′ =

E1, ..., Ei′ , E
′ and C′′ = Ei′′ , ..., Ek, E

′′ are normal cycles, with the pairs {e0, e1}

and {ek−1, ek} responsible for that.

Case 1. |I ′| ≥ 2 or |I ′′| ≥ 2.

By symmetry, we assume that |I ′| ≥ 2 and set j′ = min(I ′\{i′}). If |E′∩Ei′ | ≥ 2

then C′ is a normal non-simple cycle. Otherwise, if |E′∩Ej′ | ≥ 2, we obtain a normal
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cycle with a handle, since Ej′ ̸⊂ X(C′). If E′∩Ej′ = {z}, we obtain a normal cycle

C′ with a detour Ei′+1, ...Ej′ , with x = ei′ and y = z.

Case 2. |I ′| = |I ′′| = 1.

As before we may assume that |E′ ∩ Ei′ | = |E′′ ∩ Ei′′ | = 1, since otherwise we

obtain configuration (i). We will distinguish two cases:

a) i′ < k or i′′ > 1;

b) i′ = k and i′′ = 1.

To discuss a) we assume by symmetry that i′ < k. Set E′∩Ei′ = {a}, E′′∩Ei′′ =

{b} and consider 4 subcases.

α) Assume first that i′ > i′′. If E′ ∩ E′′ ̸= ∅ then, as b ̸∈ E′, |E′′ ∩X(C′)| ≥ 2.

Since ek ∈ E′′ \X(C′), we infer that E′′ is a handle of C′ (which is our configuration

(ii)). If E′ ∩ E′′ = ∅ then, for x = ei′ and y = b, the path Ei′+1, ..., Ek, E
′′ is a

detour of C′.

β) Assume now that i′ = i′′. Note that by the definition of I ′, a ̸= ei−1 and thus

Ei′ ∈ C′. If (E′ \{a})∩ (E′′ \{b}) ̸= ∅ then E′′ intersects C′ in at least two elements

(but is not contained in C′) and thus E′′ is a handle of C′. If (E′\{a})∩(E′′\{b}) = ∅

then, again ei′ , Ei′+1, ..., Ek, E
′′, b is a detour of C′. (Note that ei′ ̸= b.)

γ) Assume further that i′′ = i′ + 1 and that there is an element z ∈ (E′ \ {a})∩

(E′′ \ {b}). If b = ei′ then E′′ is a handle of C′. If b ̸= ei′ then Ei′+1, E
′′ is a detour

of C′ with x = ei′ and y = z. In case (E′ \ {a}) ∩ (E′′ \ {b}) = ∅, there are four

possibilit ies: a = ei′ ̸= b, a ̸= ei′ = b, a ̸= ei′ ̸= b, and a = ei′ = b, all leading to

configuration (iv).

δ) Finally, assume that i′′ > i′ + 1. Case E′ ∩ E′′ = ∅ gives configuration (v).

If, on the other hand, there is z ∈ E′ ∩ E′′, then z ̸∈ X(P) =
∪k

i=1 Ei and so

Ei′+1, ..., Ei′′ , E
′′ is a detour of C′ with x = ei′ and y = z.

Let us turn now to case 2b. For notational ease set E′ = E0 and consider the

normal, simple cycle C = E1, ..., Ek, E0. For i = 0, ..., k, let Gi be the copy of G

with E(Gi) = Ei. Two cases will be discussed.

α) ∃i ∃v ∈ V (Gi) \ (ei−1 ∪ ei)
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(Note that α) holds for every i whenever vG ≥ 5.) Let f be an edge incident to

v in Gi. By Exercise, there is a graph Gf isomorphic to G such that E(Gf ) = Ef

satisfies Ef ∩ Ei = {f}. If |Ef ∩ X(C)| = 1 then Ei+2, ..., Ek, E0, ..., Ei, Ef is a

simple path longer than P – a contradiction. Thus, we have |Ef ∩X(C)| ≥ 2. As

δ(G) ≥ 2, there exists g ∈ E(Gf ) \ {f} incident to v. If g ∈ X(C), there is an index

j ̸= i such that g ∈ Ej . But then v ∈ V (Gj) and so by the choice of v, C is a bad

cycle. If g ̸∈ X(C) then Ef ̸⊂ X(C) and Ef is a handle of C.

