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Abstract

Let f(2,3,4) denote the smallest integer n such that there exists a
K ,-free graph of order n for which any 2-coloring of its edges yields at
least one monochromatic triangle. It is well-known that such a number
must exist. For a long time the best known upper bound, provided by
J. Spencer, said that f(2,3,4) < 3-10°. Recently, L. Lu announced
that f(2,3,4) < 10000. In this note, we will give a computer assisted
proof showing that f(2,3,4) < 1000. To prove it we will generalize
the idea of Goodman giving a necessary and sufficient condition for a
graph G to yield a monochromatic triangle for every edge coloring.

1 Introduction

Let F(r,k,1), k <, be a family of Kj-free graphs with the property that if
G € F(r,k,l), then every r-coloring of the edges of G must yield at least one
monochromatic copy of K. J. Folkman showed in [4] that F(2,k,1) # 0.
The general case, i.e. F(r,k,l) # 0, r > 2, was settled by J. Nesetfil and
the second author [13]. Let f(r, k,l) = minger( 1) |V (G)|. The problem of
determining the numbers f(r, k,1) in general includes the classical Ramsey
numbers and thus is not easy. In this note we focus on the case where r = 2



and k = 3. We will write G — A and say that G arrows a triangle if every
2-coloring of G yields a monochromatic triangle. Since the Ramsey number
R(3,3) = 6 clearly f(2,3,l) = 6, for [ > 6. The value of f(2,3,6) = 8
was determined by R. Graham [7], and f(2,3,5) = 15 by K. Piwakowski,
S. Radziszowski and S. Urbaniski [14]. In the remaining case, the upper
bounds on f(2,3,4) obtained in [4] and [13] are extremely large (iterated
tower function). Consequently, in 1975, P. Erdés [3] offered $100 for proving
or disproving that f(2,3,4) < 10'°. Applying Goodman’s idea [6] (of count-
ing triangles in a graph and in its complement) for random graphs P. Frankl
and the second author [5] came relatively close to the desired bound show-
ing that f(2,3,4) < 8 x 10'*. This result was improved by J. Spencer [18],
who refined the argument and proved f(2,3,4) < 3 x 10° giving a positive
answer to the question of Erdés [3]. Subsequently, F. Chung and R. Gra-
ham [1] conjectured that f(2,3,4) < 10° and offered $100 for a proof or
disproof. Recently, L. Lu [11] showed that f(2,3,4) < 10000 (A weaker
result, f(2,3,4) < 1.3 x 10°, also answering Chung and Graham’s question
was independently found in an earlier version of this paper, see, e.g., [2]).
All these proofs [5, 11, 18] are based on the modification of Goodman’s
idea [6]. The idea explores the local property of every vertex neighborhood
in a graph (see Corollary 2.2).

In this note, we will present a K4-free graph Gg,; of order 941 and give a
computer assisted proof that Go,; € F(2,3,4). This yields that f(2,3,4) <
941. To prove it we will develop a technique, which is a generalization of
ideas from [6, 13, 18]. More precisely, for every graph G we will construct
a graph H with the property that G arrows a triangle if and only if the
maxcut of H is less than twice number of triangles in G.

2 Computer assisted proof of f(2,3,4) < 1000

2.1 Counting blue and red triangles

In order to find an upper bound on the number f(2,3,4), we will use an
idea of [6]. For any blue-red coloring of G let Tpr(v), Tpp(v) and Trr(v)
count the number of triangles containing vertex v, for which two edges in-
cident to v are colored blue-red, blue-blue and red-red, respectively. Also
let Tiue (Treqd) be the number of blue (red) monochromatic triangles. The
sum ey () Tpr(v) counts 2 times the number of nonmonochromatic tri-
angles. This is because each such triangle is counted once for two different
vertices. On the other hand, the sum }_ .y (Tep(v) + Trr(v)) counts
3 times the number of monochromatic triangles and once the number of



nonmonochromatic triangles. Hence,

Z Tgr(v) =2 Z (Tpp(v) + Trr(v)) — 6(TBiue + Trea)- (1)
veV(Q) veV(G)

Consequently, G — A if and only if for every edge coloring of G the following
holds

> Tprv) <2 > (Tss(v) + Tre(v)). (2)

veV(G) veV(G)

Denote by N(v) the set of neighbors of a vertex v € V and let G[N(v)] be
a subgraph of G induced on N (v). Moreover, for a given cut C C V(G) let

Mc(G) ={{z,y} € E(G) |z € CandycV\C},

and that

M(G) = max Mc(G),

i.e. M(G) is the value corresponding to the solution of the maxcut problem
for G.

