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ABSTRACT. Let G be a graph and let G(n,p) be the binomial random graph with
n vertices and edge probability p. We consider copies of G in G(n,p), vertex disjoint
from all other such copies. For a strictly balanced graph G, initially, every copy of
G in G(n,p) is solitary. Suen [4] established a second (disappearence) threshold for
a subclass of strictly balanced graphs. In this paper we extend his result to a more
general case.

1. Introduction

A random graph G(n,p) is a graph obtained from the complete graph K,, by
independent deletion of each edge with probability 1 — p. We say that a random
graph possesses a property Q asymptotically almost surely (aas) if the probability
that this random graph possesses () converges to 1 as n — oo. In this paper we will
often use, for convenience, notation a,, =< b,, instead of a,, = ©(b,,). For a graph G,
let vg and lg stand for its number of vertices and edges, respectively. If a subgraph
H of a graph F is isomorphic to a graph G, then H is called a copy of G in F'.

Fix a graph G and denote by G1,G2,... ,G;, t = (J;) Mftc(’!G), all copies of G
in the complete graph K,,, where aut(G) stands for the number of automorphisms
of the graph G. For each 4 =1,2,...,t define the indicator random variable

1 if G;cCG(n,p)
I, = Li(n,p) = {0 otherwise.

t

Then X = X¢ = Xg(n,p) = > I; counts the subgraphs of a random graph G(n, p)
=1

isomorphic to G.

Define the density of G as dg = 1%, vg > 1, and let mg = max dg. A graph G

is balanced if mg = dg, and strictly balanced if for every H C G,dy < dg.
In 1981 Bollobés [1] proved the following result.
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Theorem 1.
lim P(Xg > 0)=

n—00 1 if np™¢ — oo.

{O if np™% =0
Moreover, if G is a strictly balanced graph and np™¢ — ¢ as n — oo then Xg
converges to the Poisson distribution with expectation #(GG)

The threshold part of the above theorem was proved for balanced graphs already
by Erdés and Rényi in 1960 [2]. The distribution part was shown, independently
from Bollobés, by Karoriski and Rucinski [3].

Let Z = Zg(n,p) be the number of copies of G in G(n,p) which are vertex
disjoint from all other copies of G in G(n,p). We shall call such copies solitary. If

1
G is strictly balanced and p = ©(n~ ™c ), then aas there are no intersecting pairs
of G at all, and so Z = X. Indeed, if Y denotes the number of pairs of distinct
copies of G which intersect each other then

P(Y >0) < EY x Y nPvevapo=in = o(1),
HCG

since nVHptH = (npH)UH — oo for all H C G.

In the next section we will prove the following preliminary result, which exhibits
the special role of striclty balanced graphs in the context of solitary subgraphs of
G(n,p).

Proposition.

(1) If G is not balanced then for every p = p(n), P(Zg > 0) = o(1);
(2) If G zs balanced but not strictly then for every p = p(n) such that p =

o(n” ’”G) orp>mn- me we have P(Zg>0) = 0(1)
(3) If G is balanced but not strictly and p = ©(n~ ’”G) then

0 <lim inf P(Zg > 0) <lim sup P(Zg > 0) < 1.
n—o0 n—00

Our main question is for what range of p = p(n), P(Zg > 0) — 17 In view
of the Proposition it only makes sense to raise this question for strictly balanced
graphs. Indeed, if for some p = p(n) there aas exist solitary copies of G then G
must necessarily be strictly balanced. This question was answered by Suen [4] in the
special case when G is strictly strongly balanced , i.e. for every H C G 7 < véil
(see Theorem 3 below).

In order to formulate our result we need to introduce a few more definitions.
Given a sequence p = p(n), we call a subgraph H of G a leading overlap of G
if EXg = O(EXk) for all K C G. Clearly each leading overlap is an induced
subgraph of G. Moreover it can be easily verified that when np™¢ — oo, each
leading overlap must be a connected subgraph of G. As

t
n va! va
EXg=Y EI,= ¢ < pUople
G 7:21 1 ('UG) aut(G)p n p ?