Before we turn to case β), we first prove the following claim, which is true under

general assumptions of case 2b, but was not needed until now.

Claim 4. Under the assumptions of case 2b, either C has a handle or the set X(G0)

of elements of the critical subhypergraph G0 coincides with X(C).

Proof. Suppose there is z ∈ X(G0) \X(C). Due to the connectivity of G0 there

is a path connecting C to z. Thus, there is an edge E ∈ G0, 1 ≤ |E ∩X(C)| < |E|.

But, by the maximality of the path P, |E ∩ X(C)| ≥ 2, which means that E is a

handle of C. �

β) ∀i : V (Gi) = ei−1 ∪ ei

This case implies that vG ≤ 4 and, because G is strictly balanced and contains a

cycle, it can be only K3, K4 or C4, the 4-cycle. The cases G = K3 and G = K4 are

covered by Proposition 1 and thus we further assume that G = C4. Consequently,

for every i = 0, ..., k, we now have ei−1∩ei = ∅. Take f ∈ E1\{e0, e1}. By Exercise,

there is Ef , Ef ∩ E1 = {f}. By Claim 4, Ef ⊂ X(C). Observe that either we end

up at configuration (vii), or

(12) E0 \ {ek, e0} ̸⊆ Ef and E2 \ {e1, e2} ̸⊆ Ef .

To see this suppose that E0 \ {ek, e0} ⊆ Ef and set ek = {v1, v2}, e0 = {v3, v4},

e1 = {v5, v6}, and, without loss of generality, f = {v3, v5}. By our assumption

{v1, v3} and {v2, v4} belong to Ef and thus v5 = v2. But now {v1, v3}, {v3, v2},

and {v2, v4} all belong to the same copy of C4 (underlying Ef ) forcing the pair

{v1, v4} to be an edge of K(n, p). Hence the vertices v1, v2, v3, v4, v6 induce in

K(n, p) a subgraph with at least 8 edges yielding configuration (vii).
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(i) Assume k ≥ 4. Then there exists i, 0 ≤ i ≤ k, such that Ei \ {ei−1} or

Ei \ {ei} is disjoint from Ef . (Here and below all indices are modulo k + 1.) Let

P0 = Eu, ..., Ei, ..., Ev be such that u ̸= v, Eu ∩ Ef ̸= ∅, Ev ∩ Ef ̸= ∅, but for

all w, u < w < v, Ew ∩ Ef = ∅. Note that one of u or v may equal i, and that,

by definition, the length of P0, |P0|, is at most k, i.e. P0 is indeed a path. Set

C0 = Eu, ..., Ev, Ef . Since the neighbors of Ei intersect Ei in ei−1 and ei, C0 is a

normal cycle. If |P0| = k then the only edge of C not in C0 is E0 or E2. Say it is

E0. By (12), we have 2 ≤ |E0 ∩X(C0)| ≤ 3 and E0 is a handle of C0. Assume now

that the path C \ P0 = Ev+1, ..., Eu−1 (edges listed in the same cyclical order as in

P0) consists of at least two edges. If each of them intersects X(C0) in at most one

element, a detour of C0 can easily be found. Indeed, let Ew satisfy v+2 ≤ w ≤ u−1,

Ew ∩X(C0) ̸= ∅, and Ej ∩X(C0) = ∅ for v + 2 ≤ j ≤ w− 1. (The existence of w is

guaranteed by Eu−1 ∩Eu ̸= ∅.) Then Ev+1, ..., Ew is a detour of C0. If there exists

v + 1 ≤ w ≤ u− 1 such that |Ew ∩X(C0)| ≥ 2 then Ew is a handle of C0. Indeed,

then |Ew ∩X(P0)| ≤ 1 and |Ef \X(P0)| ≤ 2, giving |Ef ∩X(C0)| ≤ 3.

