On the Folkman Number f(2, 3, 4)

Andrzej Dudek adudek@mathcs.emory.edu Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA

Vojtěch Rödl

rodl@mathcs.emory.edu Department of Mathematics and Computer Science Emory University Atlanta, GA 30322, USA

November 21, 2007

Abstract

Let f(2,3,4) denote the smallest integer n such that there exists a K_4 -free graph of order n for which any 2-coloring of its edges yields at least one monochromatic triangle. It is well-known that such a number must exist. For a long time the best known upper bound, provided by J. Spencer, said that $f(2,3,4) < 3 \cdot 10^9$. Recently, L. Lu announced that $f(2,3,4) < 10\,000$. In this note, we will give a computer assisted proof showing that f(2,3,4) < 10000. To prove it we will generalize the idea of Goodman giving a necessary and sufficient condition for a graph G to yield a monochromatic triangle for every edge coloring.

1 Introduction

Let $\mathcal{F}(r, k, l), k < l$, be a family of K_l -free graphs with the property that if $G \in \mathcal{F}(r, k, l)$, then every r-coloring of the edges of G must yield at least one monochromatic copy of K_k . J. Folkman showed in [4] that $\mathcal{F}(2, k, l) \neq \emptyset$. The general case, i.e. $\mathcal{F}(r, k, l) \neq \emptyset, r \geq 2$, was settled by J. Nešetřil and the second author [13]. Let $f(r, k, l) = \min_{G \in \mathcal{F}(r, k, l)} |V(G)|$. The problem of determining the numbers f(r, k, l) in general includes the classical Ramsey numbers and thus is not easy. In this note we focus on the case where r = 2

and k = 3. We will write $G \to \Delta$ and say that G arrows a triangle if every 2-coloring of G yields a monochromatic triangle. Since the Ramsey number R(3,3) = 6 clearly f(2,3,l) = 6, for l > 6. The value of f(2,3,6) = 8was determined by R. Graham [7], and f(2,3,5) = 15 by K. Piwakowski, S. Radziszowski and S. Urbański [14]. In the remaining case, the upper bounds on f(2,3,4) obtained in [4] and [13] are extremely large (iterated tower function). Consequently, in 1975, P. Erdős [3] offered \$100 for proving or disproving that $f(2,3,4) < 10^{10}$. Applying Goodman's idea [6] (of counting triangles in a graph and in its complement) for random graphs P. Frankl and the second author [5] came relatively close to the desired bound showing that $f(2,3,4) < 8 \times 10^{11}$. This result was improved by J. Spencer [18], who refined the argument and proved $f(2,3,4) < 3 \times 10^9$ giving a positive answer to the question of Erdős [3]. Subsequently, F. Chung and R. Graham [1] conjectured that $f(2,3,4) < 10^6$ and offered \$100 for a proof or disproof. Recently, L. Lu [11] showed that f(2,3,4) < 10000 (A weaker result, $f(2,3,4) < 1.3 \times 10^5$, also answering Chung and Graham's question was independently found in an earlier version of this paper, see, e.g., [2]). All these proofs [5, 11, 18] are based on the modification of Goodman's idea [6]. The idea explores the local property of every vertex neighborhood in a graph (see Corollary 2.2).

In this note, we will present a K_4 -free graph G_{941} of order 941 and give a computer assisted proof that $G_{941} \in \mathcal{F}(2,3,4)$. This yields that $f(2,3,4) \leq$ 941. To prove it we will develop a technique, which is a generalization of ideas from [6, 13, 18]. More precisely, for every graph G we will construct a graph H with the property that G arrows a triangle if and only if the maxcut of H is less than twice number of triangles in G.