’vH

and, similarly, EX g =< n'"p*#, for every subgraph H of G, the densities dg = 1

v
of all subgraphs of G play a decisive role in the determination of leading overlaf;ls

of G.
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The subgraph plot of a graph G is defined as the set of points
I‘(G) = {('UH,lH) i HC G}

The upper boundary of the convex hull of I'(G) will be called here the roof.
Observe that a subgraph H is, for some range of p = p(n), a leading overlap of
G if and only if it lies on the roof. Moreover, the slopes of the line segments to
the left and to the right of H determine the range of p for which H is a leading
overlap during the evolution of G(n,p). Let the spectrum of G be defined as the
collection Spec(G) of the leading overlaps of G ordered by decreasing number of
vertices. Equivalently, Spec(G) is formed by the subgraphs of G plotted on the
roof and ordered from right to left (if two of them are plotted at the same point,
their order is immaterial). The first element of the spectrum is always G itself,
and the last one is always K;. Observe that if G, H; and Hy are three initial
elements of Spec(G) lying on the same line segment of the roof (including the case

when the points coincide), then H; and Hy become leading overlaps at the same
_tezlmy _le-luy
moment of the evolution of G(n,p), precisely when p <xn °*¢~"H1 =pn ¢7H2 (in
lg —lI.I1
fact, as soon as pn*¢~"#1 — oo, H; drops off momentarily). On the other hand, if
Spec(G) = (G, H, ..., K1) and no other subgraph of G is plotted on the straight line

passing through G and H, then H will be referred to as the unique second leader .

Fact. If H is the unique second leader of G then any two copies of H in G must
be disjoint.

Proof. Let for every F C G, F#0, f(F)=a(ve—uvr)— (lg—1r). This
function is modular, i.e. f(G1UG2) = f(G1) + f(G2) — f(G1 N G3). For F # H,
and FF # G f(F) < 0, moreover f(H) = f(G) = 0. Let F be a union of two
copies of H which intersect on K (K # 0). Then f(F)=2f(H) — f(K) = — f(K),
which is a contradition, unless K = H =F. [

Let us consider a few examples.

Example 1.

Spec(G) = (G, K3, K3).
Fig.1
Here K3 is the unique second leader

If G is strictly strongly balanced then always K is the unique second leader of G.
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Example 2.

Spec(G) = (G, K1).
Fig.2

The main theorem of this paper concerns the subclass of strictly balanced graphs
G with the unique second leader. The next two examples show graphs for which
there are no unique second leader and thus Theorem 2 does not apply to them.

Example 3.

Spec(G) = (Ga T67 Ttlia T5a T5/a T47 Tzia T3a Kz, Kl)a

Fig.3
where the elements of the spectrum are all subgraphs of G being trees (the subscripts
represent the number of vertices of a tree; where there are more than one tree on
the same number of vertices, the superscripts are used).

Example 4.

Spec(G) = (G, K4, K1).
Fig.4

In the next section we will prove our main result. For a graph G and its subgraph
H, let f(H,QG) be the number of copies of H in G.
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Theorem 2.
Let G be a strictly balanced graph, H be the unique second leader of G and let

avg — lG lG

— pVe—VH la—lo _ 1 _ log 1
wn)=n P —— logn p—— oglogn,
where s = % and o = qu%lﬂ, Then

lim P(Zg > 0) =

n—o0

0 if wn)—=o00 or np®® =0
1 if wn)—= —oco and np® — co.

Moreover, if np3¢ — ¢ or w(n) — ¢, then Zg converges to the Poisson distribution

ve _la
with expectation, respectively, Mft(G) or autl(G) [o“’is_lc’] ‘G-t g=sc,

Thus, in addition to the known threshold n_% for the appearance of solitary
copies of G in G(n,p), Theorem 2 establishes a second (disappearance) threshold
around (log n)’G+’Hn_5.

Because for a strictly strongly balanced graph, K; is always the unique second
leader, one can easily see that the following theorem of Suen, which was mentioned
before, is an immediate consequence of Theorem 2.

Theorem 3 [Suen, 1990].
Let G be a strictly strongly balanced graph and

va—1,1la

w(n) = n"*"p'¢ — ve?aut(G) logn — va " 2aut(G) loglog n.
Then

lim P(Zg > 0) =

n—o0

0 if w(n)—=oo or np®® =0
1 if w(n)—= —co and np?® — co.

Moreover, if np3¢ — ¢ or w(n) — ¢, then Zg converges to the Poisson distribution
v 2
with expectation, respectively, #(GG) or vy’ exp{—%}.

Although we cannot apply Theorem 2 to graphs like those in Examples 3 and
4, we can find the second threshold in case when G is a tree. It is not hard to
see that for the trees on 2 and 3 vertices as well as for the path on 4 vertices the
notion of a solitary copy coincides with that of an isolated copy, thus trivially, the
disappearence threshold for solitary copies is the same as one for isolated copies.
In fact, the latter statement remains true for all trees.

