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0. INTRODUCTION

The origins of the theory of random graphs are easy to pin down. Undoubtfully
one should look at a sequence of eight papers co-authored by two great mathemati-
cians: Paul Erdés and Alfred Rényi, published between 1959 and 1968:

[[ERAH] random graphs I, Publ. Math. Debrecen 6 (1959), 290-297.

[[ ER 68]]the evolution of random graphs, Publ. Math. Inst. Hung. Acad. Sci. 5
(1960), 17-61.

[[ER@tathe evolution of random graphs, Bull. Inst. Internat. Statist. 38, 343-347.

[[ER 6¥bllhe strength of connectedness of a random graph, Acta Math. Acad. Sci.
Hungar. 12 (1961), 261-267.

[[ER 83fymmetric graphs, Acta Math. Acad. Sci. Hung. 14, 295-315.

[[ER 6] random matrices, Publ. Math. Inst. Hung. Acad. Sci. 8 (1964), 455-461.

[[ER 6K}| the existence of a factor of degree one of a connected random graph, Acta
Math. Acad. Sci. Hung. 17 (1966), 359-368.

[[ER 68}] random matrices II, Studia Sci. Math. Hung. 3, 459-464.

Our main goal is to summarize the results, ideas and open problems contained
in those contributions and to show how they influenced future research in random
graphs.

For us it was a great adventure to return to the roots of the theory of random
graphs, and to find out again and again, how far-reaching the impact of Erdds and
Rényi’s work on the field is. The reader will find in our paper many quotations
from their original papers (always in italics). We use this convention to let them
speak directly and to preserve their special insightful style and way of thinking and
stating the problems. Starting from there we lead the reader through the literature,
including the most current one, trying to show how the ideas of Erdés and Rényi
developed, how much time, skills and effort to solve some of their most challenging
open problems was needed. Finally, to add some “salt and pepper” to our presen-
tation, full of admiration and respect, we point out to a few false statements and
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oversimplifications of proofs, which have been found in their monumental legacy by
the next generations of random graph theorists.

1. THE PROBABILISTIC METHOD — THE BIRTH OF A RANDOM GRAPH

The origins of the notion of a random graph are directly linked to the creation
of the probabilistic method — the favorite weapon of Erdés. In his 1947 paper [Er
47] he applied this method to obtain a lower bound on the Ramsey number Ry,
choosing as a probability space an object called today a random graph. Here is
how it happened.

Around that time it became clear that there is no hope for exact evaluation of
higher Ramsey numbers and that fair estimates are, therefore, of great interest. In
the forties, the best upper bound was of the order 4*//k, while the lower bound
was only quadratic in k. Under these circumstances, the following result of Erdés
was a significant step toward closing the gap.

Theorem 1.1 (Erdds, 1947). For every natural k

k log 2
Ry, > ——2k/2 (1——).
k o2 2

Proof. The inequality to prove is equivalent to the existence of an n-vertex graph,

n= {ﬁﬂc/ 2 (1 — 10,% 2)J , with no k-clique and no k-independent set. Let (2, F, P)

be the following probability space: € is the set of all 2(3) graphs whose vertex set
is [n] = {1,2,...,n}, F is the family of all subsets of €2, and for every w € Q

Plw) = <%>(3) |

The expected number of k-sets which are cliques or independent sets is (2)21_( ),
which is less than 1 due to the choice of n. Hence there exists an n-vertex graph
with no such set. [l

Over the years the probabilistic method has been developed and refined in many
ways, leading, however, only to some minor improvements over the Erdds bound.

In mid seventies, Erdés returned to these estimates with another goal in mind,
which was to pin-point the size of the largest clique (and independent set) in almost
all graphs. Observe that the inequality n > ck2%/2, solved for k, gives

k < 2logn —2loglogn+ O(1) =k .

Thus, for each k1 < ko, we have

and, consequently,
ATECY
2 2 J =o0(1) .
(") )
By the first moment method we may now conlude that almost all graphs have no
(k1 + 1)-clique nor (k1 + 1)-independent set. For further developments in relation
to the chromatic number of a random graph see section 5.
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2. THE FIRST QUESTION — CONNECTIVITY

The notion of a random graph introduced in the 1947 paper was forgotten for
a decade until Paul Erdés and Alfred Rényi published a series of papers entirely
devoted to properties of random graphs. The model of a random graph they ex-
clusively investigated was the uniform one. Here is how they defined it: “Let E, n
denote the set of all graphs having n given labelled vertices and N edges. A random
graph 'y N can be defined as an element of E, n chosen at random, so that each
of the elements of E, n have the same probability to be chosen, namely 1/((]%))”
(In this paper we adopt the original notation I'y, n.)

They were aware of existing results about other models of random graphs. In
particular, they acknowledge in a footnote to [ER 61a] that E.N.Gilbert [Gi 59]
studied the connectedness of what we call today the binomial model, where “We
may decide with respect to each of the (72‘) edges, whether they should form part
of the random graph considered or not, the probability of including a given edge
being p = N/ (72‘) for each edge and the decisions concerning different edges being
independent.” (In this paper we shall denote this model by I',,.) In [ER 61a]
they mention that the investigations of the binomial model can be reduced, due to
a conditional argument they attribute to Hajek, to that of I';, ;. However, they
did not formulate any equivalence theorem (these appeared much later in [Bo 85]
and [Lu 90c]) and occasionally stated the binomial counterparts of their theorems
without proofs or repeated their proofs step by step.

Apparently they were not aware of the result of Gilbert and of the binomial model
at all when they wrote their first paper on random graphs,“On random graphs I.”
. The question addressed there was that of connectedness of a random graph. In
fact, according to a remark in [ER 59], this problem was tried and partially solved
already in 1939, when P. Erdos and H. Whitney, in an unpublished work: “proved
that if N > (% + 8) nlogn where e > 0 then the probability of I', n being connected
tends to 1 if n — oo, but if N < (% — 8) nlogn with € > 0 then the probability of
'y~ being connected, tends to 0 if n — co.”

In the first “official” paper on random graphs, Erdds and Rényi refined the above
result as their (partial) answer to questions 1-3 from the following list of problems
they posed.

(1) What is the probability of I', n being completely connected?

(2) What is the probability that the greatest connected component (subgraph) of
Iy v should have effectively n — k points? (k=0,1,...)

(3) What is the probability that T'y, n should consist of exactly k + 1 connected
components? (k=0,1,...)

(4) If the edges of a graph with n vertices are chosen successively so that after
each step every edge which has not yet been chosen has the same probability
to be chosen as the next, and if we continue this process until the graph
becomes completely connected, what is the probability that the number of
necessary steps v will be equal to a given number [?

Note that in problem 4 Erdés and Rényi describe a genuine random graph pro-
cess, whose advanced analysis could be carried over only two decades later.
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Before turning to the proofs, they recall a recursive formula and a generating
function for the number C(n, N) of connected graphs on n labeled vertices and with
N edges, due to Riddell and Uhlenbeck, and also Gilbert. But immediately they
comment that neither of them “...helps much to deduce the asymptotic properties
of C(n,N). In the present paper we follow a more direct approach.”