(ii) k ≤ 3. Here one could apply a tedious case by case analysis leading each time

to one of the configurations (ii), (iii), or (vii). Alternately, we choose to apply the

above Claim 4 together with Theorem 6 from section 4. The graph F underlying

G0 has in this case no more than 8 vertices. If mF > 3/2 we have configuration

(vii). If mF ≤ 3/2 then by Theorem 6 one c an color the edges of F so that no C4

becomes monochromatic. This, however, contradicts the definition of G0.

This completes the proof of the Deterministic lemma. �

Probabilistic Lemma. Almost surely G does not have any of the structures (i)-

(vii) described in the statement of the Deterministic Lemma above.

Proof. Our only tool in this proof is Markov’s inequality P (X > 0) ≤ Exp(X),

valid for every nonnegative integer-valued random variable X. We shall show that

the expected number of all subgraphs of K(n, p) giving rise to the structures de-

scribed in (i)-(vii) tends to 0 as n → ∞, forcing the probab ility of their presence

in K(n, p) tend to 0 as well. In that case we will say that the configurations in
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question are rare. We begin by showing that the expected number of simple cycles

S is O(n). Let Sk be the number of simple cycles E(G1), ..., E(Gk) of length k in G.

Each such a cycle has precisely α = k(eG−1) graph edges. Thus Exp(Sk) = Nkp
α,

where Nk is the number of subgraphs of Kn which are unions of k copies of G,

G1, ..., Gk which form a simple cycle in G. To bound Nk observe that there are

at most nvG choices of G1. Having G1 chosen, we may pick G2 in no more than

eGn
vG−2 ways. Here we also cover the possibility that G1 and G2 intersect in more

than two vertices. Continuing this way, having chosen G1, ..., Gk−2, we choose Gk−1

in at most eGn
vG−2 ways and finally we choose Gk in no more than e2Gn

vG−3 ways.

This estimate corresponds to the worse case when the edges being the intersections

of E(Gk−1) and E(Gk), and of E(Gk) and E(G1) share one endpoint. (They cannot

coincide by the definition of a cycle.) Altogether,

Exp(S) ≤
∞∑
k=3

ekGn
k(vG−2)+1pα = O(n)

since p = cn
− vG−2

eG−1 and
∑∞

k=3(eGc)
k < ∞ for c < 1/eG.

Now let us see how this estimate will be affected if we count all cycles, simple or

not. This time the graphs Hi spanned by the edge sets E(Gi) ∩ E(Gi+1) may be

any subgraphs of G and not just single edges. Neverthless, similar estimates lead

to the bound
∞∑
k=3

∑
H1,...,Hk

2keGnβpα ,

where α = keG −
∑k

i=1 eHi
and

β = vG+(vG−vH1)+...+(vG−vHk−2
)+(vG−vHk−1

−vHk
+vHk−1∩Hk

) ≤ kvG−
k∑

i=1

vHi+vG .

Note that it is possib le now that V (Hk−1) = V (Hk) = V (G1) and thus for general

graphs the last inequality cannot be improved. Note also that

(13) nvG−vHpeG−eH ≤ nvG−2peG−1 = O(1)

by the strict balance of G. This gives the bound of

(14) O(nvG)
∞∑
k=3

∑
H1,...,Hk

2keG
k∏

i=1

nvG−vHipeG−eHi ≤ O(nvG)
∞∑
k=3

2keGck
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for the expected number of all cycles in G, which we will not use. However, the

same estimate tells us that cycles, almost surely, cannot be longer than O(log n).

More precisely, let L be the number of all cycles longer than b log n. Then, for any

a and b = b(a) sufficiently large, and for c < 2−eG ,

(15) Exp(L) = O(nvG)
∞∑

k=b logn

2keGck = O(n−a) .