Theorem 4.
Let G be a tree and let w(n) = vgnp —logn — (vg — 1) loglogn. Then

lim P(Zg > 0) =

n—o0

0 if wn)—=o00 or np®® =0
1 if wn)—= —oco and np® — co.

Moreover, if np3¢ — ¢ or w(n) — ¢, then Zg converges to the Poisson distribution
v -1
with expectation, respectively, #(GG) or [ng_laut(G)ec]

Exactly the same threshold has been established for isolated trees by Erdés and
Rényi [2].
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2. Proofs

Let G*(n,p) be a random graph in which the edges of a fixed copy Gy of G are
present with probability 1 and the remaining edges are present with probability p,
independently from each other. Let S be the number of copies of G in G*(n,p)
which are not vertex disjoint from Gy. Then

(1.1) EZ =EXP(S=0),

where X and Z were defined in the Introduction.

For a subgraph H of G, let Sg be the number of copies of G in G*(n, p) which
intersect Go on a subgraph isomorphic to H. Clearly P(S = 0) < P(Sg = 0) and
from (1.1), by the first moment method,

(1.2) P(Z > 0) < EXP(Sy = 0).

For every copy G; of G such that G;NGy = H, where the symbol ’ =’ designates
the relation of isomorphism, define a zero-one random variable J; by

1 if G; CG*(n,
(1.3) ;= ' (. p)
0 otherwise.
Then Sy = ),  J;. We can estimate P(Syg = 0) in (1.2) by applying the

1:G;NGo>H
inequality ([3])

(EiH) },

where A =Y 3" E(J;J;) and the summation extends over all pairs (4, j) for which
GiNGy=H, Gj NGo & H and (E(Gz) N E(G])) \ E(Go) # .
Denote ¥ = n¥¢p!¢ and observe that

(14) P(Sy =0) < exp{ -

e

ESg= Y  EJyxnveviplein = e

1:G;NGo=H
(1.5) and

axy e
- = UgUg '

where K runs over all H C K CG, E(K)\ E(H) # 0.

2.1 Proof of Proposition.

Let H be a largest subgraph of a not strictly balanced graph G for which dg =
mg and H # G. We have dg > dg and dg > dg when G is nonbalanced. Moreover,
for arbitrary K such that G D K D H, the inequality dx < dgy holds.

By (1.4) and (1.5)

(1.6) P(SH=O)Sexp{—m}éexp{—(%(;}—;)},
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where ¥y = Upy, = mI%n Uk and the range of K is as in (1.5). Observe that, because

H is an induced subgraph of G, for every K in that range vg > vg. In particular,
VH, > VH.

Moreover, if G is balanced, then either dy, < dg = dg, or Hy = G and dg, =
dg = dg. If G is nonbalanced, then always dg, < dg. Thus, from (1.2) and (1.6),

P(Z>0) <6(Tg)exp{ - © (j_H) =

oo o ()
Us) exp{ -Q ((npdG)vHo_vH) } if dg, =dg

S
O
- { O(¥g) exp{ -Q ((ndeO)UHO_UH) } if dg, <dgm

) o(1) forp= o(n_ml_G) or p > n~me
o(1) for every p=p(n) .

This proves parts (1) and (2) of the Proposition.

If G is balanced but not strictly and p ~ cn_ml_G, ¢ > 0, then ¥ = O(1) and
the right hand side of (3) follows from (1.6). The left hand side follows trivially

e,
from Theorem 1, since P(Z =0) ~ P(X =0) 5 e «wi@ < 1. O
2.2. Proof of Theorem 2.

Throughout this subsection, let H be the unique second leader of a strictly
balanced graph G. Recall that both H and G are connected graphs and that every
two copies of H in G must be vertex disjoint (cf. Fact).

Theorem 2 consists of three statements, which will be referred to, according to
the limit, as O-statement, 1-statement and Poisson-statement, respectively.

