SHORT PATHS IN QUASI-RANDOM TRIPLE SYSTEMS WITH SPARSE
UNDERLYING GRAPHS

JOANNA POLCYN, VOJTECH RODL, ANDRZEJ RUCNSKI, AND ENDRE SZEMEFEDI

AsstrAcT. The regularity lemma for 3-uniform hypergraphs assedselery large hyper-

graph can be decomposed into a bounded number of quasimastdactures consisting of
a sub-hypergraph and a sparse underlying graph. In this pagpghow that in such a quasi-
random structure most pairs of the edges of the graph canreected by hyperpaths of
length at most twelve. Some applications are also given.

1. INTRODUCTION

The Regularity Lemma from [10] is a powerful tool in contemgmy graph theory and
combinatorics. It allows one to partition every large graypb a bounded number of bipar-
tite subgraphs, most of which are quasi-random, that iy, ploesess essentially all typical
properties of corresponding random graphs. One of thegeedres, quite easy to prove,
is that every two vertices with non-negligible neighbortiegan be connected by a path of
length at most four (see, e.g., [7] and Corollary 2.5(a)).

In this paper we study the much harder problem of the exist@ficshort paths in 3-
uniform, 3-partite hypergraphs with a certain regular dtice related to the Hypergraph
Regularity Lemma in [2]. When this lemma is being appliec thitial hypergraph is
broken into several quasi-random pieces and a desiredisteuis built from segments
scattered among these highly regular substructures. Hheis important to “sew” them
together by relatively short hyperpaths.

Two examples of this general approach can be found in thedoming papers [9] and
[4], where, respectively, the existence of Hamilton cydte8-uniform hypergraphs and
the Ramsey numbers for hypercycles are treated. In eaclesé thpplications, besides
the Hypergraph Regularity Lemma itself, a crucial role sygld by a “connection lemma”
guaranteeing short paths between (almost) all pairs of pawvertices.

In [9] such a lemma follows from the strong assumption tharg\pair of vertices is
contained in more than/2 hyperedges. The connection lemma applied in [4] is, on the
other hand, a consequence of the quasi-random structurasasutch is analogous to, but
much more complicated than its counterpart for graphs. biti@e 7.1, we describe this
application in more detail.
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2 SHort PatHs IN Quasi-RaNDoM TRIPLE SySTEMS WITH SPARSE UNDERLYING GRAPHS

The goal of this paper is to prove the connection lemma fosgedom, 3-uniform
hypergraphs, in the form stated in [4]. In the next sectidteraome preliminary defini-
tions, we state our main result, Theorem 2.16. Then, in &@&iwe reformulate it in a
more constructive way, specifying, in terms of their founfighborhoods, the edges that
can be connected by short hyperpaths. Section 4 contaipsdbés of these two theorems,
both relying on two lemmas, Lemma 4.1 and Lemma 4.2, whicm#wsdves will be proved
in Sections 5 and 6. Section 7 presents briefly some apmitabtf Theorem 2.16. One of
them guarantees a sub-hamiltonian path in a quasi-randonif@m hypergraph and, in
turn, is used to derive asymptotic values of the Ramsey ntsribehypercycles in [4]. In
the final application, we approximate every large 3-unifdrypergraph by finitely many
pieces of small “diameter”.

Acknowledgments.The authors would like to extend their deepest gratituderém8an
Nagle for his invaluable contribution to the initial versiof this paper. Without his persis-
tence in comprehending our elusive ideas this work woule mever be born. We are also
grateful to the referees for several helpful remarks andssiipns.

2. PRELIMINARIES AND MAIN RESULT

2.1. Facts one-regular pairs. In this subsection we collect elementary facts about
regular graphs which are used throughout the paper.

Let G = (V,E) be a graph, wher¥ andE are the vertex-set and the edge-seGof
Throughout the paper we often identi@ with its set of edges and therefore wri@|
instead ofE|. WhenU andW are subsets df, we define

(U, W) = [{{xy} e E: xe U,y e W}.
For nonempty and disjoind andW,
es(U, W)

ds(U,W) =
W)= TGw
is thedensity of the graphG betweernJ andW, or simply, the density of the paitJ(W).

Definition 2.1. Givene > 0, a bipartite grapl® with bipartition (/1, V), where[V;| = n
and|V,| = m, is callede-regular if for every pair of subsett) C V; andW C V,, |U| >
en, |W| > em, the inequalities

d-—e<dsg(UW) <d+e

hold for some real numbat > 0. We may then also say th&, or the pair V1, V>), is
(d, e)-regular.

Let a graphG = (V, E) be given. We writeNg(Vv) for the set of neighbors of € V in
the graphG. The size ofNg(V) is INg(V)| = deg;(v), thedegree of v. We setNg(Xxy) =
Nc(X) N Ns(y) as the set of common neighborsxf € V in G. For a set c V, we write
Ng (v, U) for the set of neighbors afin U andNg(xy, U) for the set of common neighbors
of xandy in U. The size ofNg(v, U) is [N (v, U)| = degs(v, U).
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Definition 2.2. LetG = (V1 U V,, E) be a €, €)-regular bipartite graph, whepé,| = |V,| =
n. We say that a vertexe V,, i = 1, 2, istypical in G, if the following inequalities hold

n(d-e) <deg(x) < (d+e)n.

Further, letG = G'? U G*® U G™ be a 3-partite graph with partitiot(, V,, V5), where
V1| = Vo] = [V3] = n, and each grapB' is (d, €)-regular, 1< i < j < 3. We call a pair of
vertices K, y) € V; x V; typical if it satisfies inequalities

n(d-e€)? < Ns(xy)l < n(d + €)°.
The next fact is well-known and follows immediately from Defion 2.1 (see e.qg. [1],[7]).

Fact 2.3. For all e > 0 and d > 0, and for all integers n and m, the following holds. Let
G be a (d, e)-regular bipartite graph with a bipartition (Vq, Vo), where [V = n, |V, = m.
Further, let A C V5, |Al > em. Then all but at most en vertices x € V; satisfy

Q) degs (X, A) < (d + €) |Al,
and all but at most en vertices x € V; satisfy
(2) degg(x, A) > (d—€) |Al.

In particular, if V1] = [V, = n, then for eachi € {1, 2}, all but at most 2en vertices x € V,
aretypical in G.

Corollary 2.4. For all e > 0 and d > 2¢ and for all integers n, the following holds. Let
G = G2 U G® U G*2 be a 3-partite graph with partition (V1, Vs, Vs), where |Vq| = |V,| =
IVs| = nand each graph G is(d, e)-regular, 1 < i < j < 3. Then all but at most 4en? pairs
of vertices (X, y) € V; x V; aretypical.