Proposition 2.1 (Frankl & Rodl 1986 [5]; Spencer 1988 [18]). Let G =
(V,E) be a graph that satisfies

> MENED)<: Y [BGINED Q0

veV(G) veV(Q)
Then, G — /.
An easy consequence of Proposition 2.1 gives the following corollary.

Corollary 2.2. Let G = (V, E) be a graph which satisfies
2
M(GIN(v)]) < 3|E(GIN(@)])] (4)

for every vertex v € V(G). Then, G — A.

Note that in particular Corollary 2.2 gives a sufficient condition for a Kjy-
free graph to be in F(2,3,4). We will extend this idea and give a necessary
and sufficient condition for a graph G to yield a monochromatic triangle
for every edge coloring. More precisely, for every graph G = (V, E) with
ta = ta(G) triangles, we construct a graph H with |E| vertices such that
G — A if and only if the maxcut of H is less than 2.



Let G be a graph with the vertex set V(G) = {1,2,...,n}. For every
vertex i € V(G), let G; be a graph with

V(Gi) = {{i,j} | j € N(i)}
and
E(G;) = {{{i,j}, {i,k}} | if ijk is a triangle in G}.
Clearly G; is isomorphic to the subgraph G[N(i)] of G induced on the neigh-
borhood N (i). Now we define a graph H as follows. Let
V(H) = E(G)

and

ieV(G)

In other words, H is a graph with the set of vertices being the set of edges
of G such that e and f are adjacent in H if e and f belong to a triangle in G.
Clearly |V(H)| = |E(GQ)| and |E(H)| = 3tA(G). Moreover, observe that
there is one to one correspondence between blue-red colorings of edges of GG
and bipartitions of vertices of H. Let C' be a cut with the partition V(H) =
B U R. Since the edges between B and R correspond to nonmonochromatic
triangles in G, we conclude that the value corresponding to the cut C equals
to

Mo(H) = Y Tgr(i). (5)

Counting the edges which lie entirely in B or in R yields
> (Tssli) + Trr(i) = |E(H)| - Mc(H) = (3ta — Mc(H)).  (6)
1€V (Q)
By (1) we have that
> Tgr(i) <2 Y (Ts(i)+ Trr(i),
i€V (Q) i€V (G)

and by (2), G — A if and only if the strict inequality holds for every edge
coloring of G. Consequently, (5) and (6) yield that G — A if and only if

Mc(H) < 2(3tp — Mc(H)),
for every cut of H. Consequently, the following holds.

Theorem 2.3. Let G be a graph. Then, there exists a graph H of or-
der |E(G)| with M(H) < 2ta(G) such that G — A if and only if M(H) <
QtA(G).



2.2 Approximating the maxcut

Since Theorem 2.3 requires an assumption regarding the maxcut of graph H
we will approximate it with Proposition 2.4 below. The proof of this propo-
sition for regular graphs can be found in a paper of M. Krivelevich and
B. Sudakov [10]. Along the lines of their proof one can obtain the following
easy generalization, which we present here.

Proposition 2.4. Let H = (V,E) be a graph of order n. Let Apin =
Amin(H) be the smallest eigenvalue of the adjacency matriz of H. Then

S 1 .
Proof. Let A = (a;;) be the adjacency matrix of H = (V,E) with the

average degree d and V = {1,2,...,n}. Let x = (x1,...,2,) be any vector
with coordinates 1. Then,

Z (w5 — l’j)2 = Zn: dﬁ? - Z Qi T;Tj = z”: d; — Z a;;x;x; = nd — xT Ax.
i=1

{idyeB i =1 i

M(H)

By the Rayleigh-Ritz ratio (see, e.g., Theorem 4.2.2 in [9]), for any vector
z € R", 27 Az > M\pinl|z|%, where by ||.|| we denote the Euclidean norm.
Therefore,

Z (x; — :L‘j)2 =nd —x ' Ax < nd — )\mmeH2 =nd — Mninn- (7)
{i,j}€E

Let V = V3 U V4 be an arbitrary partition of V' into two disjoint subsets
and let e(V1, V2) be the number of edges in the bipartite subgraph of H with
bipartition (V1, Va). For every vertex i € V set z; = 1if i € Vj and z; = —1
if i € Vo. Note that for every edge {i,j} of H, (z; —x;)? = 4 if this edge has
its ends in the distinct parts of the above partition and is zero otherwise.
Now using (7), we conclude that

(dn — Apinn) = 5 1

AN

1
eVi,Vo) =7 D (mi—m)’ <
{i,j}eE



2.3 Numerical results

Let G be a circulant graph defined as follows:
V(G941) = Z9417

and
E(G941) = {{Cﬂ,y} | r—1y= a® mod 941},

i.e. the set of edges consists of those pairs of vertices x and y which differ
by a 5th residue of 941. Equivalently,