2 Computer assisted proof of f(2,3,4) < 1000

2.1 Counting blue and red triangles

In order to find an upper bound on the number f(2,3,4), we will use an idea of [6]. For any blue-red coloring of G let $T_{BR}(v)$, $T_{BB}(v)$ and $T_{RR}(v)$ count the number of triangles containing vertex v, for which two edges incident to v are colored blue-red, blue-blue and red-red, respectively. Also let T_{Blue} (T_{Red}) be the number of blue (red) monochromatic triangles. The sum $\sum_{v \in V(G)} T_{BR}(v)$ counts 2 times the number of nonmonochromatic triangles. This is because each such triangle is counted once for two different vertices. On the other hand, the sum $\sum_{v \in V(G)} (T_{BB}(v) + T_{RR}(v))$ counts 3 times the number of monochromatic triangles and once the number of

nonmonochromatic triangles. Hence,

$$\sum_{v \in V(G)} T_{BR}(v) = 2 \sum_{v \in V(G)} \left(T_{BB}(v) + T_{RR}(v) \right) - 6 \left(T_{Blue} + T_{Red} \right).$$
(1)

Consequently, $G \to \bigtriangleup$ if and only if for every edge coloring of G the following holds

$$\sum_{v \in V(G)} T_{BR}(v) < 2 \sum_{v \in V(G)} \left(T_{BB}(v) + T_{RR}(v) \right).$$
(2)

Denote by N(v) the set of neighbors of a vertex $v \in V$ and let G[N(v)] be a subgraph of G induced on N(v). Moreover, for a given cut $C \subset V(G)$ let

$$M_C(G) = \{\{x, y\} \in E(G) \mid x \in C \text{ and } y \in V \setminus C\},\$$

and that

$$M(G) = \max_{C \subset V} M_C(G),$$

i.e. M(G) is the value corresponding to the solution of the maxcut problem for G.

Proposition 2.1 (Frankl & Rödl 1986 [5]; Spencer 1988 [18]). Let G = (V, E) be a graph that satisfies

$$\sum_{v \in V(G)} M(G[N(v)]) < \frac{2}{3} \sum_{v \in V(G)} \left| E(G[N(v)]) \right|.$$
(3)

Then, $G \to \triangle$.

An easy consequence of Proposition 2.1 gives the following corollary.

Corollary 2.2. Let G = (V, E) be a graph which satisfies

$$M(G[N(v)]) < \frac{2}{3} \left| E(G[N(v)]) \right| \tag{4}$$

for every vertex $v \in V(G)$. Then, $G \to \triangle$.

Note that in particular Corollary 2.2 gives a sufficient condition for a K_4 free graph to be in $\mathcal{F}(2,3,4)$. We will extend this idea and give a necessary and sufficient condition for a graph G to yield a monochromatic triangle for every edge coloring. More precisely, for every graph G = (V, E) with $t_{\Delta} = t_{\Delta}(G)$ triangles, we construct a graph H with |E| vertices such that $G \to \Delta$ if and only if the maxcut of H is less than $2t_{\Delta}$. Let G be a graph with the vertex set $V(G) = \{1, 2, ..., n\}$. For every vertex $i \in V(G)$, let G_i be a graph with

$$V(G_i) = \left\{ \{i, j\} \mid j \in N(i) \right\}$$

and

$$E(G_i) = \{\{\{i, j\}, \{i, k\}\} \mid \text{if } ijk \text{ is a triangle in } G\}.$$

Clearly G_i is isomorphic to the subgraph G[N(i)] of G induced on the neighborhood N(i). Now we define a graph H as follows. Let

$$V(H) = E(G)$$

and

$$E(H) = \bigcup_{i \in V(G)} E(G_i).$$

In other words, H is a graph with the set of vertices being the set of edges of G such that e and f are adjacent in H if e and f belong to a triangle in G. Clearly |V(H)| = |E(G)| and $|E(H)| = 3t_{\Delta}(G)$. Moreover, observe that there is one to one correspondence between blue-red colorings of edges of Gand bipartitions of vertices of H. Let C be a cut with the partition V(H) = $B \cup R$. Since the edges between B and R correspond to nonmonochromatic triangles in G, we conclude that the value corresponding to the cut C equals to

$$M_C(H) = \sum_{i \in V(G)} T_{BR}(i).$$
(5)

Counting the edges which lie entirely in B or in R yields

$$\sum_{i \in V(G)} \left(T_{BB}(i) + T_{RR}(i) \right) = |E(H)| - M_C(H) = \left(3t_{\Delta} - M_C(H) \right).$$
(6)

By (1) we have that

$$\sum_{i \in V(G)} T_{BR}(i) \le 2 \sum_{i \in V(G)} \left(T_{BB}(i) + T_{RR}(i) \right),$$

and by (2), $G \to \triangle$ if and only if the strict inequality holds for every edge coloring of G. Consequently, (5) and (6) yield that $G \to \triangle$ if and only if

$$M_C(H) < 2(3t_{\triangle} - M_C(H)),$$

for every cut of H. Consequently, the following holds.