Another simple consequence of Fact 2.3 deals with the distaim a quasi-random bi-
partite graph (see [7] and [8]).

Corollary 2.5. Let B be a (d, €)-regular bipartite graph with bipartition (V1, V,), where
Vil = [Va| = n.

(a) If d > 2¢ then all pairs of vertices of B of degree at least en can be connected by
paths of length at most four.

(b) If d > 4e then by removing from B at most 2en vertices (those of degree less than
3en < (d - €)n), we obtain a subgraph with diameter four.

Finally, we state another well-known result which tightstienates the size of T®), the
set of triangles in a quasi-random 3-partite gr&p(see, e.g., [2],[9]).

Fact 2.6. Let G = G'? U G* U G'® be a 3-partite graph, where all three hipartite graphs
G are(d,e)-regular, 1 <i < j < 3.1fd > 2¢ then
| Tr(G)l
IV1][V2| V3]

In particular, if € < 0.1d® then | Tr(G)| < 2d3V4||V||Vsl.

(d® - 10¢) < < (d® + 10e).
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2.2. Regularity of hypergraphs. We begin with some basic definitions from hypergraph
theory.

Definition 2.7. A 3-uniform hypergraph is a pairH = (V, E), whereV is a finite set of ver-
tices anck is a family of 3-element subsets dfcalledhyperedges or triplets. Throughout
the paper we will often identifgH with E.

We callH 3-partiteif there exists a partitioW = V; U V, U V3 such that for eack € E
and for each = 1, 2, 3we haveenV; # 0. We refer to any 3-partite 3-uniform hypergraph
H with a fixed 3-partition {1, V2, V3) asa 3-graph.

For an arbitrary hypergrapH and a grapl® on the same vertex set, we denotefy G
the sub-hypergraph ¢ff obtained by removing all hyperedges containing at leasedge
of G.

The density and-regularity of bipartite graphs is measured by the ratiodges to all
potential edges (see above). For 3-graphs it is the ratigpétedges coinciding with the
triangles of an underlying graph to all triangles in thatajra

Definition 2.8. For a 3-partite grapP with a fixed 3-partitiorV, U V, U V3, we shall write
P = P22 yU P2 U P whereP' = {xy € P : x € V,,y € V;}. Furthermore, let TR) be the
set of all (vertex sets of) triangles formed by the edgeB.off P = P12U P2 U P8 is a

3-partite graph with the same vertex partitior#dsand moreoverH C Tr(P), then we say
thatP underlies H.

The natural notion of densitgly, (P) of H with respect toP counts the proportion of
triangles ofP which are triplets ofH. Then, thes-regularity of/H means that for alQ C P
that contain at least Tr(P)| triangles, the densities 6§ with respect to sucl)’s are within
6 from each other. However, it turns out that in some applcegithis is not strong enough.
Therefore, the concept of so callefir)-regularity was introduced in [2].

Definition 2.9. Letr > 1 be an integer and I&tf be a 3-graph with an underlying 3-partite
graphP = P2 U P2 U P, LetQ = (Q(1), ..., Q(r)) be anr-tuple of 3-partite subgraphs
Q(s) = Q'(s) U Q%(s) U Q'¥(s) satisfying that for alls € {1,2,..,r}and 1<i < j < 3,
Q'l(s) c P'I. We define thalensity dy(Q) of H with respect taQ as

(3) dq{(Q) — |7{ n Us:l TI'(Q(S))|

| Usea THQ(II
if | UL, Tr(Q(9))| > 0, and 0 otherwise.

Definition 2.10. Let an integer > 1 and real numbers @ «, 6 < 1 be given. We say that
a 3-graphH is (o, 6, r)-regular with respect to an underlying gragh= P2 u P2 u P13 if
for anyr-tuple of subgraph@ = (Q(1), ..., Q(r)) as above, if

> 6|Tr(P)|,

Q)
s=1

then
(4) |dx(Q) — al < 6.
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We say thatH is (6, r)-regular with respect toP if it is («, 6, r)-regular fora = dg(P).
Note that if H is (6, r)-regular with respect t®, &' > §, andr’ < r is an integer, then
H is also ¢, r’)-regular with respect t®. If r = 1, we just use the nameésregular and
(a, 6)-regular.

Setup 2.11.In what follows we always assume ti#tis a 3-graph an@® = P2uP2u P
is a 3-partite graph, both with the same 3-partitios: V(H) = V(P) = V1 U V, U V3 with
V1| = |V, = |V3] = n, and moreover, tha& underliesH, i.e.,H C Tr(P).

Definition 2.12. GivenH andP as in Setup 2.11, integefsandr and real numbers, ¢
ande, we call the pair#, P) an @, 6,1, r, €)-triad if

(i) eachP, 1<i < j <3,is (Y1, €)-regular;

(i) His (a,6,r)-regular with respect t.

We call (H,P) an & «,6,1,r,¢)-triadif is a (8, 6,1, 1, €)-triad for someB > a. In partic-
ular, it follows that if (H, P) is an g, 6,1, r, €)-triad then for all 1< i < j < 3 we have

(5) (Y1 - e)n® < |P| < (1/1 + €)n’.

The Hypergraph Regularity Lemma in [2] states that with tgktrchoice of parameters,
for every large and dense 3-uniform hypergrggh= (V, E), the complete graph ovi can
be partitioned into finitely many graphs so that most triplet 7 belong to &, 6,1,r, €)-
triads built upon these graphs. This paper studies thetateiof (H, P) in such a typical
situation.

For future references in Section 7, we now state the regulenmma for 3-uniform
hypergraphs from [2] in a simplified form presented in [9g$&mma 4.1 and Remark 4.1
there). SeK(U, W) for the complete bipartite graph with vertex setandW.

Theorem 2.13(The Hypergraph Regularity Lemmafor every ¢ > 0, every integer to and
for all integer-valued functionsr = r(t,1) and all decreasing functions (1) > O, there exist
constants Ty, Lo and Ny such that every 3-uniform hypergraph 9H with at least Ny vertices
admitsa partition IT consisting of an auxiliary vertex set partition V(H) = VoUV,U- - -UV,,
wherety <t < To, [Vol < tand [Vy| = [V, =--- = |V, and, for each pair i, j, 1 <i < j <t,
of a partition K(V;, Vj) = UL_, PJ, where 1 < | < L, satisfying the following conditions:

(i) all graphs P are (1/¢, €(1))-regular, o
(i) H is (6, r)-regular with respect to all but at most 6133 triads (P, Pl’, PY).