We show the 0-statement using the first moment method. Clearly if np?¢ — 0
then P(Z > 0) < P(X > 0) = o(1). Assume that

1
—_ lg—1
p=n"= Mlogn-i— le loglogn + w(n) ¢ H,
as s(lg — lm)
where w(n) — oco. From (1.2) we have
(1.7) P(Z > 0) < EXP(Sg = 0) < n°¢P(Sg = 0).
The inequality (1.4) can be rewritten as
P(S 0)<e { (ESn)° } ex { ESH }
= X _ & = — 7 ,
" = &P ESy + A/ P 1+ESH(E§T)2

where A’ = 3" 3" FE(J;J;) is the partial sum of A taken over all pairs (i, 5), ¢ # j.
Observe that for every K such that H C K # G

Uk
Vg

_ - _ _lK_lH lk—lg
— pvK UleH lu > pUKTUH = (logn) lc=Tu > K |
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Where Exg = %[IUFI — Vg — —lK;lH].
Thus, by (1.5)

*6‘*6
x|

A —ex —&
(ESH)zAg S;n st

where £ = %min £x. Hence

K

ES

Consider now three cases with respect to the order of magnitude of ESg.

Assume first that ESy > n¥. Then P(Sy = 0) < exp{—n?}, and by (1.10)
P(Z > 0) < n¥¢ exp{—n3} = o(1).
If logzn < ESg< n23_5, then

B

P(Sg =0) < exp{—ESg(1 —n"§)} < exp{ - =

and

1 2
P(Z > 0) < n' exp{— %8 1

}=o(1) .
Finally, if ESg < log”n then P(Sg = 0) < exp{—ESg + 0(1)} and
(1.9) P(Zg >0) < EXgexp{—ESg + o(1)}.

Let us determine an asymptotic formula for ESy. Let ¢(H,G) stand for the
number of graphs on the vertex set {1,2,...,vg} which contain a given subgraph
H on the vertex set {1,2,...,vg}, and are isomorphic to G. We will use the
identity

F(H,G) a;’;Z!G) - (jjj;) mj’tf;)cm, e)

which can be verified as follows. There are a;’tc(’é) graphs on vertex set 1,2,... ,vg
which are isomorphic to G, and there are f(H,G) ways of choosing the subgraph
H in G. On the other hand, one can choose first the vertex set of the graph H (in

(:}’fl) ways), build a copy of H on that set (in #“(’;q) ways), and finally extend H
to G (in ¢(H,G) ways).

Using the above identity we obtain

ESy = f(H,G) @__ﬁ

saut(H)
aut(G)

)C(H ,G)p'eTH ~
(1.10)

nvg—valg—lH — SnvG—valG—lH

~ [f(H,G)]

)
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where s is defined in Theorem 2. If w(n) tends to oo more slowly than logn does,
1
then p =< n~ = (logn)e—"# and from (1.9) and (1.10) we have

nvalG

P(Z <EZL
(2>0) < ~ aut(QG)

exp{—snveTvHpla=tu 4 o(1)} =

4

=0 (n”Gn_ITG (logn)ic=Tu

(1.11)

exp{ _ [Oz'UG — lG

logn + e loglogn + sw(n) } =
lg —lg
{ avg—lg

—0 (n ocha_lG (log ’I’L) _ClG—lH n-" o (log n)—gl_%e—sw(n)> —

=0 (™) = o(1).
Otherwise we obtain
vga—lg 2t
P(Z>0)<0 (n = (w)’G—C’;H exp{—sw(n)}) = o(1).

Thus, in all three cases, P(Z > 0) = o(1). This completes the proof of 0-
statement.

Let us now prove the l-statement. First we show that if w(n) — —oo and
np? — oo then EZ — co. By the FKG inequality,

P(S=0)> [] P(Sk =0).
KCcG

Denote by N(K, G) the number of copies of G which intersect Gy on a subgraph
isomorphic to K. Thus, ESx = N(K,G)p'¢~!x.

Let us bound P(Sk = 0) from below. Again by the FKG inequality
N(K.G)

} =exp{ —plG_lKN(K,G) +0(1)} =

P(Skg =0) > (1—plo~ix)

le=lk N(K,G)
p )
Zexp{ — 1= plo—lx

= exp{—ESk + 0(1)}.

Note that, since a < qu%lv}; for every K # H, G,
\\/j lg—l G
(1.12) ESk =< \II_G < pPeUKk =T (logn) e e < n”F
K

where ¢’ = 5-(lg — lx) — 5 (ve — vk) > 0.
Therefore

(1.13) P(S =0) > exp{—ESg +0(1)}.

and
nve plG

autG

EZ > EX exp{—ESg +0(1)} ~ exp{—snveVHpla=tr 4 o(1)} .
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It is easy to check that under the assumptions of the 1-statement the right hand
side of the above inequality tends to oc.