We shall use this fact later. But now let us look closer at our estimates and see

if we can do better. For clarity let us again assume that our cycle is simple and

denote by ei the edge shared by Gi and Gi+1, i = 1, , , k, (Gk+1 = G1). The

last exponent in the estimates, vG − 3, was due to the possibility that ek−1 and

ek share a vertex and thus we still need vG − 3 new vertices to build Gk. But

this means that we only needed vG − 3 new vertices for Gk−1 provided ek−2 is

disjoint from ek−1 ∩ ek. If not, we move backward one more step, and here we

arrive at the origin of the notion of a normal cycle. For a normal cycle we shall

finally find a moment where we need only vG − 3 new vertices to build the next

copy of G and the overall outcome will be just O(1) and not O(n). The only type

of a simple non-normal cycle is one with the edges e1, ..., ek forming a star. For

non-simple cycles the picture is more complex and we need a very careful analysis.

Let Y = Y (s) + Y (ns) be the number of normal cycles broken into simple and

non-simple ones. Given H1, ...,Hk, all proper subgraphs of G without isolat ed

vertices, and given two integer sequences u = (u2, ..., uk−1) and u′ = (u′
2, ..., u

′
k−1)

with u′
i ≤ ui and ui, u

′
i ∈ {0, ..., vG}, i = 2, ..., k − 1, let Y (H1, ..., Hk,u,u

′) be

the number of normal cycles E(G1), ..., E(Gk) such that Hi is the graph spanned

by E(Gi) ∩ E(Gi+1), i = 1, ..., k (here Gk+1 = G1) , |V (Hi) ∩ V (Hk)| = ui and

|V (Hi−1) ∩ V (Hi) ∩ V (Hk)| = u′
i, i = 2, ..., k − 1. As before, each such a cycle has

precisely

α = keG −
k∑

i=1

eHi

edges and

Exp(Y (H1, ..., Hk,u,u
′)) = N(H1, ..., Hk,u,u

′)pα ,
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where N = N(H1, ..., Hk,u,u
′) is the number of subgraphs of Kn giving rise to the

cycles in question. As before there are no more than nvG choices of G1 and no more

than 2eG choices of Hk in G1. Now, there are at most 22vG(k−2) ways to fix all sets

Ui = V (Hi) ∩ V (Hk) and U ′
i = Ui ∩ V (Hi−1), i = 2, ..., k − 1. Once this is done,

we proceed and select G2 in at most 2eGnvG−vH1−u2+u′
2 ways. Here the first factor

takes care of the choice of H1 and the exponent of n, being an upper bound on the

number of new vertices of G2, follows the Inclusion-Exclusion Principle. Continuing

this way, for each 3 ≤ i ≤ k − 1 we choose Gi in at most

(16) 2eGnvG−vHi−1
−ui+u′

i

ways. Finally, we close the cycle with Gk chosen in no more than

(17) 2eGnvG−vHk−1
−vHk

+uk−1

ways. After multiplying, the exponents of n sum up to β + γ, where β = kvG −∑k
i=1 vHi and

(18) γ =
k−1∑
i=2

(−ui + u′
i) + uk−1 = u′

2 +
k−2∑
i=2

(−ui + u′
i+1) .

We shall now show that due to the normality of cycles in count, γ ≤ 0. For

k = 3 the range of the above sum is empty, and indeed, then γ = u′
2 which is 0 by

the definition of a normal cycle. To get this inequality for k ≥ 4, observe that, for

each i = 2, ..., k − 2,

U ′
i ⊆ (Ui \ U ′

i+1) ∪ (U ′
i ∩ U ′

i+1) .

By subsequent substitutions one obtains

U ′
2 ⊆

k−2∪
i=2

(Ui \ U ′
i+1) ∪

k−1∩
i=2

U ′
i

but, by normality,
∩k−1

i=2 U ′
i = ∅ and, as we also have U ′

i+1 ⊆ Ui, we infer that

(19) u′
2 ≤

k−2∑
i=2

(ui − u′
i+1) .
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Combining (18) and (19) we conclude that γ ≤ 0. Hence, for some constant c′,

N ≤ (c′)knβ and, by (13), using the same argument as for (14), we obtain

(20) Exp(Y ) ≤
∞∑
k=3

∑
H1,...,Hk

∑
u,u′

(c′)knβpα = O(1) ,

for c sufficiently small. However, for Y (ns) we can do even better. The reason is

that then, among H1, ..., Hk, there must be at least one proper subgraph H of G

with at least 2 edges. Because G is strictly balanced, there is an ε > 0 such that

(21) vG − vH − (eG − eH)
vG − 2

eG − 1
< −ε .