Theorem 2.3. Let G be a graph. Then, there exists a graph H of order |E(G)| with $M(H) \leq 2t_{\triangle}(G)$ such that $G \rightarrow \triangle$ if and only if $M(H) < 2t_{\triangle}(G)$.

2.2 Approximating the maxcut

Since Theorem 2.3 requires an assumption regarding the maxcut of graph H we will approximate it with Proposition 2.4 below. The proof of this proposition for regular graphs can be found in a paper of M. Krivelevich and B. Sudakov [10]. Along the lines of their proof one can obtain the following easy generalization, which we present here.

Proposition 2.4. Let H = (V, E) be a graph of order n. Let $\lambda_{min} = \lambda_{min}(H)$ be the smallest eigenvalue of the adjacency matrix of H. Then

$$M(H) \le \frac{|E(H)|}{2} - \frac{\lambda_{\min}|V(H)|}{4}$$

Proof. Let $A = (a_{ij})$ be the adjacency matrix of H = (V, E) with the average degree d and $V = \{1, 2, ..., n\}$. Let $\mathbf{x} = (x_1, ..., x_n)$ be any vector with coordinates ± 1 . Then,

$$\sum_{\{i,j\}\in E} (x_i - x_j)^2 = \sum_{i=1}^n d_i x_i^2 - \sum_{i\neq j} a_{ij} x_i x_j = \sum_{i=1}^n d_i - \sum_{i\neq j} a_{ij} x_i x_j = nd - \mathbf{x}^T A \mathbf{x}$$

By the Rayleigh-Ritz ratio (see, e.g., Theorem 4.2.2 in [9]), for any vector $\mathbf{z} \in \mathbb{R}^n$, $\mathbf{z}^T A \mathbf{z} \geq \lambda_{min} \|\mathbf{z}\|^2$, where by $\|.\|$ we denote the Euclidean norm. Therefore,

$$\sum_{\{i,j\}\in E} (x_i - x_j)^2 = nd - \mathbf{x}^T A \mathbf{x} \le nd - \lambda_{min} \|\mathbf{x}\|^2 = nd - \lambda_{min} n.$$
(7)

Let $V = V_1 \cup V_2$ be an arbitrary partition of V into two disjoint subsets and let $e(V_1, V_2)$ be the number of edges in the bipartite subgraph of H with bipartition (V_1, V_2) . For every vertex $i \in V$ set $x_i = 1$ if $i \in V_1$ and $x_i = -1$ if $i \in V_2$. Note that for every edge $\{i, j\}$ of H, $(x_i - x_j)^2 = 4$ if this edge has its ends in the distinct parts of the above partition and is zero otherwise. Now using (7), we conclude that

$$e(V_1, V_2) = \frac{1}{4} \sum_{\{i,j\} \in E} (x_i - x_j)^2 \le \frac{1}{4} (dn - \lambda_{\min} n) = \frac{|E|}{2} - \frac{\lambda_{\min} |V|}{4}.$$

2.3 Numerical results

Let G be a circulant graph defined as follows:

$$V(G_{941}) = \mathbb{Z}_{941},$$

and

$$E(G_{941}) = \{\{x, y\} \mid x - y = \alpha^5 \mod 941\},\$$

i.e. the set of edges consists of those pairs of vertices x and y which differ by a 5th residue of 941. Equivalently,

$$V(G_{941}) = \{0, 1, \dots, 940\},\$$

and

$$E(G_{941}) = \{\{x, y\} \mid |x - y| \in D \text{ or } 941 - |x - y| \in D\},\$$