To prove the 1-statement we use the second moment method in the form of the
inequality

P(Z=0)< VarZ _ E(Z(Z-1))+ EZ - (EZ)’
B (EZ)2 (EZ)2 .

We shall show that
(1.14) E(Z(Z -1)) ~ (EZ)*,
which, together with EZ — oo, will imply that

P(Z=0) < o1) + 2 = o{1).

Let G**(n,p) be the random graph where the edges of two fixed and disjoint copies
G’ and G” of G are present with probability 1 and the remaining edges are present,
as usual, with probability p, independently from each other. Then

E(Z(Z -1)) ~ (EX)’P(S' = 8" =0),

where S’ (S”) denotes the number of copies of G in G**(n, p) which are not vertex
disjoint from G’ ( G"). Together with (1.1) this means that to show (1.14) it
remains to prove that

(1.15) [P(S=0)]> ~ P(S' = 8" =0).
Applying the FKG inequality to the space G**(n, p), one obtains
PS'=8"=0)>PS"=0)P(S"=0),

where, let us recall, the random variable S, defined in the space G*(n,p). counts
copies of G not vertex disjoint from Gy. The asymptotic equation

P(S' = 0) = P(S" = 0) ~ P(S = 0)

follows from the fact that every copy of G which intersects both G’ and G” shares
with G' U G" a disconnected subgraph K. Thus, K # H,G and, by (1.12), the
expected number of such copies in G**(n, p) is o(1).

Hence, by (1.13),

(1.16) P(S' = 8" =0) > (1+0(1))[P(S = 0)]* > exp{—2ESx + o(1)}.
For a given copy G; of G such that G; NG’ = H and V(G;) NV (G") = () define

the indicator variable

7 {1 it G; C G**(n,p)

0 otherwise.

Similarly, for a copy G; of G such that G;NG"” = H and V(G;) NV (G') = 0 define

,, 1 if G;icG™(n,p)
* 10 otherwise.
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Let SH, = Z Ji, SH” = Z Ji” and Ag = ZZE(J;J]‘), where the
G'NG;~H G'NG;=H

double summation is taken over all pairs (4,7), ¢ # j, such that G; NG’ = H or

G; NG" = H, the same holds for G;, and (E(G;) N E(G;)) \ (E(G")UE(G")) # 0.

By a weaker version of inequality (1.4) (see [3]) applied to S H +Su

P(S/+S//:O)SP(SH,+SH,,:O)S
< exp{—E(Sg +Su )+ Ao} = exp{—2ESg + o(1) + Ag}.

To complete our proof it remains to show that Ag = o(1). We split Ag = A1+Ay,
where Ay = )" >" E(J;J;), the summation over all pairs (4,5), ¢ # 4, such that G;
and G; intersect G’ U G" on the same copy of H, and Ay = "> E(J;J;), the
summation over all pairs (4,7), ¢ # j, such that G; and G; intersect G' U G" on
different (thus disjoint — cf. Fact) copies of H which may belong to the same or to
different graphs. These two cases are illustrated in Figures 5 and 6.

Fig.b Fig.6

Since $—g = O(logn), and for every K C G

1

Tx = O((np™)") = O((nptcp~(@o—d )y > pe

where & > W, we have by (1.12)

\I/G :-:, _
A=0| > el i O((logn)n™°) = o(1)
HCK#G
and
_ Vg _ 2 '\ _
Ay =0 = O((logn)"n™% ) = o(1),

where K represents the intersection of G; and G; outside G' UG". This completes
the proof of the 1-statement in Theorem 2.
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The first part of the Poisson-statement is contained in Theorem 1. Let us show
that Z is asymptotically Poisson distributed also at the second threshold. We will
use the method of moments, i.e. will check whether all factorial moments of Z
converge to the corresponding factorial moments of the Poisson distribution with
the required expectation.

Fix an integer 7, r > 1, and let G")(n, p) denote the random graph in which the
edges of given disjoint copies G1,Go2,...,G, of G appear with probability 1 and
the remaining edges with probability p independently of each other.

Let S be the number of copies of G in G{")(n, p) which intersect at least one
of G1,Gs, ... ,Gy. Furthermore, for K C G, let S denote the number of such
copies which intersect G; UG2 U...U G, on a subgraph isomorphic to K.

Consider the r-th factorial moment of Z. We have for r =1,2,...

n 'UG! " rl (r)
E((Z),) = ¢P =
(1.17) ((2)r) ('U(;,’U(;,... ,’I’L—T’U(;> (autG) P (S 0)

~ (BX)"P(S®) = 0) ,

Similarly as in the proof of the 1-statement, one can show, using the weak version
of inequality (1.4) on one side and the FKG inequality and (1.12) on the other side,
that

P(S™ = 0) = exp{—EST + o(1)} .