We now present the first result on random graphs and its proof in a slightly
modified form. The idea of the proof, however, remains unchanged. In the 1959
paper only the middle part of the theorem below was stated explicitly. The other
two follow by letting ¢ = ¢, tend to +00 or —oo, respectively.

Theorem 2.1 (Erdés and Rényi, 1959).

0if ¥ — Llogn — —o0

P(Ty n is connected ) = { e=¢ ~ if X — Llogn — ¢

Proof.

For convenience we switch to the binomial model, shortening the original argu-
ment a lot, and, at the same time, avoiding a harmless error in the proof of “the
rather surprising Lemma’ of [ER 59|, pointed out by Godehardt and Steinbach [GS
81].

To make this argument formal, assume that 2np — logn — loglogn — oo but
np = O(logn). Thus, almost surely (i.e. with probability tending to 1 as n — o0),
there are no isolated edges in I', ,. What remains to be shown is that there are
no components of size 3 < k < 7 either. To this end consider the random variable
X counting such components. Then, bounding the probability that a given set
of k vertices spans a connected subgraph by k*~2pF—!, and using the inequality
np > %log n, we obtain

n/2
T _ _ _ en k _ I
Ezp(X) < (k)kk 25k 1(1_p)k(n k) <Z(?) fh—2pk—1g=(n—k)pk

k=3 k

vn k n
1 1 enp 1 1 / enp \F*

S52ﬁ<e(n—\/ﬁ)p> +§ Z ﬁ(enp/2)
k=3 k>/n

_of_™ log®n n 1 elogn \/ﬁ:o(l).
logn n3/2 logn \ 2nt/4
Hence, almost surely there are no components outside the largest one other
than isolated vertices (Erdés and Rényi say that such a graph is of type A) and

the threshold for connectedness coincides with that for disappearence of isolated
vertices, i.e. for 2np — logn — loglogn — oo

P(T,, p is connected ) = P(6(T, ,) > 0) + o(1) .

Erdés and Rényi found the limiting value of P(6(T', ) > 0) by inclusion-exclusion.
Nowadays a standard approach is by the method of moments which serves to show
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that the number of isolates is asymptotically Poisson. They used that method in
the 1960 paper in a more general setting where components isomorphic to a given
graph G were considered. We shall return to this later.

Answering question 4, they gave a somewhat oversimplified proof of the fact that

—1inlo 2z
lim P<w<$>=€_e2 .

n—o0 T

Erdés and Rényi conclude the 1959 paper as follows. “The following more general
question can be asked: Consider the random graph Uy, n(n) with n possible vertices
and N(n) edges. What is the distribution of the number of vertices of the greatest
connected component of I'y, n(n) and the distribution of the number of its compo-
nents? What is the typical structure of 'y, n(n) (in the sense in which, according to
our Lemma, the typical structure of I'y, n(n) s that it belongs to type A)? We have
solved these problems in the present paper only in the case N(n) = %nlogn + cn.
We shall return to the general case in an other paper [8].” ([8]=[ER 60] on our
reference list.)

As far as connectedness is concerned, in the 1961 paper Erd6s and Rényi go
on and find the threshold for r-connectivity of I',, , for every natural r. “If G
is an arbitrary non-complete graph, let c,(G) denote the least number k such that
by deleting k appropriately chosen vertices from G(...) the resulting graph is not
connected. (...) Let c.(G) denote the least number | such that by deleting | ap-
propriately chosen edges from G the resulting graph is not connected.” A graph is
r-connected if no removal of r or less vertices can disconnect it. When the random
graph becomes almost surely r-connected? Theorem 2.1 revealed an interesting
feature of random graphs. Namely, quite often trivial necessary conditions become
asymptotically sufficient in the sense that for a typical, large graph their fulfillment
guaranties that the property in question holds. Due to Theorem 2.1 this is the case
of connectedness versus the nonexistence of isolated vertices. For r-connectedness
such natural necessary condition is that the minimum degree (denoted in [ER 61b]
by ¢(G)) must be at least . Otherwise removing the vertices adjacent to a vertex
of minimum degree would disconnect the graph. Erdés and Rényi showed in 1961
that in the range %nlogn < N < nlogn this is the only way one can disconnect
the random graph I';, ;v by removing the smallest possible number of vertices. A
manimal cutset is a set of vertices whose removal makes the graph disconnected
but no proper subset of that set has this property. For 2 < k < "T_l let A; be
the event that there is in I';, ; a minimal cutset of size s, 1 < s < r — 1, which
leaves the second largest component of size k. Arguing similarly as in the proof of
Theorem 2.1, they proved that P(|J,~5 Ax) = 0(1), meaning that, almost surely,
if T'), v is not r-connected then the only reason for that is the presence of vertices
of degree less than r. The method of moments (again, in the inclusion—exclusion
cover-up) gives that, for N(n) = Inlogn + Lnloglogn + an + o(n), their number
is asymptotically Poisson. We thus arrived at the main result of the 1961 paper.
(We retain the original numbering of the formulas.)

Theorem 2.2 (Erdds and Rényi, 1961). If we have N(n) = inlogn+%nloglogn+
an + o(n) where a is a real constant and r a non-negative integer, then
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. e—2a
(3) nlglgo Pep(Tn,nmy) =7) =1 —exp <_ 7! ) ’
further

. e—2a
@ i PledTv) =1) =1 - exp (=<1 )
and

. e—2a
) i, P(lCn i) =) =1 - (=7

In a proceeding remark they promise: “The statement (5) of Theorem 2.2 gives
information about the minimal valency of points of I'y n. In a forthcoming note
we shall deal with the same question for larger ranges of N (when ¢(T'n n) tends to
infinity with n ), further with the related question about maximal valency of points of
Iy, ~.” This promise was never fulfilled. The only trace of their interest in the vertex
degrees of a random graph can be found in the description of the last phase of the
evolution of I',, 5 in [ER 61a]: Phase 5. consists of the range N(n) ~ (nlogn)w(n)
where w(n) — oo. In this range the whole graph is not only almost surely connected,
but the orders of points are almost surely asymptotically equal. Thus the graph
becomes in this phase ‘asymptotically reqular’. 7 The proof of that statement can
be found in the last section of [ER 60]. A very carefull anaysis of vertex degrees in
a random graph is due to Bollobés [Bo82a,b] and can be found also in his book [Bo
85].

3. SUBGRAPHS — THE BEGINNING OF A THEORY

After having written their paper on connectivity of a random graph Erdds and
Rényi decide to write a long paper addressing several properties of random graphs.
That seminal paper was preceded by an extended abstract [ER 61a], where they
outlined the main goals of the theory to be born. Our main goal is to show (...)
that the evolution of a random graph shows very clear-cut features. The theorems
we have proved belong to two classes. The theorems of the first class deal with
the appearence of certain subgraphs (e.g. tress, cycles of a given order etc.) or
components, or other local structural properties, and show that for many types of
local structural properties A a definite ‘threshold’ A(n) can be given, so that if
% — 0 for n — oo then the probability that the random graph Uy nn) has the

structural property A tends to 0 for n — oo, while for % — oo forn — oo

the probability that the random graph Uy nn) has the structural property A tends
to 1 forn — oo. (...) The theorems of the second class are of similar type, only
the properties A considered are not of a local character, but global properties of the
graph T'p, n(n) (e.g. connectivity, total number of components, etc.)” The existence
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of a threshold in all cases they considered was a rather surprising fact for Erdés and
Rényi. Only three decades later it was proved by Bollobds and Thomason [BT 87]
that, as a consequence of the Kruskal-Katona inequality, every monotone property
(family) of random subsets of a set has a threshold in the above sense.