Therefore for at least one i we can use (13) with the extra factor of n−ε on the

right-hand side, obtaining

(22) Exp(Y (ns)) = O(n−ε) .

Thus normal non-simple cycles are rare and we have just excluded the structure

(i) from K(n, p). We are now well equipped to deal with all others quickly. Consider

the number of bad cycles B. They are normal and simple, but in additi on, they

have an extra vertex overlapping, not taken into account in the estimat es leading

to (20). More precisely, there exists an i and j ̸= i, and a ver tex v ∈ V (Gi) ∩

V (Gj) \ (V (Hi−1) ∪ V (Hi)). By throwing in a factor of k we may assume that

j = 1. Hence, for 2 ≤ i ≤ k, the estimates (16) and (17) can be now replaced by

2eGnvG−vHi−1
−ui+u′

i−1 and 2eGnvG−vHk−1
−vHk

+uk−1−1, respectively. As there are

k − 1 choices of i we have an extra term of k(k − 1)/n in (20). Since
∑

k2ck0 < ∞

for c0 < 1, the k(k − 1) factor “disappears” giving

Exp(B) = O(n−1) ,

which means that also configurations of type (vi) are rare.

To attack normal cycles with handles we will apply an abbreviated technique.

By (15) and (22), we can restrict our attention to normal, simple and short cycles.
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By (20), the expected number of such cycles is O(1) and the expected number of

handles intersecting a fixed short cycle on a subgraph H is, by (21),

(23) O((log n)eH−1nvG−vHpeG−eH ) = o(n− 1
2 ε) = o(1) .

To make this argument more formal, let Z =
∑

H:2≤eH<eG
ZH , where ZH is the

number of subgraphs F of K(n, p) which give rise to hypergraph structures con-

sisting of a normal simple short cycle C and a handle G′ intersecting C on a subg

raph isomorphic to H. (Here C is the subgraph of K(n, p) underlying the cyc le of

G rather than the cycle itself. This is why we use the block letter C and not the

script C.) Then, by (20) and (23),

Exp(ZH) =
∑
F

peF ≤
∑
C

∑
G′∩C=H

peC+eG−eH ≤
∑
C

peC
∑

G′∩C=H

peG−eH

= Exp(Y )O((log n)eH−1nvG−vH )peG−eH = o(n−ε/2) .

For disproving (iii)-(v) we will use the same trick, but as a preparation we need

bounds on the expected numbers of rooted paths and cycles.

Given two elements of X(H), x and y, a path of H is said to be rooted at x, y

if only its first edge contains x and only its last edge contains y. Let now x, y be

two pairs of vertices of K(n, p) and consider the conditional space K(n, p) ∪ {x, y}

with x and y present as an edge with probability 1. Let Rx,y be the number of

simple paths rooted at x, y in the corresponding hypergraph Gx,y of copies of G.

A cycle rooted at x is a cycle containing the element x, and the definition of Rx

is analogous to that of Rx,y. Estimates almost identical to those for Exp(S) give

Exp(Rx,y) = O( 1
np ) and Exp(Rx) = O( 1

np ). Indeed, the only diff erence is that now

we have nvG−2 choices of G1 (since x is fixed) and the number of edges to appear

with probability p is one less than before (sam e reason). This gives the extra n2p

factor in the denominator and the overall order of O( 1
np ) as we had Exp(S) = O(n)

before.

Again, by (15) and (22), in all (iii)-(v) we may assume that the cycles in count

are simple and short. To rule out (iii), set Z to be the number of subgraphs F of
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K(n, p) which induce in G a normal simple short cycle C with a detour Dx,y rooted

at some x, y ∈ E(C). (We consistently follow the convention of using the block

letters to denote subgraphs of K(n, p) inducing subhypergraphs of G designated by

corresponding script letters.) We have by (20)

Exp(Z) =
∑
F

peF ≤
∑
C

∑
x,y∈E(C)

∑
D:E(D)∩E(C)={x,y}

peC+eD−2

≤
∑
C

peCO(log2 n)
∑
D

peD−2 = Exp(Y )O(log2 n)Exp(Rx0,y0)

= O

(
log2 n

np

)
= o(1) ,

where the last sum
∑

D ranges over all simple paths rooted at two fixed edges of

K(n, p), x0 and y0, and is independent of the sum
∑

C .