2.3. Main result. There are several ways to define a path in a 3-uniform hypeingend
we choose one in which the edges are glued along the path mdbketight way (see [6]
and [3] for some study of paths and cycles defined in a “loossy/)w

Definition 2.14. Let H be a 3-uniform hypergrapl® hyperpath of lengthk > 0 in H is a
sub-hypergrap of H consisting ofk + 2 vertices andk hyperedges and whose vertices
can be labeledy, ..., X, so that foreach=1,...,k, X X,1X.> € H. We then say thaP
goes from the pair x;X, to the pair X »X;1 and these two pairs are called tbalpairs of

P. The vertices, . .., X are callednternal. Two paths are said to beternally digoint if
they do not share any internal vertex.
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Remark 2.15. Note that the endpairs are ordered pairs of verticesH Iis a 3-partite
hypergraph then the vertices of any hyperpath traverseart&ipn sets only in the cyclic
orderV; — V, — V3 — V,, or in its reverse (see Figure 1). Hence, there are pairs of
ordered pairs of vertices which, even in a complete 3-grapé,not connected by any
hyperpath. Another consequence is that the lengths of patitsecting two given endpairs
are equal modulo 3.

Throughout the paper we will be assuming that the cycliciandge/; — V, —» V3 — V;
is canonical, and thus, specifying two unordered pairs dfces,e and f, and saying that
a hyperpath goes fromto f will not be ambiguous. (Note that under this convention a
hyperpath fromf to eis not a mere reverse of a path frao f.)

Note also that unlike the graph case, the length of the s$tdnigoerpath between two
given endpairs does not satisfy the triangle inequalitg,tans cannot be called “distance”.

Our goal is to prove the following “Connection Lemma” whidh,a way, extends a
simple fact about graphs, Corollary 2.5(b) (see above);uaif®rm quasi-random hyper-
graphs. In addition, for the sake of future applications,meagy force the hyperpaths to
avoid a specified set of vertic& A hyperpath® is calledS-avoiding if V() n'S = 0.
Not to face the burden of computing yet another constantgstictS to have size only at
mostn/ logn. (The numerical constants are, clearly, not best pos¥ible.

Theorem 2.16(Connection Lemma)For all a € (0,1) and § < 6o, Where

CZ49

So= — .
0~ 3650830002

there exist two functions r(l) and €(l) so that for all #, P and for all integers| if (H, P)
isan (a,d,1,r(l), e()-triad with [V4] = [Vo| = |V3] = n sufficiently large, then there is a
subgraph P, of at most 27 Vén?/I edges of P such that for every ordered pair of disoint
edges(e, f) e (P—Pg) x (P—-Pg),en f =0,andfor everyset S c V(H) \ (eu f) of size
IS| < n/logn, thereisin H — Py an S-avoiding hyperpath from e to f of length at most
twelve.

Remark 2.17. In principle it might happen that an edge P — Py is “isolated” inH — Py,
that is, all triplets containing also contain an edge &f%. The conclusion of the above
theorem ensures that this is not the case. In fact, all eelgd3- P, are mutually connected
by short hyperpaths withi#{ — Py.
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Vi

Vi

Vi

Ficure 1. A hyperpath of length 12 frorato f. Every 3 consecutive ver-
tices on the path form a hyperedge.

3. CONSTRUCTIVE REFORMULATION

As mentioned earlier, in the case df €)-regular graphs, it is easy to see that for every
pair of vertices with at leagih neighbors each, there is a short path (of length at most four)
between them (see, e.g., [7] and Subsection 2.1 above)ctirste [8], every two vertices
of degree at least 16{/d)n can be connected by a path of length at most five.

The quantification of Theorem 2.16 (note that “there exiatfionsr(l) ande(l)” trans-
lates to “for alll there exist ande”) implies the following hierarchy of constants:

a> 6,1/ > 1/r €,

whereg > y means thay is suficiently smaller thai, or thaty is chosen only aftes is
being fixed.

Polcyn [7], working under a comfortable assumption thak 1/I, proved that most
edges ofP can be mutually connected by hyperpaths of length at mostnseVfypical
edges were defined in [7] in terms of the first and second neigiood inH. Here, with
the possibility that > 1/I, to formulate a constructive version of Theorem 2.16, walnee
to look into the fourth neighborhood of an edge.

Let us begin by defining the first neighborhood.

Definition 3.1. Let H be a 3-uniform hypergraph and ket {x, y} be a pair of vertices in
V = V(H). We define thdwypergraph neighborhood of eto bel'y(€) = {ze V : {Z X, y} €
H}. The vertices iy (€) will be calledneighbors of e.

Note that in a 3-grapbH with an underlying grapt® = P* U P2 U P, if e € Pl then
'y (e) € Vi, wherefi, j,k} = {1, 2, 3}.

Imagine that both?H4 andP are chosen at random as a result of the following 2-round
experiment. First, creat@by tossing a coin over each pair M;(x Vo) U (Vo x V3)U(V1 X V3)
independently with the success probabilify,then creatéH by selecting each triangle of
P with probabilitye. In such arandom hypergraph the expected number of triglets/|®
and, for a given edge d? (here we condition thag has been selected), the expected value
of Il ()| equalsan/I2. Itis proved in [7] that if ¢, P) is an (deterministic)d, 3,1, 1, (1))-
triad, then for almost all edges &, |[I'x(€)| is close to the above expectation. Here we
guote without proof a minor modification of that result.
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Fact 3.2([7]). For all @ > 0 and 6 > O, there exists a function (1) > 0 such that for all
integers | > 1, whenever (H,P) is an (@, 4,1, 1, €(I))-triad then all but at most 7V6n?/1
edgeseof P/, 1 <i < j < 3, satisfy the inequalities

2

2
n(l—l —E) (@ —0) < IT'u(e)l < (a+6)(:TL +E) n.

Definition 3.3. Let e;, &, be edges oP. We say thae; reaches e, within H in k steps and
int waysif there exist at leadtinternally disjoint hyperpaths it of lengthk from e; to e;.
Fort = 1 we will skip the phrase “inways”. For an edge € P, we denote by Foti(e, H)
the set of those edges Bf which are reached frora within # in four steps and ingn
ways, and by FouKe, H) the set of all edges d® which reache within H in four steps
and inygn ways (see Figure 2), where

(1’4

Yo = 50007
Vi
AN “
v; —9
e
Vi

Ficure 2. The fourth neighborhoods ef(g € Four (e, H), h € Four (e, H)).

