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Abstract

Let f(2, 3, 4) denote the smallest integer n such that there exists a
K4-free graph of order n for which any 2-coloring of its edges yields at
least one monochromatic triangle. It is well-known that such a number
must exist. For a long time the best known upper bound, provided by
J. Spencer, said that f(2, 3, 4) < 3 · 109. Recently, L. Lu announced
that f(2, 3, 4) < 10 000. In this note, we will give a computer assisted
proof showing that f(2, 3, 4) < 1000. To prove it we will generalize
the idea of Goodman giving a necessary and sufficient condition for a
graph G to yield a monochromatic triangle for every edge coloring.

1 Introduction

Let F(r, k, l), k < l, be a family of Kl-free graphs with the property that if
G ∈ F(r, k, l), then every r-coloring of the edges of G must yield at least one
monochromatic copy of Kk. J. Folkman showed in [4] that F(2, k, l) 6= ∅.
The general case, i.e. F(r, k, l) 6= ∅, r ≥ 2, was settled by J. Nešetřil and
the second author [13]. Let f(r, k, l) = minG∈F(r,k,l) |V (G)|. The problem of
determining the numbers f(r, k, l) in general includes the classical Ramsey
numbers and thus is not easy. In this note we focus on the case where r = 2
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and k = 3. We will write G → 4 and say that G arrows a triangle if every
2-coloring of G yields a monochromatic triangle. Since the Ramsey number
R(3, 3) = 6 clearly f(2, 3, l) = 6, for l > 6. The value of f(2, 3, 6) = 8
was determined by R. Graham [7], and f(2, 3, 5) = 15 by K. Piwakowski,
S. Radziszowski and S. Urbański [14]. In the remaining case, the upper
bounds on f(2, 3, 4) obtained in [4] and [13] are extremely large (iterated
tower function). Consequently, in 1975, P. Erdős [3] offered $100 for proving
or disproving that f(2, 3, 4) < 1010. Applying Goodman’s idea [6] (of count-
ing triangles in a graph and in its complement) for random graphs P. Frankl
and the second author [5] came relatively close to the desired bound show-
ing that f(2, 3, 4) < 8× 1011. This result was improved by J. Spencer [18],
who refined the argument and proved f(2, 3, 4) < 3 × 109 giving a positive
answer to the question of Erdős [3]. Subsequently, F. Chung and R. Gra-
ham [1] conjectured that f(2, 3, 4) < 106 and offered $100 for a proof or
disproof. Recently, L. Lu [11] showed that f(2, 3, 4) < 10 000 (A weaker
result, f(2, 3, 4) < 1.3× 105, also answering Chung and Graham’s question
was independently found in an earlier version of this paper, see, e.g., [2]).
All these proofs [5, 11, 18] are based on the modification of Goodman’s
idea [6]. The idea explores the local property of every vertex neighborhood
in a graph (see Corollary 2.2).

In this note, we will present a K4-free graph G941 of order 941 and give a
computer assisted proof that G941 ∈ F(2, 3, 4). This yields that f(2, 3, 4) ≤
941. To prove it we will develop a technique, which is a generalization of
ideas from [6, 13, 18]. More precisely, for every graph G we will construct
a graph H with the property that G arrows a triangle if and only if the
maxcut of H is less than twice number of triangles in G.

2 Computer assisted proof of f(2, 3, 4) < 1000

2.1 Counting blue and red triangles

In order to find an upper bound on the number f(2, 3, 4), we will use an
idea of [6]. For any blue-red coloring of G let TBR(v), TBB(v) and TRR(v)
count the number of triangles containing vertex v, for which two edges in-
cident to v are colored blue-red, blue-blue and red-red, respectively. Also
let TBlue (TRed) be the number of blue (red) monochromatic triangles. The
sum

∑
v∈V (G) TBR(v) counts 2 times the number of nonmonochromatic tri-

angles. This is because each such triangle is counted once for two different
vertices. On the other hand, the sum

∑
v∈V (G)

(
TBB(v) + TRR(v)

)
counts

3 times the number of monochromatic triangles and once the number of

2



nonmonochromatic triangles. Hence,∑
v∈V (G)

TBR(v) = 2
∑

v∈V (G)

(
TBB(v) + TRR(v)

)
− 6

(
TBlue + TRed

)
. (1)

Consequently, G →4 if and only if for every edge coloring of G the following
holds ∑

v∈V (G)

TBR(v) < 2
∑

v∈V (G)

(
TBB(v) + TRR(v)

)
. (2)

Denote by N(v) the set of neighbors of a vertex v ∈ V and let G[N(v)] be
a subgraph of G induced on N(v). Moreover, for a given cut C ⊂ V (G) let

MC(G) =
{
{x, y} ∈ E(G) | x ∈ C and y ∈ V \ C

}
,

and that
M(G) = max

C⊂V
MC(G),

i.e. M(G) is the value corresponding to the solution of the maxcut problem
for G.