In the same abstract they comment that their proofs are “(...) completely el-
ementary, and are based on the asymptotic evaluation of combinatorial formulae
and on some well-known general methods of probability theory (...)”

The first theorem of the major paper [ER 60| established the threshold for the
existence of a subgraph of a given type for a broad class of subgraphs. “If a graph
has n vertices and N edges, we call the number % the ‘degree’ of the graph (As a
matter of fact % is the average degree of the vertices of G.) If a graph G has the
property that G has no subgraph having a larger degree than G itself, we call G a
balanced graph.”

Theorem 3.1 (Erdés and Rényi, 1960). Letk >2 andl (k—1<1< (%)) be
positive integers. Let By, denote an arbitrary not empty class of connected balanced
graphs consisting of k points and | edges. The threshold function for the property
that the random graph considered should contain at least one subgraph isomorphic
with some element of By is n2-1.”

Among special cases they mention trees, connected unicyclic graphs, cycles, com-
plete graphs and complete bipartite graphs all of which are balanced. Over twenty
years later, Bollobds [Bo 81] generalized this theorem to arbitrary (not only bal-
anced) graphs. He, however, used a rather complicated method. In 1985, to a great
surprise to all involved, Ruciniski and Vince [RV 85] found out that the original
proof of Erdés and Rényi which was based on the second moment method can be
trivially adapted to cover all graphs as well. We now give that proof in the binomial
model.

Theorem 3.2 (Bollobds, 1981). For arbitrary graph G with at least one edge,

{ 0 if p = o(n~1/™¢)

lim P(G C Fn,P) = 0 jf’n,_l/mG = 0(]9) s

n—o0

where mg = maxgcge dy and dg = ;‘]fgggi

Proof. Let G be a graph with v vertices and [ > 1 edges. Denote by X the number
of copies of G in I'y, , and define, for each copy G’ of G in the complete graph K,
an indicator random variable Igs equal to 1if G’ C T'y, , and 0 otherwise. As there

n v! :
are (v) Zwt(C) such copies, we have

Exzp(Xg) =Y  Ezp(Iar) = ©(n"p') .
T

Hence if p = o(n~1/m¢) then ®¢ = mingcg Exp(Xg) — 0 and, by the first
moment method, for some subgraph Hy of G,
P(GCT,p) <PH,CTl,,) < FExp(Xg,) =o0(1) .

Using the fact that I and I are independent if, and only if, E(G)NE(G") = 0
and assuming that p — 0, we have
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Var(Xg) = Y Cov(Ig/,Igr) = > [Bap(eler) — Exp(Ia)Exp(Ign)]
G ,G" E(GNE(G")#0

— O § : n2vg—va2eg—eH
HCG,eg>0

Thus, if n=1/™¢ = o(p) then &g — co and

Var(Xg)
(Ezp(Xg))?

=\ e T =€ (36) =0

HCG,E(H)#0

P(G¢T,p) =P(Xg=0)<

O

The quantity ®¢ plays here a crucial role. In fact, the inequalities
1-0¢<PG¢T,,) <c1/Pq
obtained in the above proof have been strengthened to exponential bounds
e 2% < P(G ¢ Tpp) < e” %6

where the L-H-S follows by the FKG inequality and the R-H-S is a special case
of a recent inequality from [JER 90].

As far as the asymptotic distributions of subgraph counts are concerned, Erdés
and Rényi treated in [ER 60] only trees and cycles. For trees of order k they

established a limiting Poisson distribution on the threshold N ~ en=1. They
observed that the same result holds for isolated trees, since in this range almost
surely all k-vertex trees are isolated (i.e. are components of the random graph).
They also found another Poisson threshold for isolated trees at N = ﬁnlogn +
k—dnloglogn + cn + o(n), beyond which isolated trees die out (swallowed by the
giant component on its way to absorb all the vertices of the random graph). They
also established an asymptotic normality of the number of isolated trees of order &
(after suitable standardization) in the whole range of N between the two thresh-
olds. As observed by A.Barbour in [Ba 82], the proof given by Erdés and Rényi
was not correct and in the range N ~ cn, ¢ # 1/2, the standardization was not
right. However, using another method Barbour showed that indeed the asymptotic
normality holds in the entire range in question. For cycles and isolated cycles they
established a Poisson distribution (different in each case) at N ~ cn and observed
that contrary to isolated trees, “(...) the probability that I, n contains an isolated
cycle of order k mever approaches 1.” A similar result was proved for connected
unicyclic graphs. All these results were obtained by the method of moments based
on a fact from probability theory that for all distributions which are uniquely de-
termined by their moments (Poisson and normal are such) the convergence of all
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moments of a sequence of random variables to the moments of that distribution
implies convergence in distribution [Bi 79, Thm. 30.2]. Erdés and Rényi prove this
fact as a lemma just for the Poisson distribution, although they use it also for the
normal distribution. At the end of the paper, in a remark added in proof, they
acknowledge that N.V.Smirnov proved this lemma already in 1939.

They conclude their investigations of local properties of random graphs with the
comment: “Similar results can be proved for other types of subgraphs, e.g. complete
subgraphs of a given order. As however these results and their proofs have the same
pattern as those given above we do not dwell on the subject any longer and pass
to investigate global properties of the random graph I'y, n.” In 1979, K. Schiirger, a
former Ph.D. student of Erdés proved similar results for complete subgraphs ([Sch
79]) and a few years later Karoniski [Ka 82] extended them to so called k-trees, a
common generalization of trees and complete graphs. All these particular cases led
to a general result for all strictly balanced graphs. A graph is strictly balanced if
every proper subgraph has its degree strictly smaller than the graph itself. Let us

denote dg = I‘E;Eggi and recall that X is the number of copies of G in a random

graph I'y, ,. The following result was proved independently in [Bo 81] and [KR 83].

Theorem 3.3 (Bollobas 1981, Karoriski and Ruciniski 1983). If G is a
strictly balanced graph and np® — ¢ > 0 then Xg converges to the Poisson
distribution with expectation ﬁ(a)

Proof. Consider the factorial moments of Xg. We have, for r = 1,2, ...,

Exp(Xa)r)= Y. PUg,..Ig,=1)=E,+E],
G1,...,G,

where the summation extends over all r-tuples of distinct copies of G in K,, and
E] is the part where all the copies in an r-tuple are vertex disjoint. It is easy to
verify that in our case

E| ~ (Ezp(Xg))" .

It implies that X¢ is asymptotically Poisson if, and only if E! = o(1). It remains
to prove that E! = o(1). Let e; be the minimum number of edges in a ¢-vertex
union of 7 not mutually vertex disjoint copies of G.

Claim. Foreveryr > 2 andr <t <rv, e; > tdg.