To show that configurations (iv) are rare too, we argue similarly, obtaining

Exp(Z) =
∑
F

peF ≤
∑
C1

∑
x∈E(C1)

∑
C2:E(C2)∩E(C1)={x}

peC1+eC2−1

≤
∑
C1

peC1O(log n)
∑
C2

peC2−1 = Exp(Y )O(log n)Exp(Rx0)

= O

(
log n

np

)
= o(1) .

In case of (v), let Z be the number of subgraphs F of K(n, p) inducing in G

a pair of normal, simple and short cycles C1, C2, joined by a bridge M rooted at

x ∈ C1 and y ∈ C2. (The use of letter M to designate a bridge is not accidental.

Both, the Czech and Polish word for bridge is “most”.) Then

Exp(Z) =
∑
F

peF ≤
∑
C1

peC1

∑
C2

peC2

∑
x∈E(C1)

∑
y∈E(C2)

∑
M :E(M)∩E(C1∪C2)={x,y}

peM−2

≤ (Exp(Y ))2O(log2 n)Exp(Rx0,y0) = O

(
log2 n

np

)
= o(1) .

Configuration (vii) is the easiest case to disprove. For G = C4, m
(2)
G = 3

2 and

the expected number of subgraphs of K(n, p) with k ≤ 8 vertices and l > 3
2k edges

is O(
∑

k n
kp

3
2k+

1
2 ) = O(

√
p) = o(1). This completes the proof of probabilistic

lemma. �
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4.Locally and globally sparse Ramsey graphs.

In this section we discuss some deterministic results which follow from or are

directly related to our “random” results. We begin with recalling the story of the

existence of graphs F not containing Kk+1 and such that F → (Kl)
2
2. Answering a

question of Erdős and Hajnal [EH 67], several people (see [Gr 81] for an account)

established the existence of such graphs. Graham [Gr 68] proved that the smallest

such graph for l = 3 and k = 5 has 8 vertices and Irving [Ir 73] found a graph

on 18 vertices satisfying the property for l = 3 and k = 4. In 1970 Folkman [Fo

70] proved the existence of Kl+1-free graphs F which arrow Kl, for every l ≥ 3,

providing an enormous upper bound on vF . Everyone believed that such graphs are

really rare. In [RR**] we prove our Theorem 3a in a stronger form with “almost

surely” replaced by probability 1 − n−cn. This allows us to derive the following.

Corollary 1. Let l ≥ 3 and CKl
be the constant from Theorem 3a. If N = CKl

n
2l

l+1

then almost all Kl+1-free graphs F with n vertices and N edges satisfy F → (Kl)
2
2.

This is, in fact, a case of a more general result.

Theorem 4. Let H be a graph with m
(1)
H ≥ m

(2)
G and N = CGn

2−1/m
(2)
G , where CG

is the constant from Theorem 3a. Then almost all H-free (n,N)-graphs F satisfy

F → (G)22.

As another application, almost all n-vertex graphs with girth at least l and with

N = CCl
n2− l−2

l−1 edges arrow Cl, the cycle of length l. In each case, the number of

H-free graphs is about
((n

2)
N

)
e−n. This can be proved by the FKG inequality (lower

bound) and by the J LR inequality [J LR 90] (upper bound).

The graphs discussed above are examples of locally sparse Ramsey graphs. How

sparse can they be? There exist constructive results addressing this question (see

[NR 76,89]). Here we just mention some immediate corollaries from the proofs of

Theorems 2a and 3a. First, in the vertex coloring case, the following result was

obtained in [ LRV 92].

Corollary 2. For all graphs G and all positive integers r and k there exists a
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graph F such that F → (G)1r and for each subgraph H of F with 1 < vH < k, the

inequality m
(1)
H ≤ m

(1)
G holds.