Let us now provide some intuition for why it is necessary tasider the fourth hyper-
graph neighborhood of a graph edge. Suppressiiage, most edges oP belong to about
n/1? triplets of H (see Fact 3.2), but any such edgean be completely cutfbfrom the
rest ofH if no stronger assumption is made. Indeed, the total numbgiptets extend-
ing triplets containinge is of the ordem?, and clearly the removal of such a tiny fraction
of triplets cannot fiect thes-regularity which “controls” only sets of hyperedges ofesiz
roughly,n3/I3.

In two steps, only about?/I* edges are reached from a typical edge. Most of them
extend to aboun/|? triplets, a total ofn®/I® — still much less tham®/I1® if | is large. To
estimate the number of edges reached from a typical edgesia teps, the quantity/1°
has to be divided to accommodate the repetitions. Amongdbesd reached b in three
steps, onlyO(n) share a vertex witk. For all otherf, there are at most, roughly/|* paths
frometo f. This is because their number is bounded from above by thdauaf vertices
forming simultaneously triangles withand f. Thus, there are onlg?/I?> edges reached
from ein three steps. Again, they belong to abaétl* < 6n®/I® triplets — a quantity not
under control. Hence, the shortest distance at which adypitge can reach a substantial
number of other edges is four.
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Theorem 3.4 below states that, indeed, most edges havedangle neighborhood, and,
more importantly, edges with large fourth neighborhoodratgually connected by short
hyperpaths.

Let us denote b¥Ry(H) = R, the set of all edges d?, for which

4 n2

2000 T

min{| Four (e, H)|,| Four (e, H)|} <

Theorem 3.4.For all @ € (0,1) and 6 < &p, Where

CY49

- 3650830002’
there exist two functionsr(l) and e(I) such that for all H, P and for all integersl, if (H, P)
isan (a, 4,1, r(l), e(l))-triad with |V4| = |V,| = |V3| = n sufficiently large, then
(i) |Rol < 27V6or?/1, and
(ii) for every ordered pair of disjoint edges (e, f) € (P — Ry) x (P — Ry) and for every
setS c V(H)\ (eu f) of size|S| < n/logn, thereisin H an S-avoiding hyperpath
frometo f of length at most twelve.

oo

4. TwO LEMMAS AND MAIN PROOFS

Theorems 2.16 and 3.4 are straightforward consequencesdethnical lemmas. A
subgraphA of P = P2 U P2 U PR is calledframed if for some 1<i < j < 3, A c P,
Our first lemma needs only the assumption tifdt P) is an @, 6,1, r(l), (l))-triad, where
r(l) = 1 foralll.

Lemma4.l.Forall ce (0,1)and « € (0, 1) and for all § < §;, where

a/C12
3508
there exists a function (1) so that for all #, P and for all integers | if (H,P) is an
(@, 6,1, 1, e(l)-triad with |V4| = |Vo| = |V3] = n sufficiently large, then the following is
true: For every subgraph P; c P, where |Py| < 29v6n?/I, and for every pair of framed
subgraphs A and B of P — P, each of size at least cn?/I, there exist edgesa € Aand b € B
and a hyperpath in H — P, fromato b of length at most four.

01

Our second lemma asserts that for a typical padrIP), apart from a small set of edges
Po, all other edges dP have their fourth neighborhood substantial, even if theesdifP,
are to be avoided. This lemma needs the whole strength oétherégularity.

Lemma4.2. For all @ € (0,1) and 6 < 6, where

a,2

18’

there exist two functions r(l) and (1) such that for all #, P and for all integers| if (H, P)
isan (a,d,1,r(l), e(l)-triad with [V3| = |V,| = [V3| = n sufficiently large, then there exists
P, C P, |Po| < 27V6n?/I, such that

52 =

2

(6) min”Four*(e,ﬂ — Py)

Four (e, H — Po)|} > ( o ) "’

2000/ |
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for all ee P - Py.

From Lemmas 4.1 and 4.2 we immediately derive our main result

Proof of Theorem 2.16. Note that forc = «*/3000,69 = 6; < d,. Givena andé <
o, let e(1) satisfy Lemma 4.1 witle = o*/3000, and let functions(l), ande(l) satisfy
Lemma 4.2. We claim that Theorem 2.16 is true with the abowgcehofr(l) and with
e(l) = min{ex(l), (1)}

Indeed, consider anyf, P andl such that#, P) is an ¢, 4,1, r(l), e(1))-triad and apply
Lemma 4.2. It follows that there exisB c P, |Po| < 27V6n?/1, such that (6) holds for all
e e P - Py. Fix disjointe, f € P - Py, and a se6 c V(H) \ (eU f) of size|S| < n/logn.
DefinePs = {e € P : Sne # 0} and observe thagPs| = o(n?), and thus, for large,
IPo U Ps| < 29+6r?/1, and

4

2
Four‘(e,W—Po)|}—|Pg|2( @ )”T

min {|Four* (e, { - Po)

9

3000

Four (e, H — Py) Four (f, H — Pp)

4+4+4=12
Ficure 3. A hyperpath froneto f. (An illustration of the proof of Theorem 2.16)

Since (H, P)is also an¢;, 6,1, 1, &(1))-triad, we may apply Lemma 4.1 with= a*/3000
to

A =Four (e, H-Py)\Ps, B=Four(f,H-Py)\Ps and P;=PyUPs,

obtaining edgea € A andb € B, and a hyperpat#®, in H — (Py U Ps) from ato b of length
at most four. (Note thah andB are framed subgraphs Bf)

Letl = V() U f \ a Among at leaston > || U S| (for largen) internally disjoint
hyperpaths frome to a in H — Py choose one which is disjoint frothu S, obtaining
an S-avoiding hyperpatl, in H — Py from e to b of length at most eight. Finally, set
J =V(P,) \ band choose a hyperpath in H — Py from b to f which avoids the vertices
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of JU S. This way we obtain a%-avoiding hyperpath irH — Py from eto f of length at
most twelve (see Figure 3).
O

Proof of Theorem 3.4. SinceR, C Py, wherePy is as in Lemma 4.2, part (i) follows from
the estimate ofPy|. The proof of part (i), is very similar to that of Theorem &.1We
definePs as before and apply Lemma 4.1 with= o*/3000 to

A=Four(eH)\Ps, B=Four(f,H)\Ps and P;=Ps,

obtaining edgesa € A andb € B, and a hyperpati®, in H — Ps from a to b of length at
most four. Finally, we exten; to anS-avoiding hyperpath irH. O

Remark 4.3. It will follow from the proof of Lemma 4.1 that, in fact, depeimg on the
position of the set®\ and B, the promised hyperpath is precisely of length two, three or
four. Consequently, depending on the positioe ahd f, the length of a hyperpath from

to f, guaranteed by Theorems 2.16 and 3.4, is precisely tereretmvtwelve.