Proof of Claim. For every graph F define fr = dg|V(F)| — |E(F)|. Then we are
to prove that for every graph F' which is a union of 7 not mutually vertex disjoint
copies of G, fr < 0. We shall do it by induction on 7, relying heavily on the
modularity of f. For » = 2 we have

fGlUG2 = fG1 +fG2 - fGlnG2 <0 9

since dg, = dg, = dg and dg,ng, < dg as G is strictly balanced. For arbitrary
r > 3 we number the copies of G forming the union F' in such a way that there is
at least one pairwise intersection within Gy, ...,G,_;. Then H = F' N G,, where
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F' = U:;ll G, may be any subgraph of G including G itself and the empty graph,
but in any case fg > 0. Thus

JFr=fr+fa, —fa <0

by the induction assumption and the comment above.
Having proven the Claim we easily complete the proof of Theorem 3.3. Indeed

ry—1

E! = Zo ) =o(1). O

If a graph G is balanced but not strictly balanced then the limiting distribution of
X on the threshold, i.e. when p = ©(n~1/4¢), becomes quite involved. Although,
in principle, as shown by Bollobds and Wierman [BW 89], it can be computed, there
is no nice closed formula. For example, when G is a disjoint union of 2 triangles
then the limit distribution is that of the random variable (%), where Y is Poisson.

When G is the triangle with a pendant edge, the limit is Ziz=1 Y;, where all random
variables involved are independent and Poisson. When G is the triangle with two
pendant edges hanging at the same vertex then Xy converges to the distribution
of 27 . (%), where again all random variables are independent Poisson. One more
example: if G is the triangle with a path of length 2 hanging at one of it vertices,

then the limit distribution is that of Zz: Wi Y;, where all random variables are
independent Poisson. We can only hope that so far the reader is convinced that a
pattern does indeed exist.

If G is nonbalanced, then the expectation of X tends to infinity and one has
to normalize. It turns out that there is a nonrandom sequence a,(G) — oo such
that the asymptotic distribution of X(%) coincides with that of X g, where H is
the largest subgraph of G for which dg = mg. Clearly, H is balanced and we are
back to the balanced case. The sequence a,(G) is equal to the expected number
of extensions of a given copy of H to a copy of G in the random graph I',, ,. For
details see [Ru 90, page 292].

Beyond the threshold, i.e. when np™¢& — oo, X converges after standardization
to the standard normal distribution as long as n?(1 —p) — co. (For bigger p Xg is
either Poisson or degenerate, according to the formula X¢ ~ (7) #('G) —cn(G)Z,
where Z is the binomial random variable counting edges in the complement of I';, ,,
and ¢, (G) is the number of copies of G in K,, containing a fixed edge. For details
see [Ru 88].) This result was supplemented by the rate of convergence in [BKR, 89].
It was shown there that the total variation distance between standardized X and

the standard normal distribution can be bounded by O(%) as long as p /4 1 and

by O( \/—) otherwise. Recall that ®¢ — oo if and only if np™¢ — oc.

A variant of the small subgraph problem is one when we only count induced
subgraphs of I',, , which are isomorphic to G (induced copies). Let Y count them.
Then, denoting v = [V(G)| and { = |E(G)|, Ezp(Yg) = Ezp(Xe)(1 — p)&)~, and
as long as p — 0 there is no substancial difference in the limiting distribution of
X¢ and Yg. For p constant, however, interesting things may happen. First of all,
in contrast to X, the variance of Yo may drop below the order of n2?~2. It does
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so when Fxp(I|Ji2) = Exzp(I), i.e. when p = (f,—), where I is the indicator of the

2
event that there is an induced copy of G in I',, , on the vertex set {1,...,v} and J;;
is the indicator that the edge 47 is present in 'y, ,. But if Var(Yg) = ©(n?'~3) then
still Y is asymptotically normal, and only when the variance drops further down
to the order of n2~* the distribution of standardized Y becomes nonnormal (the
convolution of normal and x? distributions). It is a purely combinatorial question
when Var(Yg) = ©(n?*~*). For the higher terms to cancel out one needs that
Exp(I|Ji2, J13,J23) = Exp(I), or, equivalently, that in addition to p = ﬁ, the

2
proportion t3 : ty : t1 : tg = p2 : 3p?q : 3pqg? : ¢° is satisfied, where ¢; is the number
of induced subgraphs of G isomorphic to the graph with 3 vertices and ¢ edges.
For p = %, an example of a graph satisfying these requirements is the wheel on 8
vertices, i.e. the graph obtained from the 7-cycle by joining a new vertex to every
vertex of the cycle. For some time it was an open question if such abnormal cases
take place for every rational p. A positive answer to that puzzle is due to combined
efforts of Janson, Kratochvil, Kdrman and Spencer [JK 91, JS 92, K& 93].

The random variables X¢ and Yg are examples of sums of random variables
with only few dependent summands. In particular, the summands forming Y4 are
dependent only if the sets corresponding to the indices intersect (on at least 2
vertices, in fact). The reason is that the property of the vertex set we are after
depends only on the presence and absence of the edges within the set. The situation
changes when we move to the properties depending also on the pairs with one
endpoint in the set. Then all summands are mutually dependent, but most just
weakly. We have already encountered such a case when studying the number of
components of I'y, , which are isomorphic to a given graph G. Clearly this property
requires that there is no edge with one endpoint in the set of vertices of a copy of G.
Another example of such “semi-induced” property is the notion of a maximal clique.
This is a complete subgraph not contained in any bigger complete subgraph of a
graph. For a vertex set to span a maximal clique one needs that no other vertex is
adjacent to all the vertices of the set. In [BJKR 90] the limiting distribution of the
number of maximal k-cliques was investigated. It was proved that for £ > 2 there
are two Poisson thresholds for the existence of maximal k-cliques and the phase of
asymptotic normality between them. Finally, there are characteristics which lead
to sums of random variables indexed by vertex sets, which each depend on the
presence or absence of all the edges in I'y, ,. An example of this is the number of
copies of G disjoint from all other copies of G in I', ,. Here even the expectation
is difficult to obtain, and the limiting distribution is still beyond ones reach.

4. PHASE TRANSITION

Sections 4-9 of [ER 60] are devoted to global properties of random graphs. The
proofs follow the same pattern. First, the expectation of the quantity in question is
asymptotically evaluated. Then, using Markov’s and Chebyshev’s inequality (the
first and the second moment method, resp.) the asymptotics of the quantities
themselves are derived. As a summary of these results we quote here how Erdés
and Rényi characterize the process of the evolution of a random graph in the paper
presented to the International Statistical Institute meeting in Tokio in 1961 [ER61a]:

“Ifn 1s fixed large positive integer and n s increasing from 1 to (g), the evolution
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of I'y, N passes through five clearly distinguishable phases. These phases correspond
to ranges of growth of the number N of edges, these ranges being defined in terms
of the number n of vertices.

Phase 1. corresponds to the range N(n) = o(n). For this phase it is char-
acteristic that T'y nn) consists almost surely (i.e. with probability tending to 1 as
n — 400) exclusively of components which are trees. (...)

Phase 2. corresponds to the range N(n) ~ cn with 0 < ¢ < 1/2. (...) In
this range almost surely all components of I'y, n(n) are either trees or components
consisting of an equal number of edges and vertices, i.e. components containing
exactly one cycle.(...) In this phase though not all, but still almost all (i.e. n—o(n))
vertices belong to components which are trees. The mean number of components is
n—N(n)+O(1), i.e. in this range by adding a new edge the number of components
decreases by 1, except for the finite number of steps.