Please note that the above inequality is best possible, since there must be copies

of G around.

In case of 2 colors the edge analog of Corollary 2 is given in [RR 95].

Corollary 3. For all graphs G and all integers k there exists a graph F such

that F → (G)22 and for each subgraph H of F with 2 < vH < k, the inequality

m
(2)
H ≤ m

(2)
G holds.

We believe that the conclusion of Corollary 3 is independent of the number of

colors. This was already confirmed in case of G = K3 in [RR 94].

If we slightly relax the conditions imposed on small subgraphs in Corollaries 2

and 3, and instead require only that they satisfy the inequality mH ≤ m
(1)
G and

mH ≤ m
(2)
G , respectively, then, by the first moment method, and by Theorems

2a and 3a, for almost all (n,CGn
2−1/m

(i)
G )-graphs F , their small subgraphs obey

the above inequalities, and at the same time, F enjoys the respective Ramsey

properties, i = 1, 2. Conversely, every graph H with mH ≤ m
(i)
G , by Bollobás’

Threshold Theorem ([Bo 81]) and by [Ru 90, Cor.2], is a subgraph of a positive

fraction of (n, cGn
2−1/m

(i)
G )-graphs, and since by Theorems 2b and 3b, almost all s

uch graphs do not arrow G, we have H ̸→ (G)1r, and H ̸→ (G)22, respectively.

In fact, the statements that mH ≤ m
(i)
G implies H ̸→ (G)ir, i = 1, 2, were

part of the argument in the proofs of Theorems 2b and 3b and therefore require

independent proofs.

In view of the above, it is reasonable to define the following parameters measuri

ng the global density of graphs which are Ramsey with respect to a given graph (as

opposed to previously discussed locally sparse Ramsey graphs.) Define

m
(i)
inf(G, r) = inf{mF : F → (G)ir} ,

i = 1, 2. Several results on m
(1)
inf (G, r) can be found in [KR 93], among them general

lower and upper bounds.
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Theorem 5. For all G and r

1

2
D(G)r ≤ m

(1)
inf (G, r) ≤ D(G)r ,

where D(G) = maxH⊆G δ(H).

In the edge coloring case, if the graph G is not bipartite, the lower bound is

already exponential in r. This stands in striking contrast to the bipartite case with

an upper bound linear in r. Indeed, we have obtained the following preliminary

result.

Proposition 2. If χ(G) = χ ≥ 3 and F → (G)2r then mF ≥ 1
2 (χ − 1)r. If G is

bipartite there exists an F such that F → (G)2r and mF ≤ ∆(G)r.

Proof. We note that

(24) mF ≥ 1

2
D(F ) ≥ 1

2
(χ(F ) − 1) ,

the first inequality due to the fact that the minimum is never bigger than the

average, the second inequality being the known upper bound on the chromatic

number. But if χ(F ) ≤ (χ − 1)r then one can partition the edge set of F into

r (χ − 1)-partite subgraphs (see [Zy 49] or [Or 62]). Hence, if F → (G)2r then

χ(F ) ≥ (χ− 1)r + 1 and consequently mF ≥ 1
2 (χ− 1)r.

Let G be a bipartite graph with maximum degree d on one side and x vertices

on the other. Let n = Rd[r(d− 1) + 1, x] and N = Rr(d−1)+1[n; r] be two Ramsey

numbers in standard notation. Let F be a bipartite graph with bipartition (X,Y ),

where |X| = N , |Y | =
(

N
r(d−1)+1

)
and each vertex v of Y is joined to a different

r(d− 1) + 1-subset Xv of X. An r-coloring of the edges of F induces an r-coloring

of the r(d− 1) + 1-subsets of X, by assigning to subset Xv the most frequent color

occuring on the edges going from v to Xv. By the definition of N , there is an

n-element subset Z of X, such that in every r(d− 1) + 1-subset of Z the dominant

color is blue, sa y. Now define a 2-coloring of the d-subsets of Z by giving color

1 to those which are not joined to a single vertex of Y by edges colored all blue.