5. SHORT PATHS BETWEEN LARGE SETS OF EDGES

In this section we prove Lemma 4.1. We begin with formulatnglaim from which
the lemma will follow quite easily. LeE be any framed subgraph &f. Further, let
First'(E, H) and SecondE, H) denote the sets of all edgbse P reached inH by an
edgeg € E in one and, respectively, in two steps. Sets F{istH) and SecondE, H) are
defined similarly, by replacing the phrase “reached+rby an edgey € E” by “reaching
in H an edgegg € E”. Throughout,i jk always stands for any one of the functions: 123 or
231 or 312, that is, functions which follow the cyclic ordegil231.

Claim 5.1. For all c € (0,1) and @ € (0,1), all 0 < ¢ < min{e, c®/50°} and functions
0 < €(l) < V5/(108%), and all integers| > 1, if (H,P) is an (a, 46,1, 1, (l))-triad with
V1| = V2| = V5| = n sufficiently large, then for all P, c P of size |Py| < 29+/6n?/I and for
all setsE c Pl — P, of size|E| > cn?/I,
n2
7) min{|First'(E, #{ - Py) T

o c
First (E, H - P)|} 5

9

(8) min{|Second(E, H — Py)

9

1/8 2
Second(E, H - Py)|} > (1 _% )n_

VT

In order to derive Lemma 4.1 from Claim 5.1 we need one morelgifact about vertex-
disjoint subgraphs of bipartite graphs.

Fact 5.2. Let A and B be two bipartite graphs with the same bipartition V; U V5, [V4| =
Vol = n. Then there exist A € A and B" € B such that |A'| > (1/2)|Al — (1/2)A,(A),
IB'| > (1/2)Bland V(A)NV (B )NV, = 0, where A,(A) isthe maximum degree in A among
the vertices of V,.
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Proof. Let us put vertices of the skt in two linear ordersL,, ordered by their degrees in
Ain the descending manner (ties resolved arbitrarily), lagd the same with respect &
Now include the first vertex ofg to a setVg and remove it from both orders. We repeat
this step forL, and then again foLg and so on until all vertices are placed in one of the
setsV, or V. (Note thatVa| = [n/2] and|Vg| = [n/2].)

Let us defingX as the subgraph[V,UV,] of Ainduced by the subset of verticégu Va,
and, similarly,B’ = B[V; U Vg]. It remains to compare the sizes Af againstA and B’
againsB. For the latter, let us match each vertex included \fgavith the one included into
V, in the very next step (ih is odd, the vertex included intdg last remains unmatched).
Because we have started with a verteXgfwith the largest degree iB, its match has a
smaller or equal degree B, and this is true for each matched pair. Therefore, we have
IB’| > (1/2)|B|. To prove thatA’| > (1/2)|Al — (1/2)A,(A) we apply the same reasoning to
the subgraph of obtained by removing all edges incidentAro the first vertex of.g. O
Proof of Lemma 4.1. Givenc anda, let

ac?  a(c/3)°

©) 0<01= 3550 < 5P
and
V6
E(I) = r.s
Note that < «, and
4618 ¢
10 1- —+—>1+€(l,

the latter by inequalities/® < c+/c/(50V3) ande(l)l < ¢/5C.

LetH, P, I, A B, andP; be as in Lemma 4.1. Without loss of generality we assume that
A c P2 and will consider all three cases fBr

If B c P2 apply Claim 5.1 withE = A to obtain a seA® = Second(A, H — P,) C

P13 — P; of at least
461/8 n2
1-— —_
-E)s
edges. By (5) and (10), we conclude tBat A # 0, implying the existence of a hyperpath
within H — P, from an edge € Ato an edge € B of length two.

If B c P2, we use Fact 5.2 to obtain two subgrapkisc A andB’ C B such that
|A'| > (c/3)n?/I (for n sufficiently large)|B’| > (c/2)n?/l andV(A) NV (B) NV, = 0. Then
by Claim 5.1 applied witlt replaced byc/3, the sefA!® = Second(A’, H - P1) € P - P,
has cardinality at least

451/8 n2
1 - )
( VC/3) |
and takingB*® = First (B’, H — P;) € P - Py, by Claim 5.1 applied witlt replaced by
c/2, we have
c

BN > ——.
| |_12|
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Again, by (5) and (10), we conclude that> n A® # 0. Letzu € B n A and letxyzu
andzuv be hyperpaths, respectively, fran= xy to uzand fromzu to b = vu. Note that by
the disjoint choice o andB’ we havey # v, and soxyzuv is a hyperpath withinH — P,
fromae Atob e B of length three.

The last case is wheB c P?. Here also we apply Fact 5.2 to obtain two subgraphs
A’ € AandB’ c B such thatA'| > (c/3)n?/I, |B'| > (c/2)r?/l andV(A) N V(B) NV, = 0.
(Technically, we identify for a moment set§ andV; to treatA and B as two bipartite
graphs on the same vertex set.) By Claim 5.1 applied witbplaced byc/3, the set
A3 = Second(A', H — P;) € P*3 — P, consists of at least

461/8 n2
1-— -
( VC/3) |

edges. Hence, taking'® = Second(B’, H — P;) € P*® — P4, by Claim 5.1 applied witle
replaced by/2, we get

1/8 2
B > (1— 47 )”—.
ve/2) |
Again, by (5), (10) and (9), we conclude tHBt N A® # (. Letzu € B* n A3 and let
xyzu andzuvw be hyperpaths, respectively, fraam= xy to uzand fromzuto b = wv . Note
that by the disjoint choice & andB’ we havey # v, and soxyzuww is a hyperpath within

H — P, froma e Atob € B of length four (see Figure 4).

B b

Vy -

A13 / BlS
(A Z

a A

Ficure 4. An illustration of the last case of the proof of Lemma 4.1.

O

It remains to prove Claim 5.1. We first show a simple but crui@at which will be
applied twice in the proof of Claim 5.1.

Fact 5.3. For any real ,6 € (0,1), integer | and € < V&/(1013), let (H,P) be an
(a,6,1,1, €)-triad. Let, further, AC V;, B C V; and Q C P besuchthat |PY—Q| < 29Ver?/I,
|Al > an, |B| > bn, and every vertex of A hasin Q at least 8|B|/I neighborsin B and at |east
yn/l neighborsin V. If min{y, bB} > el and abBy > 435 then |HNTr(Q)| > 2(a—d)5n3/13.
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Proof. By the (1/1, €)-regularity ofP¥, we have
3

9
[THQUPY)| > > degy(y, B) degy(y, Vi) (— - e) = 1Oab,87T3.

yeA

On the other hand, settigy = Pl u PkuU (Pki - Q), by Corollary 2.4, we have

ITr(Q)] < 29V5(1. 21)— +4en® < 36\/_

and so, by our assumptions and Fact 2.6, we may estimate

3

sn
— > o[Tr(P)I.