Phase 3. corresponds to the range N(n) ~ cn with ¢ > 1/2. When N(n) passes
the threshold n/2, the structure of I'y n(n) changes abruptly. As a matter of fact
this sudden change of the structure of I'y, n(n) 18 the most surprising fact discovered
by the investigation of the evolution of random graphs. While for N(n) ~ cn with
c < 1/2 the greatest component of I'y n(n) is a tree and has ( with probability
tending to 1 as n — +o0) approzimately é(logn— gloglogn) vertices, where
a = 2c—log 2¢, for N(n) ~ n/2 the greatest component has (with probability tending
to 1 as n — +o0) approzimately n?/3 vertices and has rather complex structure.
Moreover for N(n) ~ cn with ¢ > 1/2 the greatest component of 'y, n(n) has (with
probability tending to 1 as n — +o0) approzimately G(c)n vertices, where

1 too Ek-1 9
G(c)=1- 2—0; i (2ce™? )k
=1

(clearly G(1/2) =0 and lim,_, 1o, G(c) = 1).

Ezxcept this “giant” component, the other components are all relatively small,
most of them being trees, the total number of vertices belonging to components,
which are trees being almost surely n(1 — G(c)) + o(n) forc>1/2. (...)

The evolution of I'y nny in Phase 3. may be characterized by that the small
components (most of which are trees) melt, each after another, into the giant com-
ponent, the smaller components having the larger chance of “survival”; the survival
time of a tree of order k which is present in T'y, n(ny with N(n) ~ cn, ¢ > 1/2 is
approzimately exponentially distributed with mean value n/2k.

Phase 4. corresponds to the range N(n) ~ cnlogn with ¢ <1/2. In this phase
the graph almost surely becomes connected. (...)

Phase 5. consists of range N(n) ~ (nlogn)w(n) where w(n) — +o0c. In this
range the whole graph is not only almost surely connected, but the orders of all
points are almost surely asymptotically equal. Thus the graph becomes in this phase
“asymptotically reqular”. ”

Erdds and Rényi in their fundamental paper [ER 60| gave fairly complete “big
picture” of the evolution of a random graphs. However many fascinating questions
were left unanswered. For example, how did the giant component grow so rapidly,
what is the nature of the “double jump” of its size: from O(logn) when ¢ < 1/2 to
©(n?/3) when ¢ = 1/2 and finally being of the order of n when ¢ > 1/27?
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Often we say that a random graph goes through the phase transition at ¢ =
1/2 due to an obvious resemblance of this period of its evolution to the physical
phenomena of changing the state, for example, from liquid to solid. Here a random
graph changes abruptly its state from a loose collection of small components being
trees and unicyclic to solid single giant component dominating its structure.

The critical moment of the phase transition was unresolved until the milestone
paper of Béla Bollobds [B84] who revealed the mechanism of the formation of the
giant component. He also focused the attention, for the first time, on the nature of
the phase transition phenomena, investigating this critical moment of the evolution
and looking at the beginning of so called supercritical phase. He asked what is the
typical structure of a random graph I',, y when N(n) = in + s, where s = o(n).
In particular he proved that the largest component is almost surely unique once
s > 2(logn)'/?n?/3 and its size Ly (T, ) is approximately 4s while the size of the
second largest component La(I'y, n) is much smaller.

Bollob4s gave a good lead to what we might consider as the proper magnification
if we want to get undistorted picture of the phase transition while looking at the
neighborhood of the “critical point” n/2. Due to later results of Luczak [Lu 90b],
combined with those of Kolchin [Ko 86], we know that the correct parametrization

15

1
N(n) = gn T An2/3

When A — —oo then I', & consists of many components of the same size as the
largest one, which is still very small and consists roughly of % log(s3/n?) vertices,
and the large components are unable to “swallow” each other and therefore are
forced to hunt for smaller query. Hence large components grow absorbing only small
ones and no clear favorite to win the race for the giant emerges. As the number of
edges N(n) increases, the number of contestants decreases. When A = constans < 0
the probability that two specified large components will form a new component is
bounded away from zero, but still too small to ensure the creation of unique giant
component. At the same time, a big gap between the orders of large and small
components arises which prevents the creation of new large components from the
small ones. Next, as soon as A — o0, all large components almost “instantly” merge
together and a unique large component emerges. This component is still not giant,
it has barely over n2/3 vertices, but it will continue to absorb other components,
first the largest ones, rapidly becoming giant.

The next result of Luczak [Lu 90b] gives a clear picture of the sizes L;(I'y n) of
the ith largest components during the phase transition of I',, . Here and through-
out the paper the abreviation a.s. stands for ‘almost surely’, a phrase whose precise
meaning was explained in the description of Phase 1. above.

Theorem 4.1 ( Luczak, 1990). Let k be natural number and sn=?/3 — oo but
s =o(n).
(i) If N =n/2 — s then for every i = 1,2, ...,k and every real r

) n? 2 5 s3 N _
lim P (Li(I‘n,N) < 252 <log? — Eloglog? +7‘>> = Z ﬁe ,

n—o00 -
J=0
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where A = A(r) = 2/y/me™".

Moreover, a.s. the ith largest component of I'y, n is a tree fori = 1,2, ...,k and
I'y,n contains no component with more edges than vertices.

(ii) Let N = n/2 + s and s’ be the unique positive solution of the equation

2 2 o
(1__3)627 <1+_3> .
n n

Then a.s. a( N
s+s 7
L.( < —
‘ 1(Tn.n) n+ 2s w(n)\/g
and so
s
|IL1(Tp n) — 4s] < w(n)— + @ (ﬁ)
Moreover, for every i =,2,...,k and every real r
2 3 5
lim P (Li(I‘n N) < n <log s —loglog— —i—r)) e,
n—00 N 28 252

where A = A(r) = 2//me™".

Furthermore a.s. the ith largest component of I'y v, 1 = 2,3,...,k, is a tree
and no component of I'y, n, except for the largest one , contains more edges than
vertices.

To study the critical “interval” when the phase transition take place i.e. when
N(n) = 2n + An?/3 and A — Foo requires very sophisticated and delicate tools.
Janson, Knuth, Luczak and Pittel in their extensive, almost 140 pages long, study
[JKEP 93] applied machinery of generating functions with a great success. They
were able to analise the structure of evolving graphs ( and multigraphs) when edges
are added one at a time and at random, with great precision mainly looking and so
called excess and deficiency of a graph. To give the reader a taste of their results
let us quote the following theorem.

Theorem 4.3 (Janson, Knuth, Luczak and Pittel, 1993). The probability
that a random graph or multigraph with n vertices and in + O(n'/3) edges has
exactly r bicyclic components (i.e., components with exactly two cycles), and no
components of higher cyclic order, is

They also study the following fascinating problem: What is the probability that
the component which during the evolution becomes the first “complex” component
(i.e. the first component with more than one cycle) is the only complex component,
which emerges during the whole process?? So they ask what is the probability that
the first bicyclic component is the “sead” for the giant one. They prove that it
happens quite often indeed.