By the definition of n, there must be an x-element subset of Z with all d-subsets
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colored by color 2. A blue copy of G can now be found and hence F → (G)2r. It is

easy to check that mF ≤ r(d− 1) + 1. �

Finally, to provide a proof of m
(2)
inf (G, 2) ≥ m

(2)
G independent of our Theorem 3b.

Theorem 6. If mF ≤ m
(2)
G > 1 then F ̸→ (G)22.

Proof. Without loss of generality we may assume that G is strictly balanced.

Therefore, with the exception of K3, m
(2)
G = eG−1

vG−2 < δ(G) ≤ D(G). By Theorem

5, F ̸→ (G)12, but it is well known that for a non-bipartite connected graph G,

F ̸→ (G)12 implies F ̸→ (G)22. Thus for nonbipartite graphs (except for triangles)

our theorem follows. Let us leave triangles for later and turn to the bipartite case.

Consider 2 cases.

Case 1: there is an integer k such that k ≤ m
(2)
G < k + 1

2 .

Then D(G) ≥ k + 1 and D(F ) ≤ 2mF ≤ 2k by (24). Thus, one can order the

vertices of F so that the degree “to the right” is never bigger than 2k and coloring

by each color no more than k edges going from a vertex “to the right” prevents us

from obtaining a monochromatic G.

Case 2: there is an integer k such that k + 1
2 ≤ m

(2)
G < k + 1.

Here we apply both, the Nash-Williams Arboricity Theorem and its analog for

the bicyclic graph matroid (see [S-P 72, Be 73, Pa 86]). The former says that

⌈m(1)
F ⌉ is the smallest number of forests which cover the edge set of F . The latter

says that ⌈mF ⌉ plays the same role with forests replaced by subgraphs whose each

component has at most one cycle. We have ⌈mF ⌉ ≤ k + 1. On the other hand, if

eG < 1
4v

2
G then mG ≥ eG

vG
> eG−1

vG−2 − 1
2 ≥ k, and consequently ⌈mG⌉ ≥ k + 1. Thus

⌈mF ⌉ ≤ 2⌈mG⌉−2, and, after partitioning F into ⌈mF ⌉ appropriate subgraphs, we

color at most ⌈mG⌉−1 of them by each color, leaving no room for a monochromatic

G. In the remaining case G is a complete bipartite graph with, say, l vertices on

each side. For such graphs, m
(2)
G = l+1

2 and due to our assumptions l = 2k. So,

m
(2)
G = k + 1

2 and m
(1)
G > k. But also m

(1)
F ≤ mF + 1

2 ≤ k + 1 and we can repeat

the previous argument with m replaced by m(1).

Finally, we deal with triangles. Assume that G = K3 and mF ≤ 2. Then, by (24),
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D(F ) ≤ 4 which means that we can order the vertices x1, ..., xf , f = vF , so that

xi has minimum degree in the subgraph Hi spanned by xi, ..., xf . Consequently,

each vertex has at most 4 neighbors “to the right” and if xi is the first vertex with

exactly 4 neighbors “to the right” then the graph Hi is 4-regular. Indeed, δ(Hi) = 4

but
eHi

vHi
≤ mF ≤ 2. Let us now reorder the vertices xi, ..., xf so that, as long as we

can, we avoid choosing vertices whose current neighborhood “to the right” spans

K4. Let xj be the first vertex whose neighbors “to the right” form K4. Then

the graph Hj is a union of vertex disjoint K5’s (since Hi is 4-regular) and can be

properly 2-colored. Moreover, all the edges between xi−1 and Hi, i = j, j − 1, ..., 2,

can be colored so that no monochromatic triangle is created. This can be easily

checked as each vi has at most 4 neighbors “to the right” and they never span a

K4. Thus all edges of F are properly colored. (This proof, by the way, resembles

that of Theorem 1b in [ LRV 92].) �

Among many questions that remain, what is m
(2)
inf (K3, 2)? We only know it is

somewhere between 2 and 2.5.

Added in Proof. Very recently the authors proved Theorem 3 for an arbitrary

number of colors.
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