Proposition 2.1 (Frankl & Rödl 1986 [5]; Spencer 1988 [18]). Let G =
(V,E) be a graph that satisfies∑

v∈V (G)

M(G[N(v)]) <
2
3

∑
v∈V (G)

∣∣E(G[N(v)])
∣∣. (3)

Then, G →4.

An easy consequence of Proposition 2.1 gives the following corollary.

Corollary 2.2. Let G = (V,E) be a graph which satisfies

M(G[N(v)]) <
2
3

∣∣E(G[N(v)])
∣∣ (4)

for every vertex v ∈ V (G). Then, G →4.

Note that in particular Corollary 2.2 gives a sufficient condition for a K4-
free graph to be in F(2, 3, 4). We will extend this idea and give a necessary
and sufficient condition for a graph G to yield a monochromatic triangle
for every edge coloring. More precisely, for every graph G = (V,E) with
t4 = t4(G) triangles, we construct a graph H with |E| vertices such that
G →4 if and only if the maxcut of H is less than 2t4.
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Let G be a graph with the vertex set V (G) = {1, 2, . . . , n}. For every
vertex i ∈ V (G), let Gi be a graph with

V (Gi) =
{
{i, j} | j ∈ N(i)

}
and

E(Gi) =
{
{{i, j}, {i, k}} | if ijk is a triangle in G

}
.

Clearly Gi is isomorphic to the subgraph G[N(i)] of G induced on the neigh-
borhood N(i). Now we define a graph H as follows. Let

V (H) = E(G)

and
E(H) =

⋃
i∈V (G)

E(Gi).

In other words, H is a graph with the set of vertices being the set of edges
of G such that e and f are adjacent in H if e and f belong to a triangle in G.
Clearly |V (H)| = |E(G)| and |E(H)| = 3t4(G). Moreover, observe that
there is one to one correspondence between blue-red colorings of edges of G
and bipartitions of vertices of H. Let C be a cut with the partition V (H) =
B ∪R. Since the edges between B and R correspond to nonmonochromatic
triangles in G, we conclude that the value corresponding to the cut C equals
to

MC(H) =
∑

i∈V (G)

TBR(i). (5)

Counting the edges which lie entirely in B or in R yields∑
i∈V (G)

(
TBB(i) + TRR(i)

)
= |E(H)| −MC(H) =

(
3t4 −MC(H)

)
. (6)

By (1) we have that∑
i∈V (G)

TBR(i) ≤ 2
∑

i∈V (G)

(
TBB(i) + TRR(i)

)
,

and by (2), G → 4 if and only if the strict inequality holds for every edge
coloring of G. Consequently, (5) and (6) yield that G →4 if and only if

MC(H) < 2
(
3t4 −MC(H)

)
,

for every cut of H. Consequently, the following holds.

Theorem 2.3. Let G be a graph. Then, there exists a graph H of or-
der |E(G)| with M(H) ≤ 2t4(G) such that G → 4 if and only if M(H) <
2t4(G).
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2.2 Approximating the maxcut

Since Theorem 2.3 requires an assumption regarding the maxcut of graph H
we will approximate it with Proposition 2.4 below. The proof of this propo-
sition for regular graphs can be found in a paper of M. Krivelevich and
B. Sudakov [10]. Along the lines of their proof one can obtain the following
easy generalization, which we present here.

Proposition 2.4. Let H = (V,E) be a graph of order n. Let λmin =
λmin(H) be the smallest eigenvalue of the adjacency matrix of H. Then

M(H) ≤ |E(H)|
2

− λmin|V (H)|
4

.

Proof. Let A = (aij) be the adjacency matrix of H = (V,E) with the
average degree d and V = {1, 2, . . . , n}. Let x = (x1, . . . , xn) be any vector
with coordinates ±1. Then,

∑
{i,j}∈E

(xi − xj)2 =
n∑

i=1

dix
2
i −

∑
i6=j

aijxixj =
n∑

i=1

di −
∑
i6=j

aijxixj = nd− xT Ax.

By the Rayleigh-Ritz ratio (see, e.g., Theorem 4.2.2 in [9]), for any vector
z ∈ Rn, zT Az ≥ λmin‖z‖2, where by ‖.‖ we denote the Euclidean norm.
Therefore,∑

{i,j}∈E

(xi − xj)2 = nd− xT Ax ≤ nd− λmin‖x‖2 = nd− λminn. (7)

Let V = V1 ∪ V2 be an arbitrary partition of V into two disjoint subsets
and let e(V1, V2) be the number of edges in the bipartite subgraph of H with
bipartition (V1, V2). For every vertex i ∈ V set xi = 1 if i ∈ V1 and xi = −1
if i ∈ V2. Note that for every edge {i, j} of H, (xi−xj)2 = 4 if this edge has
its ends in the distinct parts of the above partition and is zero otherwise.
Now using (7), we conclude that

e(V1, V2) =
1
4

∑
{i,j}∈E

(xi − xj)2 ≤
1
4
(dn− λminn) =

|E|
2
− λmin|V |

4
.
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2.3 Numerical results

Let G be a circulant graph defined as follows:

V (G941) = Z941,

and
E(G941) =

{
{x, y} | x− y = α5 mod 941

}
,

i.e. the set of edges consists of those pairs of vertices x and y which differ
by a 5th residue of 941. Equivalently,

V (G941) = {0, 1, . . . , 940},

and
E(G941) =

{
{x, y}

∣∣ |x− y| ∈ D or 941− |x− y| ∈ D
}
,

where D is a distance set defined below,

D = {1, 12, 15, 32, 34, 37, 40, 42, 44, 46, 50, 52, 54, 55, 65, 73, 83, 93, 97, 112, 114,

116, 118, 119, 122, 123, 131, 140, 142, 144, 145, 147, 153, 154, 161, 167, 172,

175, 178, 180, 182, 189, 191, 198, 202, 207, 215, 218, 223, 225, 234, 243, 248,

251, 254, 278, 281, 282, 293, 302, 304, 310, 311, 317, 318, 323, 328, 339, 341,

380, 384, 386, 389, 392, 399, 402, 403, 406, 408, 410, 413, 418, 419, 427, 428,

431, 437, 444, 447, 451, 454, 461, 466, 467}.

One can check that G941 is K4-free, 188-regular graph with |V (G941)| = 941,
|E(G941)| = 88 454 and t4(G941) = 707 632. Then, the graph H cor-
responding to G941 in Theorem 2.3 is 48-regular with |V (H)| = 88 454,
|E(H)| = 3t4(G941) = 2 122 896. Moreover, using in MATLAB [12] the
function eigs for real, symmetric and sparse matrices with option sa, we
get λmin(H) ≥ −15.196. Thus, Proposition 2.4 implies,

M(H) ≤ |E(H)|
2

−λmin(H)|V (H)|
4

≤ 1 397 484.746 < 1 415 264 = 2t4(G941).

Consequently, Theorem 2.3 yields the main result of this note.

Theorem 2.5. The Folkman number f(2, 3, 4) ≤ 941.

Remark 2.6. For given numbers n and r, let G(n, r) be a circulant graph
with the vertex set

V (G(n, r)) = Zn,
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G(n, r) ρ

G(127, 3) 0.030884
G(281, 4) 0.042306
G(313, 4) 0.040612
G(337, 4) 0.034517
G(353, 4) 0.037667
G(457, 4) 0.030386
G(541, 5) 0.049676
G(571, 5) 0.044144
G(701, 5) 0.029507
G(769, 6) 0.044195
G(937, 6) 0.048529
G(941, 5) −0.012728

Table 1: Candidates for membership and one member of F(2, 3, 4).

and the edge set

E(G(n, r)) =
{
{x, y} | x 6= y and x− y = αr mod n

}
.

Note that G(n, r) is well-defined, i.e. the graph is undirected, if −1 is an r-
th residue of n. In particular, G941 = G(941, 5). By exhaustive search we
found that G941 is the smallest graph, which belongs to the family F(2, 3, 4),
among all graphs G(n, r) for which our technique works.

For a given K4-free graph G(n, r) let H be a graph, which corresponds
to G(n, r) from Theorem 2.3. Let α = |E(H)|

2 − λmin(H)|V (H)|
4 and β =

2t4(G(n, r)). In view of Theorem 2.3 and Proposition 2.4, if α < β, then
G(n, r) → 4, and so, G(n, r) ∈ F(2, 3, 4). Obviously the converse is not
true since α is only an approximation on M(H). We define a parameter
ρ = α−β

α to get an estimate how “close” G(n, r) is from property F(2, 3, 4).
In Table 2.3 we listed all (up to isomorphism) K4-free graphs G(n, r) with
n ≤ 941 and ρ < 0.05.

3 Concluding remarks

Recently, S. P. Radziszowski and Xu Xiaodong suggested [15] that the graph
G127 = G(127, 3), considered by R. Hill and R. W. Irving [8], belongs to
the family F(2, 3, 4). One can check that t4(G127) = 9779. Let H be a
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graph from Theorem 2.3 which corresponds to G127. Using a semidefinite
program with polyhedral relaxations [16, 17] we obtained an upper bound
on M(H) ≤ 19558 = 2t4(G127). Note that 2t4(G127) is also the straightfor-
ward upper bound from Theorem 2.3. This coincidence between numerical
and theoretical bounds may suggest that G127 9 4. However, the question
whether G127 ∈ F(2, 3, 4), remains still open.

A related, interesting question is to find a reasonable upper for f(3, 3, 4).
We tried to find another argument that would ensure the existence of rela-
tively small K4-free graphs. Such a construction for 2-colors was considered
in an earlier version of our paper (see, e.g., [2]). The existence of a rea-
sonably small graph G that yields a monochromatic triangle under every
3-coloring is an open question which we are currently trying to address.
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[1] F. Chung and R. Graham, Erdős on graphs. His legacy of unsolved
problems, A K Peters, Wellesley, Massachusetts (1998), 46–47.

[2] A. Dudek, Problems in extremal combinatorics, PhD thesis, Emory Uni-
versity (2008).
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