Theorem 4.4 (Janson, Knuth, Luczak and Pittel, 1993). The probability
that an evolving graph or multigraph on n vertices never has more than one complex
component throughout its evolution approaches 3 5” ~ 0.8727 as n — oo
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5. PLANARITY AND CHROMATIC NUMBER

In a paper of such enormous length one can always find some false theorems or
claims which are not true. One of such things happend in the paper [ER 60] in
relation to the question when a random graph I';, & is planar.

Since trees and components with exactly one cycle are planar, Erdés and Rényi
easily deduced from their findings about early stages of the evolution of a random
graph, that when ¢ < 1/2 then the probability that I',, & is planar tends to 1. Now,
to support the claim that when ¢ passes 1/2 the graph becomes non-planar they
used the argument that I',, ; contains an induced cycle with d diagonals. Although
their claim ( Theorem 8a on page 51) regarding the distribution of the number of
such cycles is incorrect , as it was pointed out later by Luczak and Wierman [EW
89], their intuition was perfect and the following result is indeed true.

Theorem 5.1 (Luczak and Wierman, 1989). Let us suppose that N ~ cn.
If ¢ < 1/2 the probability that the graph I'y, y is planar is tending to 1 while for
¢ > 1/2 this probability tends to 0.

Such a behavior of a random graph shows the fundamental difference in its typical
structure before and after the phase transition. Now, thanks to the contribution of
BLuczak, Pittel and Wierman [LPW 94 |, we have more detailed knowledge about
planarity of a random graph , also during the phase transition.

Theorem 5.2 (Luczak, Pittel and Wierman, 1994). Let ¢ = ¢(n) — 0 as
n — oo. Then I'y, p is:

(i) a.s. planar, when p = (1 — €)/n, €3n — oc;

(ii) planar with probability tending to a(A), 0 < a(\) < 1, as n — oo, when
p=(1+¢€)/n, where e3n — X\ and —o0o < X\ < oo is a constant;

(iii) a.s. non-planar, when p = (1 + ¢)/n, e3n — cc.

In the final section of the paper [ER 60] Erdés and Rényi collected unsolved
problems. One of them is closely related to planarity : An other interesting question
1s: what is the threshold for the appearance of a “topological complete graph of order
k7 i.e. of k points such that any two of them can be connected by a path and these
paths do not intersect. For k > 4 we do not know the solution. The solution was
found many years later by Ajtai, Kémlos and Szemerédi [AKS 79].

Another problem mentioned there turned out to be one of the central and most
challenging questions of the theory. Erdés and Rényi asked "what will be the chro-
matic number of I'y, ;v #.” What they knew then about this important graph invari-
ant was limited to facts which can be deduced from general results regarding the
evolutionary process. Here is what they were able to conclude : “ Clearly every tree
can be colored by 2 colours, and thus by Theorem 4a almost surely Ch(I'y n) = 2 if
N(n) = o(n). As however the chromatic number of a graph having an equal number
of vertices and edges is equal to 2 or 3 according whether the only cycle contained
in such graph is of even or odd order, it follows from Theorem 5e that almost surely
Ch(I'n n) <3 for N(n) ~ nc with ¢ < 1/2. For N(n) ~ n/2 we have almost surely
Ch(T'n n) > 3. As a matter of fact, in the same way, as we proved Theorem 5b, one
can prove that T'y n contains for N(n) ~ n/2 almost surely a cycle of odd order. It
is an open problem how large Ch(T'y n) is for N(n) ~ n/2 withc > 1/2 .7
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This question remained open for next 30 years , and was answered , for large c,
by Luczak in [Lu 90a]. He proved that the chromatic number x(I',, ,) behaves as
follows.

Theorem 5.3 (Luczak, 1990). Let np = ¢ and ¢ > 0 be fixed. Suppose ¢, <
¢+ o(n) for sufficiently large constant c.. Then

P(

<xThp) <(1+e) )—1 as  n— oo.

2logc 2logc

Although the original question was posed for sparse random graphs the ideas
leading to the proof came from investigations of the chromatic number of dense
random graphs. The first step toward the solution was made by Matula [Ma 72,76],
and Bollobas and Erdés [BE 76] who discovered high concentration of the size of
the largest independent set in I'y, , around 2log, n, where b = 1/(1 — p) and edge
probability p is a constant. It suggested that the respective lower bound for x(I',, ;)
should be n/(21og, n). Only a few years later , Grimmett and McDiarmid published
a paper [GM 75] in which they showed that a greedy algorithm, which assigns colors
to vertices of a random graph sequentially, in such a way that a vertex gets the
first available color, needs, with high probability , approximately n/log, n colors to
produce a proper coloring of I',, ,,. It established an upper bound for the chromatic
number of dense random graph, twice as large as the lower bound. Grimmett and
McDiarmid conjectured that the lower bound sets, in fact, the correct order of
magnitude for x(I', p). The right tool to settle this conjecture was delivered by
Shamir and Spencer [SS 87]. They proved that the chromatic number of T',, , is
sharply concentrated in an interval of length of order n'/2 but, what perhaps was
more important then their result itself, they introduced to the theory of random
graphs a new powerful technique based on concentration measure of martingales,
known in the probabilistic literature as Hoeffding- Azuma inequality. But it was Béla
Bollob4s who showed how the potential of martingale approach can be utilized to
solve long standing conjecture. In his paper [Bo 88] he proved the following theorem.

Theorem 5.4 (Bollobds, 1988). Let 0 < p < 1 be fixed and b= 1/(1—p). Then
for every € > 0

n
2logyn

<xThp) <(1+e) )—1 as  n— oo.

2log,n

Later on Matula and Kucera [MK 90] gave alternative proof of the above the-
orem, using the second moment and “expose and merge” algorithmic approach.
Luczak’s proof of Theorem 5.3 is in fact an ingenious blend of the martingale and
“expose and merge” techniques.

The chromatic number of a random graph is a random variable , the distribution
of which should be highly concentrated. It is easy to notice (see above) that if
p =o(n"') then x(I'y ) is 2 ( not counting the case when the edge probability is of
the order smaller then n~2 and therefore, with high probability the graph is empty).
One can also show that when p ~ en™!,0 < ¢ < 1 then P(x(I'y,,) = 2) — a and
P(x(Typ) = 3) = 1 —a, where a = e/2((1 — ¢)/(1 + c¢)}/%. The last probabilities
are simply the same as the probabilities that I',, , has or does not have an odd
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cycle. Such a behavior of a random variable x has been confirmed, for small edge
probabilities only, by Luczak. He proved in [Lu 91] that if p < n=((3/6)+€) then the
chromatic number, as expected, takes on at most two values.

6. ASYMMETRIC GRAPHS

Another interesting topic originated from a joint paper by Erd6s and Rényi in
the peak of their cooperation in early sixties [ER63]. Here is how they describe their
goals: “ We shall call (...) a graph symmetric, if there exists a non-identical per-
mutation of its vertices, which leaves the graph invariant. By other words, a graph
s called symmetric if the group of its authomorphisms has degree greater than 1.
A graph which is not symmetric will be called asymmetric. The degree of symmetry
of a symmetric graph is evidently measured by the degree of its group of automor-
phisms. The question which led us to the results contained in the present paper is
the following: how can we measure the degree of asymmetry of an asymmetric graph
o

They answer the last question in what follows: “Fvidently any asymmetric graph
can be made symmetric by deleting certain of its edges and by adding certain new
edges connecting its vertices. We shall call such a transformation of the graph its
symmetrization. For each symmetrization of the graph let us take the sum of the
number of deleted edges - say r - and the number of new edges - say s -; it is
reasonable to define the degree of asymmetry A[G] of a graph G, as the minimum
of r + s where the minimum s taken over all possible symmetrizations of the graph
G. (...) The question arises: how large can be the degree of asymmetry of a graph of
ordern (i.e. a graph which hasn vertices)? We shall denote by A(n) the mazimum
of A[G] for all graphs G of order n(n =2,3,...).”.