where D is a distance set defined below,

$$\begin{split} D &= \{1, 12, 15, 32, 34, 37, 40, 42, 44, 46, 50, 52, 54, 55, 65, 73, 83, 93, 97, 112, 114, \\ &116, 118, 119, 122, 123, 131, 140, 142, 144, 145, 147, 153, 154, 161, 167, 172, \\ &175, 178, 180, 182, 189, 191, 198, 202, 207, 215, 218, 223, 225, 234, 243, 248, \\ &251, 254, 278, 281, 282, 293, 302, 304, 310, 311, 317, 318, 323, 328, 339, 341, \\ &380, 384, 386, 389, 392, 399, 402, 403, 406, 408, 410, 413, 418, 419, 427, 428, \\ &431, 437, 444, 447, 451, 454, 461, 466, 467\}. \end{split}$$

One can check that G_{941} is K_4 -free, 188-regular graph with $|V(G_{941})| = 941$, $|E(G_{941})| = 88\,454$ and $t_{\triangle}(G_{941}) = 707\,632$. Then, the graph H corresponding to G_{941} in Theorem 2.3 is 48-regular with $|V(H)| = 88\,454$, $|E(H)| = 3t_{\triangle}(G_{941}) = 2\,122\,896$. Moreover, using in MATLAB [12] the function **eigs** for real, symmetric and sparse matrices with option **sa**, we get $\lambda_{min}(H) \geq -15.196$. Thus, Proposition 2.4 implies,

$$M(H) \le \frac{|E(H)|}{2} - \frac{\lambda_{\min}(H)|V(H)|}{4} \le 1\,397\,484.746 < 1\,415\,264 = 2t_{\triangle}(G_{941}).$$

Consequently, Theorem 2.3 yields the main result of this note.

Theorem 2.5. *The Folkman number* $f(2, 3, 4) \le 941$ *.*

Remark 2.6. For given numbers n and r, let G(n,r) be a circulant graph with the vertex set

$$V(G(n,r)) = \mathbb{Z}_n,$$

G(n,r)	ρ
G(127,3)	0.030884
G(281, 4)	0.042306
G(313, 4)	0.040612
G(337, 4)	0.034517
G(353, 4)	0.037667
G(457, 4)	0.030386
G(541, 5)	0.049676
G(571, 5)	0.044144
G(701, 5)	0.029507
G(769, 6)	0.044195
G(937, 6)	0.048529
G(941,5)	-0.012728

Table 1: Candidates for membership and one member of $\mathcal{F}(2,3,4)$.

and the edge set

$$E(G(n,r)) = \{ \{x, y\} \mid x \neq y \text{ and } x - y = \alpha^r \mod n \}.$$

Note that G(n,r) is well-defined, i.e. the graph is undirected, if -1 is an r-th residue of n. In particular, $G_{941} = G(941,5)$. By exhaustive search we found that G_{941} is the smallest graph, which belongs to the family $\mathcal{F}(2,3,4)$, among all graphs G(n,r) for which our technique works.

For a given K_4 -free graph G(n,r) let H be a graph, which corresponds to G(n,r) from Theorem 2.3. Let $\alpha = \frac{|E(H)|}{2} - \frac{\lambda_{min}(H)|V(H)|}{4}$ and $\beta = 2t_{\Delta}(G(n,r))$. In view of Theorem 2.3 and Proposition 2.4, if $\alpha < \beta$, then $G(n,r) \to \Delta$, and so, $G(n,r) \in \mathcal{F}(2,3,4)$. Obviously the converse is not true since α is only an approximation on M(H). We define a parameter $\rho = \frac{\alpha - \beta}{\alpha}$ to get an estimate how "close" G(n,r) is from property $\mathcal{F}(2,3,4)$. In Table 2.3 we listed all (up to isomorphism) K_4 -free graphs G(n,r) with $n \leq 941$ and $\rho < 0.05$.