It remains to estimate ESI(;). Since H is connected, any copy of G which inter-
sects G1 UG2U...UG, on a subgraph isomorphic to H intersects precisely one of
the r copies. Hence,

n — rog

ESg) = rf(H, G)( )c(H, G)ple =t ~ pspve—vH ple—in

Vg — Vg

Finally, from (1.17) we obtain
e "
1 avg — lg | Te-tu —sc
aut(G) as ’

E((Z)r) =

which completes the proof of Theorem 2. [
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2.3. Proof of Theorem 4.

The following proof was suggested by T. Luczak.

Fix an integer v > 1 and call a vertex of a graph small if it has less than 2v — 1
neighbors and large otherwise. Let P, denote the property of a graph F' that, for
every k < v+2 no v+1 small vertices of F' belong to a connected k-vertex subgraph
of F. The following result constitutes the probabilstic ingredient of the proof of
Theorem 4.

Lemma. Letv be a positive integer and, for somee > 0, let np(v+1) > (14¢) logn.
Then aas G(n,p) possesses the property P,,.

Proof. Let Y; be the number of k-vertex trees in G(n,p) with v + 1 small
vertices, k = v + 1,v 4+ 2. Using the first moment method we have

2“2—:2 (n ‘ k)ﬁ(l - p)"_k_t] ;. =

t=0
= 0 (n(np)*~ B D@ Dmm41) = 1)

7 k
P(Y; < EY; k=2,k—1
(Y >0) < k<<k>k D <U+1>

if np = ©(logn). To complete the proof of the Lemma notice that if np(v + 1) >
(k+ (2v —2)(v+1) +¢)logn then

P(Y;, > 0) < EY;, < O (nk+(2v—2>(v+1>e—(k+(2v—2)(v+1)+s) logn) = o(1)

as well. [

Obviously, for any graph G, if G’ is an isolated copy of G in a graph then G’
is also solitary . We shall now show a deterministic statement that if a graph
F satisfies property P, then every solitary copy of a v-vertex tree in F' must be
isolated. This statement implies Theorem 4, since when, say w(n) > —loglogn
and € = %, then the assumption of the Lemma holds, and the known results on
the existence and distribution of the number of isolated trees in G(n,p) (cf. [1])
apply. (When w(n) — —oo at any rate then for a given v— vertex tree aas there
are isolated copies, and thus solitary copies of that tree in G(n, p).)

Let T be a v-vertex tree on vertices x1, ..., £, ordered in such a way that x; is
a pendant vertex, and for each ¢ = 2,...,v there is an index j = j(i) < ¢ with
{z;,2;} € E(T). Furthermore, let for each ¢ = 2,...,v, T; be the subtree of T
induced by the vertices x1,...,z;. (Note that both z; and z; are pendant vertices
of T;.)

Suppose that there is a graph F' satisfying property P, and containg a solitary
copy T' of T which is not isolated. We will now prove by induction on 7 that for
each 4 = 2,...,v there is in F' a copy T of T; with vertices z, ..., z} corresponding
to the vertices x1, ..., £, of T; under an isomorphism, and such that

(1) V(T)NV(T') # 0, and

(2) all vertices of T}, with a posssible exception of z are large.
Note that the case ¢ = v of the above statement yields a contradiction with the
solitude of T".

Consider first the case 4 = 2. Since T” is not isolated, there are vertices z € V(T")
and y € V(F)\ V(T") such that {z,y} € E(F). By property P, there is at least
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one large vertex among the v+ 1 vertices of the set V(T") U {y}. Pick as | and
two adjacent vertices of F' such that | € V(T”) and x4 is large. The edge {z, 25}
is the required copy of T5.

Assume now that, for some i > 3, there is a copy T;_; of T;_; in F satisfying
(1) and (2). Since j = j(i) > 2, the vertex z}, corresponding to z;, is large in F'.
By property P, (k= v + 2), among its at least 2v — 1 neighbors there are at most

v small vertices. On the other hand there are at most ¢+ — 2 < v — 2 neighbors of x;

which belong to T]_;. Thus there is at least one large neighbor z of z7; which can

play the role of z,. The tree obtained from T]_; by adding vertex z and the edge
{#}, z} makes for the required copy of 7;. [
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