Tr(Q)l = [T(QU P¥)| - ITr(Q)I>( 435 - 36() ]

Therefore, by thed, ¢, 1)-regularity ofH,

[H N Tr(Q)|
Tr(Q)l

a—90. 0O

dx(Q) =

Proof of Claim 5.1. By symmetry, it is enough to prove only thiirst'(E, H — P;)| >
(c/6)n?/1 and similarly, that Second(E, H — P,)| > (1 — 4518/ \/E) n?/l. Let us fixa and
¢c,0<a,c<1, andlet

. c®
(11) o< mln{a, @}
Further, withs given above, let for all
1/4
< Yo e
108 |4c 120

Let H, P, andl be as in Claim 5.1. Set= ¢(l) for convenience and fix ¥ i < j < 3. Let
E be a set of at leasn?/| edges o' — P,. Define

(12)

Elz{yze Pk: xyzeH and xye E and xz¢ P, forsomexevi}

and assign to each edgeof E; one (arbitrary) vertex = X, € V; which together wittyz
satisfies the conditions in the definition®Bf. Finally, let

E, = U {zweP"‘: W # X, and yzw € H andyweéPl}.

yzeE1-P;

Note thatE;—P; = First'(E, H-P,), and that by avoiding = X, E,—P;1 € Second(E, H—
P1).

Observation 5.4. Trivially, if xy € E, yz € PX — E; andxz ¢ P; thenxyz ¢ H. Similarly,
but more subtly, ifyz € E; — Py, 2w € PX — Ey, andyw ¢ Py, thenyzw ¢ H unlessw = Xy,
which implies that the edges &; — P,, PX — E, andP') — P, span at mosiE; — P4|
hyperedges irH.
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Using these observations and Fact 5.3 we will first show th&igaificant fraction of
verticesy € Vj have large (close to/l) neighborhood irE;, and so subgrapg; — P; is
large. Then we will argue that most vertices\@fhave large degree iB,, meaning that
the setE, must be very large (close t8/1), and so must b&, — P;.

Let

Lo = {y e V;: degi(y) < (% - e) n}.
By (2) with A = Vi, we havelo| < en. Next, let us consider the set
{er — Lo : deg(y) = 2,}
Observe thaflL| > cn/3. Indeed, otherwise, using (1) and (12), we obtain a conttiatic

1 1
IE| < |LIn ( +e)+|Lo|n(T—e)+en +n%<$.

We proceed with the following fact. Sey = Pk— E; and

oY4n
{yeL de%(y)>7\/_|}

Fact 5.5.
1/4

0
L'/ <13—n
L] NG

Proof. AssumdL’| > 13(5"/*/ v/c)n and apply Fact 5.3 with = L', B =V; (and sab = 1),
B =c/2,a= 134/ +c, andy = 76Y/*/ /C to the 3-partite subgrapQ = Q' U QK U QX,
where

Q= E[V.L1.
Qk = E4[L, V]
Qki — Pki _ Pl-

As min{y, b8} > el andabBy > 43V, it follows thatH N Tr(Q) # 0. However, by the
construction ofQ (see Observation 5.4) we hagé€n Tr(Q) = 0. This contradiction ends
the proof of Fact 5.5. O

We setl” = L —L’. By (11),

3 1 351/4 1
1 L”| =|L] - |L'| > =cn—13—n > =c¢n n.
(13) IL”] =|L| - | |_3 NG > 4cn>e

Note that every vertex € L” has
61/4
de%(y)>——en 7\/_:]

and thus, by (11), (12) and (13),
1/4 2
Bz L7 - en- 7 7] > T
\e
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To complete the proof of the inequality (7) we count the nundfedges ingE; — P;

2 2 2
Ey— Py > C”I——zgxfn gnT
the latter by (11).

We continue with the proof of the inequality (8). Recall owtation deg(v) and

deg;(v, U) defined in Subsection 2.1. LEt = PX — E,. Note that by the (41, €)-regularity
of PXandP¥, Fact 2.3 and (13), the set

1 1
to= {Z € V! deg;jk(z, L") < (T - 6) IL”| or deg>ki (2 < (l— - 6) n}
has sizet o| < 2en. Next, let us consider the set
51/8
b= {z € Vi :deg (zL") > 7|—|L”|}.

Since each vertex @f’ has inE; degree at most 8t/*/ v/c)(n/1), a simple, double counting
argument shows thit,| < (6¥/8/ 4/©)n. Further, let

1/4
b, = {ze Vi 1 deg, (z L") > 116%|L”|}

Clearly, |k, < (6Y*/+/C)n, since otherwiséP;| > 29V6n?/l — a contradiction. Set t=
Vi \ (Lo ULty UL,) and define

1/4
Iy {zeL dege (2) > 97— ”}

\e
Observe, by (11) and (12), that for alE . (and thus for alkz € £’) we have
1 1/8 1/4 4
deqg p (ZL")> |- —-€- 75— - 1166— L] > = |L”|
1 1 I I ‘\/_l
Fact 5.6.
51/4
L' <24—n
L] NG

Proof. The proof of this fact is very similar to the proof of Fact 5¥/e will argue that
the inequalitylt’| > 24(5"/*/ /C)n contradicts a conclusion of Fact 5.3. Define a 3-partite
subgrapiQ = Q' u QXU QX as follows:

Ql = PI-Py,
Q* = Eft’,L"]-Py,
QY = Ejt’, V]

By the construction o) and Observation 5.4 we hayl N Tr(Q)| < |E;| = O(n?). Apply
Fact 5.3 withA =t’, B=L" (and sdb = ¢/4),8 = 4/5, a = 2464/ +[c, andy = 96Y/4/ \/C
to yield |H n Tr(Q)| = Q(n®). For large enough, this is a contradiction which ends the
proof of Fact 5.6. m|
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To complete the proof of the inequality (8), set
"=\ =W\ (LoUbt UL UL")
and note that for every vertexe ", by (12), we have

644 n o4 n
deg:,(2) > ——en—-9——- > (1- 10—)—
Ve N
Note also that all the exceptional setsty, .1 and t, contain together less thans2€/ v/c)n
vertices and thereforie”| > (1 — 268/ v©)n. Thus, by (11),

1/4 1/8 2
|E2|z|t"|(1—1o5 )” (1 3 )”
w1

hence

6. THE FOURTH NEIGHBORHOOD

In this section we prove Lemma 4.2. Let us begin with someikgcirWe call an edge
H-good, or justgood if, say, | (€)| > (2/9)an/I%. We call an edgead if it is not good. As
proved in [7] (see Fact 3.2 above), for most edge$ P we havel'y(e)| ~ an/l?, so most
edges are good, but unfortunately, some of these good edagsawe small fourth, and
even second neighborhood. Indeed, it might happen thatdood edges = xy, whenever
xyz € H thenyz has a very small neighborhood.