3 Concluding remarks

Recently, S. P. Radziszowski and Xu Xiaodong suggested [15] that the graph $G_{127} = G(127,3)$, considered by R. Hill and R. W. Irving [8], belongs to the family $\mathcal{F}(2,3,4)$. One can check that $t_{\triangle}(G_{127}) = 9779$. Let H be a

graph from Theorem 2.3 which corresponds to G_{127} . Using a semidefinite program with polyhedral relaxations [16, 17] we obtained an upper bound on $M(H) \leq 19558 = 2t_{\triangle}(G_{127})$. Note that $2t_{\triangle}(G_{127})$ is also the straightforward upper bound from Theorem 2.3. This coincidence between numerical and theoretical bounds may suggest that $G_{127} \nleftrightarrow \triangle$. However, the question whether $G_{127} \in \mathcal{F}(2,3,4)$, remains still open.

A related, interesting question is to find a reasonable upper for f(3,3,4). We tried to find another argument that would ensure the existence of relatively small K_4 -free graphs. Such a construction for 2-colors was considered in an earlier version of our paper (see, e.g., [2]). The existence of a reasonably small graph G that yields a monochromatic triangle under every 3-coloring is an open question which we are currently trying to address.

4 Acknowledgment

We would like to thank L. Horesh for a fruitful discussion about computing eigenvalues for sparse matrices. We also owe special thanks to F. Rendl and A. Wiegele, who helped us in using Biq Mac solver [16]. Last, but not least, we would like to thank the referee for his very valuable and encouraging comments.

References

- F. Chung and R. Graham, Erdős on graphs. His legacy of unsolved problems, A K Peters, Wellesley, Massachusetts (1998), 46–47.
- [2] A. Dudek, Problems in extremal combinatorics, PhD thesis, Emory University (2008).
- [3] P. Erdős, Problems and results in finite and infinite graphs, Recent advances in graph theory (Proceedings of the Symposium held in Prague), edited by M. Fiedler, Academia Praha (1975), 183–192.
- [4] J. Folkman, Graphs with monochromatic complete subgraphs in every edge coloring, SIAM J. Appl. Math. 18 (1970), 19–24.
- [5] P. Frankl and V. Rödl, Large triangle-free subgraphs in graphs without K_4 , Graphs and Combinatorics **2** (1986), 135–144.
- [6] A. Goodman, On sets of acquaintances and strangers at any party, Amer. Math. Mon. 66 (1959), 778–783.

- [7] R. Graham, On edgewise 2-colored graphs with monochromatic triangles and containing no complete hexagon, J. Comb. Theory 4 (1968), 300– 300.
- [8] R. Hill and R. W. Irving, On group partitions associated with lower bounds for symmetric Ramsey numbers, European J. Combinatorics 3 (1982), 35–50.
- [9] R. Horn and C. Johnson, *Matrix analysis*, Cambridge University Press, (1985), 176–177.
- [10] M. Krivelevich and B. Sudakov, *Pseudo-random graphs*, More Sets, Graphs and Numbers, Bolyai Society Mathematical Studies, 15, Springer, (2006), 199–262.
- [11] L. Lu, *Explicit construction of small Folkman graphs*, submitted.
- [12] The MathWorks, Inc., MATLAB, http://www.mathworks.com/products/matlab/
- [13] J. Nešetřil and V. Rödl, The Ramsey property for graphs with forbidden complete subgraphs, J. Comb. Theory Ser. B 20 (1976), 243–249.
- [14] K. Piwakowski, S. Radziszowski and S. Urbański, Computation of the Folkman number $F_e(3,3;5)$, J. Graph Theory **32** (1999), 41–49.
- [15] S. Radziszowski and Xu Xiaodong, On the most wanted Folkman graph, Geombinatorics 16 (4) (2007), 367–381.
- [16] F. Rendl, G. Rinaldi and A. Wiegele, Biq Mac Solver: Binary quadratic and max cut solver, http://biqmac.uni-klu.ac.at/
- [17] F. Rendl, G. Rinaldi and A. Wiegele, A branch and bound algorithm for Max-Cut based on combining semidefinite and polyhedral relaxations, Integer programming and combinatorial optimization, Lecture Notes in Comput. Sci., 4513, Springer, (2007), 295–309.
- [18] J. Spencer, Three hundred million points suffice, J. Comb. Theory Ser. A 49 (1988), 210–217. Also see erratum by M. Hovey in Vol. 50, p. 323.