They first notice that A(2) = A(3) = A(4) = A(5) = 0 while A(6) = 1. In
general, rather straightforward deterministic argument leads to the following result.

Theorem 6.1 (Erdés and Rényi, 1963).

Am) < ("1,

To find the lower bound for A(n) Erdés and Rényi use non-constructive argument
i.e. they show via the probabilistic method that there exists a certain graph on n
vertices with the degree of asymmetry at least n(1 —¢€)/2,0 < e < 1.

Theorem 6.2 (Erdés and Rényi, 1963). Let us choose at random a graph

I' having n given vertices so that all possible 2(5) graphs should have the same
probability to be chosen. Let € > 0 be arbitrary. Let P,(¢) denote the probability
that by changing not more than @

symmetric graph. Then we have

edges of I' it can be transformed into a

lim P,(e) =0.

n—o0
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Corollary 6.3. For any € with 0 < ¢ < 1 there exists an integer no(e) depending
only on €, such that for every n > ng(e) there exists a graph G of order n with
A[G] > n(1 —¢€)/2.

Indeed, for large n, Theorem 6.2 shows that almost every graph is a counterexam-
ple to the hypothesis that its symmetrization is possible with less than % (1 —o0(1))
edges.

Hence, if we combine Theorem 6.1 and Corrolary 6.3 we see that

A 1
lim ﬂ = -

n—oo T 2

After showing that almost all labelled simple graphs are asymmetric, Erdés
and Rényi turned their attention to graphs with a prescribed number of edges.
First they noticed that since almost every tree has a cherry i.e., a pair of pendant
vertices adjacent to a common neighbor, therefore almost every tree on n vertices is
symmetric. Furthermore they proved that any connected graph of order n having
n edges is either symmetric or its asymmetry is one and gave the following bound.

Theorem 6.4. If a graph G of order n has N = An edges (0 < A < (n —1)/2)

then o)
< -
za(i- 2

Erdés and Rényi went further in their investigations. Let us quote a few more
lines from their paper [ER63]. “ An other interesting question is to investigate
the asymmetry or symmetry of a graph for which not only the number of vertices
but also the number of edges N 1is fized, and to ask that if we choose one of these
graphs at random, what is the probability of its being asymmetric. We have solved
this question too, and have shown that if N = 3 (logn + w(n)), where w(n) tends
arbitrarily slowly to +o0o for n — +oco, then the probability that a graph with n
vertices and N edges chosen at random ) so that any such graph has the same

. —1
probability ((K,)) to be chosen ) should be asymmetric, tends to 1 for n — +o0.
This and some further results will be published in an other forthcoming paper.”

Unfortunatelly the announced paper has never been published! Several years
later this problem and the analogous one for unlabelled graphs was attacked again
by Wright [Wr74].

Consider graphs I';, ; and U,, ny picked at random from the families of all labelled
and unlabelled graphs on n vertices and with N = N(n) edges, respectively. Here
is the result of Wright.

Theorem 6.5. Ifw(n) = (2N (n)/n) —logn — oo thenT',, y and U, n are almost
surely asymmetric while when w(n) < 0 then they are almost surely symmetric.

More recently Luczak [Lu 88] gave precise results about the structure of the
automorphism group Aut(I'y n) of a random graph I'y, x. He studied the symmetry
of the largest component L (n, N) of this random graph. What he found was that
when N(n) = 1na(n) then there exists a constant d such that for a(n) > d almost
surely Aut(Li(n, N) is isomorphic to some product of symmetric groups. From this
result he was able to deduce the following strengthening of the “labelled” part of
Theorem 6.5.
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Theorem 6.6. Let N = Z(logn + w(n)).
(i) If w(n)— —oo then |Aut(T'y n)| = 00 a.s.
(ii)) If ~w(n) — c then

lim P(|Aut(Tn n)| = 1) = e*(1 + A)

n—o0

: M
Jim P(|Aut(Tp n)| = k!) = e A
for k=2,3,..., where A = e~ ¢ and c is a constant.

(iii) If  w(n) — oo then |Aut(Tp n)| =1 a.s.

7. PERFECT MATCHINGS

The last three papers Erdds and Rényi wrote on the subject of random graphs
were devoted to the existence of 1-factors. In [ER 64] and [ER 68] they coped
with the relatively easier case of random bipartite graphs. In both papers they
consequently emphasized the matrix terminology. “In the present paper we deal
with certain random 0-1 matrices. Let M(n, N) denote the set of all n by n square
matrices among the elements of which there are exactly N elements (n < N <
n?) equal to 1, all the other elements are equal to 0. The set M(n, N) contains

clearly (7\:) such matrices; we consider a matrix M chosen at random from the set

M(n, N), so that each element of M(n, N) has the same probability (7]‘:) ' to be
chosen. We ask how large N has to be, for a given large value of n, in order that the
permanent of the random matriz M should be different from zero with probability
> «, where 0 < o < 1. (...) A second way to formulate the problem is as follows:
we shall say that two elements of a matrix are in independent position if they are
not in the same row and not in the same column. Now our question is to determine
the probability that the random matriz M should contain n elements which are all
equal to 1 and pairwise in independent position.”

The result they prove resembles that for the connectedness (compare Theorem
2.1).

Theorem 7.1 (Erd6s and Rényi, 1964). Let P(n, N) denote the probability of
the event that the permanent of the random matrix M is positive. Then if

N(n) =nlogn + cn + o(n)

where c is any real constant, we have

. _ —2e” ¢
nlg{)lo P(n,N(n))=e

Finally, they also mention graphs: “This result can be interpreted also in the
Jollowing way, in terms of graph theory. Let I', n be a bichromatic random graph
containing n red and n blue vertices, and N edges which are chosen at random
among the n? possible edges connecting two vertices having different color (so that

each of the (7]‘:) possible choices has the same probability). Then P(n,N) is equal
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to the probability that the random graph I'y n should contain a factor of degree 1,
i.e. I'y, ;v should have a subgraph which contains all vertices of I'y, ny and n disjoint
edges, i.e. n edges which have no common endpoint.” (They seem not to use the
name ‘perfect matching’ at all.)