To find a large subset of good edgewith large fourth neighborhoods Fage, +) and
Four (e, ), one could argue as follows. Suppose that the set of badsduxgesizen?.
Then, for each = 1, 2, 3, at most/pn vertices ofV; are incident to at leas{/on bad edges
(let us call these vertices bad), and, providgd < 1/I2, one could start at a good edge
with good endpoints and move four steps, avoiding both, loigg® and bad vertices. The
problem is that Fact 3.2 yields ontyof order J/I — too large for our needs.

To get around this problem we will find a sub-hypergrgghc 9 with much less bad
edges. This sounds paradoxical, since removing hyperecige®nly decreasg '« (€)|.
Note, however, that edgeswvith I'y(e) = 0 are not so bad — there is no way to get to them!
Let us call themH-dead. To distinguish betweeft{-dead and other bad edges, we will
alter our previous definition and call an edge P #H-bad if

2 n
0<IT'y(e)l < = 57
So, for anyH’ C H, every edge oP is eitherH’-good orH’-bad orH’-dead. Let us
denote these three subgraphs@y:, B4 andD4.. For technical reasons we distinguish
also a clas$, of atypical edges oP. Forall 1< i < j < 3, an edgee € P'l belongs to
the subgraplfro, if either it is not typical or at least one of its ends is nagital in P'/(see
Definition 2.2). Note, that by Fact 2.3 and Corollary 2F| < 24en?.
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Claim 6.1. For all @ € (0,1) and § < a/9? there exist two functions r(l) and (l) so that
for all H, P and for all integers| if (H, P) isan (a, 6,1, r(l), e(l))-triad then there exists a
sub-hypergraph H’ € H such that |Bg| < 6n?/1%, |Dgy| < 22Vén?/l and Fo € Dy

Proof of Lemma 4.2. With givena and

2 a

= — < —,
18¢ 9

letr(l) ande (1) be such that Claim 6.1 holds. Set

4

e(l) = min{el(l), m}.

We will prove Lemma 4.2 with this choice of functiond) ande(l). Given integel, let
a pair (H,P) be an &, 6,1, r, €)-triad, wherer = r(I) ande = €(l). Further, letH’ be as in
Claim 6.1, let

5<(52

V= {veV: deg,, (V) > ‘/ng}’

Gy, ={eeGy : enV" £ 0},
and letPg = By U Dy UGE,.
Note thatF, C Py. It remains to prove two facts aboBg.

Fact 6.2.
n2
IPo| < 27\/5T

Proof. To prove this fact, note thav*| < 2vén/I2, and solG.,| < 2n|V*| < 4Vé6n?/I2.
Therefore

n2 n2 n2 n2
IPol < [Byel + IDgel + Gyl < 677 + 22\/5T + 4\/5|—2 < 27\/5T.

Fact 6.3. For every edge e € P — P, the inequality (6) holds.

Proof. By symmetry, we will only prove thdFour-(e,  — P)| > (/2000 n?/I. Without
loss of generality we may assume that xy € P*?2— Py, wherex € V;. Then, by our choice
of 8, the set of verticeg, such thakyz € H andyz xz ¢ Py, has size at least
2 n n an

(14) §a|—2—4\/5|—2 > §|_2’
where the deletion takes care of ak V*, as well as alk with yz or xz in By (clearly,yz
andxz cannot beH-dead). Thusyyz € H —Py. For each such the edgegizbelongs in turn
to at leasivn/(51?) tripletsyzw € H’ with w € V; \ {x}, yw € P*? — Py andzw € P2 — P,
So, altogether there are at leadh?/(25%) edges ofP'3 — P, reached (within{ — Pg) in
two steps bye. Repeating this argument again we obtain at ledst/(6258) hyperpaths
xyawuv € H — Py of length four originating aé = xy.

Let us estimate, by counting repetitions, how marfedent edgesiv € P23 u € V,,
Vv € V3, are indeed reached layjin four steps (and in many ways). Consider an auxiliary
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bipartite graptC = (X, Y, E¢), whereX = E(PY), Y = E(P?®), and{zw € X, uv € Y} € E. if
Xyzwuv is a hyperpath i — Po. Hence)Ec| > a*n*/(6298).
Every hyperpathxyzwuv must satisfy that

Z € Np23(U, Np(xy)) and w € Np(uv, Npi2(Y))
(see Figure 5).

\/3 . szs(u, Np(Xy)) . V
V2 Y \\“:\71:; e 0 P13
V // : o T NS 2
1 X Np(uV, Npiz(y))

Ficure 5. A hyperpath of length four originating at= xy.

SinceFq C Py, thereforexy ¢ Fo, so we haveen < [Np2(y)| < (1/1 + e)n anden <
INp(Xy)| < (1/1 + €)?n. By Fact 2.3, all but at mosin? edgesuv satisfy|Npzs(u, Np(Xy))| <
(1/1 + €)®n and all but at most 872 edgesuv satisfy [Np(uv, Np22(Y))| < (1/1 + €)n. If
both these sets are greater tharthen, by the (1l, €)-regularity of P2, there are at most
(1/1 + €)'n? edgeszw € P2 between them. Otherwise, the number of such edgeis
at mosten? < n?/l’, the last inequality by our assumption en Thus, (Xl + €)'n? <
(20/19)n?/1” is an upper bound on the degreedrof all but at most 4n? edgesuv whose
degree can be even equalfo Denote the set of such edgesYyand set

A= ergeé deg.(e).

Then
20n?

<Ap= o
=707 1977

3k

Let 1Eq
. C

Y, = {UVG Y: deg:(UV) > Em},

andY; = Y\ (Y1 UY,). We have

|Ecl
2P%

|Ec

|Ecl < |Y1|n2 + |Y2|A0 + |Y3| < 4En4 + |Y2|Ao + T

Therefore, by our choice af,

a*n? 1 a*n?
Y| > —en| = > ——
Y2l 2 (12508 <" ) A~ 2000
Another words, at least*n?/2000 edgesuv € P? can be reached fromby no less than

2|P23 © 25007
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hyperpaths of length four, or equivalently, via that mangesiw € P13, It is easy to see
that among these edges there is a matching of size at least

a’n
50007
O
Proof of Claim 6.1.
Givena, let
04
o< %
and lete; (I) be such that Fact 3.2 holds with abavandé. Further, let for all,
r() = 3213
and
(15) (1) = min{ 0 i}
€ = €nl), 2413 .