V(G941) — {O, 17 ey 940},

and
E(Gon) = {{z,y} | |z —y| € D or 941 — |z — y| € D},

where D is a distance set defined below,

D = {1,12,15, 32, 34, 37, 40, 42, 44, 46, 50, 52, 54, 55, 65, 73, 83,93, 97, 112, 114,
116,118,119, 122,123, 131, 140, 142, 144, 145, 147, 153, 154, 161, 167, 172,
175,178,180, 182, 189, 191, 198, 202, 207, 215, 218, 223, 225, 234, 243, 248,
251, 254, 278, 281, 282, 293, 302, 304, 310, 311, 317, 318, 323, 328, 339, 341,
380, 384, 386, 389, 392, 399, 402, 403, 406, 408, 410, 413, 418, 419, 427, 428,
431,437,444, 447,451, 454, 461, 466, 467}

One can check that G4, is Ky-free, 188-regular graph with |V (G, )| = 941,
|E(Gon)| = 88454 and tA(Goy) = 707632. Then, the graph H cor-
responding to Go,; in Theorem 2.3 is 48-regular with |V(H)| = 88454,
|E(H)| = 3ta(Gosr) = 2122896. Moreover, using in MATLAB [12] the
function eigs for real, symmetric and sparse matrices with option sa, we
get A\pin(H) > —15.196. Thus, Proposition 2.4 implies,

EH)| M\uin(H)|V(H
M(H) < | (2 ) Amin i’ ()| < 1397484.746 < 1415264 = 2t A (Gou).
Consequently, Theorem 2.3 yields the main result of this note.
Theorem 2.5. The Folkman number f(2,3,4) < 941.

Remark 2.6. For given numbers n and r, let G(n,r) be a circulant graph
with the vertex set

V(G(n,r)) = Zn,



’ G(n,r) ‘ p
G(127,3) | 0.030834
G(281,4) | 0.042306
G(313,4) 0.040612
G(337,4) | 0.034517
G(353,4) | 0.037667
G(457,4) | 0.030386
G(541,5) |  0.049676
G(571,5) |  0.044144
G(701,5) |  0.029507
G(769,6) |  0.044195
G(937,6) |  0.048529
G(941,5) | —0.012728

Table 1: Candidates for membership and one member of F(2,3,4).

and the edge set
E(G(n,r)={{z,y} |z #y andz —y =" mod n}.

Note that G(n,r) is well-defined, i.e. the graph is undirected, if —1 is an r-
th residue of n. In particular, Gy, = G(941,5). By exhaustive search we
found that Gy, is the smallest graph, which belongs to the family F(2,3,4),
among all graphs G(n,r) for which our technique works.

For a given Ky-free graph G(n,r) let H be a graph, which corresponds
to G(n,r) from Theorem 2.3. Let a = |E(2H)‘ - ’\mi"(h;)"/(H)‘ and f =
2tA(G(n,r)). In view of Theorem 2.3 and Proposition 2.4, if a < 3, then
G(n,r) — A, and so, G(n,r) € F(2,3,4). Obviously the converse is not
true since « is only an approximation on M(H). We define a parameter
p= D‘T_B to get an estimate how “close” G(n,r) is from property F(2,3,4).
In Table 2.3 we listed all (up to isomorphism) Ky-free graphs G(n,r) with
n < 941 and p < 0.05.

3 Concluding remarks

Recently, S. P. Radziszowski and Xu Xiaodong suggested [15] that the graph
Gio; = G(127,3), considered by R. Hill and R. W. Irving [8], belongs to
the family F(2,3,4). One can check that ta(Ghyr) = 9779. Let H be a



graph from Theorem 2.3 which corresponds to Gio7. Using a semidefinite
program with polyhedral relaxations [16, 17] we obtained an upper bound
on M(H) < 19558 = 2tA(G1a7). Note that 2¢a(Gy7) is also the straightfor-
ward upper bound from Theorem 2.3. This coincidence between numerical
and theoretical bounds may suggest that G,,;, = A. However, the question
whether G,,; € F(2,3,4), remains still open.

A related, interesting question is to find a reasonable upper for f(3,3,4).
We tried to find another argument that would ensure the existence of rela-
tively small Ky-free graphs. Such a construction for 2-colors was considered
in an earlier version of our paper (see, e.g., [2]). The existence of a rea-
sonably small graph G that yields a monochromatic triangle under every
3-coloring is an open question which we are currently trying to address.
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