As far as the proof is concerned, “Besides elementary combinatorial and proba-
bilistic arqguments similar to that used by us in our previous work on random graphs
(...) our main tool in proving our results is the well-known theorem of D.Kdnig,
which is nowadays well known in the theory of linear programming, according to
which if M is an n by n matriz, every element of which is either 0 or 1, then the
minimal number of lines (i.e. rows or columns) which contain all the 1-s, is equal
to the mazimal number of 1-s in independent position. As a matter of fact, for our
purposes we need only the special case of this theorem, proved already by Frobenius
(1917), concerning the case when the mazximal number of ones in independent posi-
tions is equal to n (...) . According to the theorem of Frobenius-Konig 1 — P(n, N)
s equal to the probability that there exists a number k such that there can be found
k rows and n—k—1 columns of M which contain all the ones (0 <k <n—1).” The
rest of the proof is devoted to showing that this is very unlikely for N(n) given. It
is interesting to notice that Erd6s and Rényi never mention Hall’s theorem, which
is equaivalent to Frobenius but far more popular in combinatorics nowadays.

The 1968 paper is a straightforward extension of the 1964 result, where it is
shown that setting

N(n) =nlogn+ (r — 1)nloglogn + nw(n)

where w(n) tends arbitrarily slowly to infinity then almost surely the bichromatic
random graph contains r disjoint 1-factors. The only new element of the proof is
the observation that if there are no r disjoint 1-factors then there is a way to delete
some edges so that no vertex looses more than r»—1 from its degree and the resulting
subgraph contains no 1-factor at all. Then again the theorem of Frobenius is used.

The most involved of the three papers about 1-factors is that from 1966, where
an ordinary (not bichromatic) random graph I'y x is considered. The reason is
that the theorem of Tutte describing the structure of graphs which admit 1-factors
is more complex than its counterpart in the bipartite case. “It should be added
that the problem investigated in the present paper is much more difficult than the
corresponding problem for even graphs solved in [5]. Thus for instance in [5] we
made use of the well known theorem of D. Konig; the corresponding tool in the
present paper is the much deeper theorem of Tutte mentioned above.” ([5] = [ER
64))

The result of that paper says that the threshold for containing 1-factor coincides
with that for disappearence of isolated vertices, and thus also with that for con-
nectivity (see Theorem 2.1). The proof is long and tedious and involves a weaker
version of Tutte’s theorem ignoring the parity of components.

Erd6s and Rényi make also the following claim. “ If N = %nlogn + O(n), as
mentioned above, with probability near to 1 T';, N consists of a connected component
and a certain number of isolated points. With the same method as used to prove
Theorem 1 one can prove that if the connected component of I'y, n consists of an
even number of points, it has with probability near 1 a factor of degree one. As the
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proof of this result is almost the same as that of Theorem 1, we do not go into the
details.”

The above mentioned result was proved (in a strengthened form) by Bollobés
and Thomason [BT 85]. In order to quote that result let us extend the notion
of a perfect matching by saying that a graph satisfies property PM if there is a
matching covering all but at most one of the nonisolated vertices. It is known that,
switching to the binomial model, as soon as 2np — logn — loglogn — oo, there are
only isolated vertices outside the giant component. However, the main obstacle for
the property PM is the presence of a pair (at least two such pairs when the number
of nonisolates is odd) of vertices of degree 1 adjacent to the same vertex (called, as
we already mentioned, ‘a cherry’). The expected number of cherries is

3(7;)]92(1 _p)2(n—3) < n3p2e—2np+6p — 0(1)

if 2np—logn—2loglogn — co. Again, a trivial necessary condition becomes almost
surely sufficient.

Theorem 7.2 (Bollobas and Thomason 1985). Let y,, = 2np—logn—2loglogn —
oco. Then

0 if y, —» —o0
P(Tpp € PM) = { e3¢ ify, >¢
1ify, = oco.

The proof, again, was based on Tutte’s theorem. Years later Luczak and Rucinski
proposed an alternative approach, via Hall’s Theorem, invented in [LR 91] to attack
a more general question. For a given graph G, a perfect G-matching of a graph is
a spanning subgraph which is a disjoint union of copies of G. For G = K this is
the ordinary notion of 1-factor.

In [ER 91] it was shown that for every nontrivial tree T', the threshold for PMr
is the same as that for disappearence of isolated vertices.

Theorem 7.3 (Luczak and Ruciniski, 1991). For every tree T on t vertices
and with at least one edge, assuming n is divisible by t,

0 if np —logn — —o0
P(T,, , has a perfect T-matching ) — { e~¢ * ifnp —logn — ¢
1 ifnp —logn — oo .
The threshold for the property PMg for arbitrary G is not known in general.
Some partial results are contained in [AY 93] and [Ru 92].
Coming back to the original papers of Erdos and Rényi, the last of them is

concluded by the following problem: “does a random graph I'n, n where n is even
and

1 -1
N = Enlogn-i— TTnloglogn-i-w(n)n

where w(n) — oo, contain at least v disjoint factors of degree one with probability
tending to 1 forn — oc?
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Shamir and Upfal [SU 81] answered this question in positive. Given a map f of
V(G) into the set of non-negative integers, define an f-factor of G as a spanning
subgraph of G in which the degree of vertex = is f(x).

Theorem 7.4 (Shamir and Upfal, 1981). If
1
p= —(logn+ (r —1)loglogn + w(n) ,
n

r > 1, lim, ,oow(n) = co and 1 < f(z;) <7, .o, f(z;) even, then Ty, , has an
f-factor, almost surely.

Although f-factors are characterized by Tutte’s theorem, Shamir and Upfal chose
alternative approach using an algorithmic technique (introduced to random graphs
by Pésa) of augmentation of sub-factors by alternating paths. In fact, the answer to
the last question of Erdds and Rényi does not follow directly from the above result
(not every r-factor has a 1-factorization) but from the proof. In 1985 Bollobéas and
Frieze [BF 85] strengthened this answer by proving that almost surely in the random
graph process of adding edges one by one, as soon as the minimum degree becomes
r, there are |r/2] disjoint hamiltonian cycles plus a disjoint perfect matching if r
is odd.

The last problem we would like to mention cannot be directly attributed to
Erdds and Rényi. Here is how Erdds describes their omission ([AS 92, Appendix
B]). “ When Rényi and I developed our theory of random graphs, we thought of
extending our study for hypergraphs. We mistakenly thought that all (or most) of
the extensions would be routine and we completely overlooked the following beautiful
question of Shamir. (...) Shamir asked how many triples must one choose on 3n
elements so that with probability bounded away from zero one should get n vertex
disjoint triples. Shamir proved that n3/2 triples suffice, but the truth may very well
be nlt¢ or even cnlogn. The reason for the difficulty is that Tutte’s theorem seem
to have no analogy for triple systems or more generally for hypergraphs.” The result
mentioned by Erdds belongs, in fact, to J. Schmidt-Pruzan and E. Shamir [SS 83].
Very recently, Frieze and Janson in [FJ **] pushed the bound down to n*/3.

Fortunately, Erd6s and Rényi did not overlook some other important problems
which stimulated the research in the theory of random graphs over the years. One
of such problems was the threshold for existence of a Hamiltonian cycle in a random
graph. They, in fact, asked only : for what order of magnitude of N(n) has I'y, n(n)
with probability tending to 1 a Hamilton-line (i.e. a path which passes through all
vertices). This problem was first tried by Pdsa [Po 76] and Korshunov [Ko 77]
and finally solved by Kémlos and Szemerédi [KS 83| and, in a stronger form, by
Bollobds [Bo 83]. They proved that the threshold for Hamiltonian cycle coincides
with that of disappearance of all vertices of degree 0 and 1.
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