We will prove Claim 6.1 with this choice @& r(I) ande(l). Given integet, let a pair (H, P)
be an ¢, 4,1, r, €)-triad, where = r(l) ande = €(l).

We will define a process of deleting hyperedges which afteefijnmany rounds will
arrive at a sub-hypergrapt’ of H satisfying the conclusions of Claim 6.1. Recall that for
an arbitrary hypergrap#{ and a grapl, we denote byH — G the sub-hypergraph off
obtained by removing all hyperedges containing at leasedige ofG.

The initial step of the procedure isolates all edgeBofSetH; = H — Fo. Clearly, for
eache € Fo, we havd'y, (€) = 0 and sceis H;-dead.

In each next round we similarly “kill” edges d® which are bad in the current sub-
hypergraph. For technical reasons these rounds take alglare of the edges d#*?,
P23, andP®. Foreachs = 1,4,7,..., let

Fo={ee P?:eisHsbad, Heq=Hs—Fs,
Fei1 = lee P23 . eis 7_{s+l'bad, 7_{s+2 = 7_{s+1 - Fsi1,

I:s+2 = {ee Pl3 L eis 7'[s+2'bad, 7’{s+3 = 7’{s+2 - I:s+2-

In each operation of the typHs,1 = Hs — Fs we remove all hyperedges which contain
Hs-bad edges of P12, P22 or P13, Thus, those edges becomik, ;-dead and therefore will
never become bad again. It follows that all detsre disjoint, and, in particular, fa&> 1,
FsNnFgq=0.

Our immediate goal is to estir_naEf$l |F4. Let us define 3-partite subgrap@g of P,
s=1,2,..,r,as follows: IfFs c P" then

S S
Qs = FsU (P”‘ - FtJ U (P“‘ -U Ft),
t=1

t=1

SetQ = (Qq, ..., Q).
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Observe that for slightly enlarged subgrafis= Fs U Pk U Pk (whereFs c P'), we
have, by (15) and the fact thBt N Fo = 0,

3n

> Z5IFd

_ 1 2
|Tr(Qs)| 2 |Fs|n(|_ - 6)
Trivially,
GRUCOIA PRI}
s=1 s=1

but the reverse inclusion is also true. Indeed igre Tr(Q,) setty = min(t : {xy, Xz, yz} N
Fi # 0}. Thenty, < sandxyz € Tr(Qy,). Moreover, because the sétsare disjoint, we have

U Q)| = 3 Z WENE

s—l

Hence,

(16)

1n <
2 YiE Z IF4l.
s=1
On the other hand, however, by the definition oﬂdpbad edge, forals<r,
|H N Tr(Qs)l < |Fs| alz,

forcing
8
dx(Q) < ga.
wheredy(Q) is defined in (3). Therefore, by the,(, r)-regularity ofH,
r
(17) Q)| < a1 Tr(P),
s=1

since otherwis@y(Q) > @ — § > (8/9)a. This inequality together with (15), (16) and Fact
2.6 implies that
< 8(5—

(18) Z Fe <4 U Tf(Qs)

Thus, more than a half of the sdis, s < r, have sizeF4 < 166n?/Ir, and so two consecu-
tive sets must be such, that is, there exists an irsdex — 2, such that
n 1.
max{|Fs.l, [Fseal} < 165Ir = §5|—4
Let s be the smallest indegwith this property.

Without loss of generality we may assume tRat ¢ P2 SetH’ = H,,.1. Observe
that there is nd+’-bad edge in the grap®'?, while in eachP? andP*® we have at most
(1/2)5n?/1* H’-bad edges. In fact, the set #f’-bad edges is the union &%, (H’-bad
edges inP?) and a subgraph d¥,., (Fs.2 may contairHs,.,-bad edges which were not
7‘{so+1'bad).
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As for theH’-dead edges, these are exactly the edgegipF; plus all the edgee € P
which were originally dead, that is, which h&g,(e) = 0. We have already estimated
| U2, Fil in (18), while, by (15),/Fql < 24en? < 6n?/I. Finally, by Fact 3.2, there are no

more than 2Vén?/I originally dead edges. Therefore we have

S
Fi

i=1

Hence, Claim 6.1 is proved. m|

nw n? n?
|Dgy| < +|F0|+|D7{|<85—+6—+21\/5T <22\/5T

7. APPLICATIONS

7.1. Long hyperpaths. The “Blow-up Lemma” of Komlés, Sarkdzy and Szemerédi [5
states that with a suitable choice of parameters egggrtite graphG with s-partition
V,U- - -UVsin which all bipartite subgraph[V;, V] are {d, €)-regular contains all bounded
degrees-partite graph&’ with s-partitionV; u--- U Vg, where foralli = 1,...,s,V/ €'V,
Vi < (1= F(E)ML

So far no analogous results exist for 3-uniform hypergraphs a first step toward a
hypergraph “Blow-up Lemma”, we derive from Corollary 3.4imple consequence which
establishes the existence of an almost Hamiltonian hygierpa quasi-random 3-graph.

Proposition 7.1. For all @ € (0,1) and § < (6p/4)*, where &, is as in Theorem 3.4, there
exist two functionsr(l) and e(I) such that for all H, P and for all integers| if a pair (H, P)
isan (a, 4,1, r(l), (l))-triad with |[V| = n sufficiently large, then thereisin H a hyperpath of
length at least (1 — 6¥4)n.

Proof. Givene, letd < (60/4)* and letr = r(l) ande (1) be ensured by Theorem 3.4. Set
€ = €(l) = 6¥%¢(l). Observe, that

4
1 27VAST4 < 27 ¢
(19) 4514 < 2750 < 5000

Let a pair (H,P) be an &, 4,1,r, €)-triad. Suppose, that no hyperpath%fihas length
(1 - 6"*)n. For a hyperpati®, let H, be the sub-hypergraph @f, obtained by deleting
from ¢ all, but the last four vertices of the pa@(if [V(Q)| < 4, then we setH, = H).

Let us fix an arbitrary edge = {x,y} € P — Ry and letQ be the longest hyperpath i
originating ate (in the cyclic ordeV; — V, — V3 — V;) and such that its other endpair
f € P—Ry(Hy). It follows trivially from the definition of the selRy(H) thatQ has at least
four vertices. Let us denote the last four verticeQdiy X_3, X_», X_1, Xo.

SinceV(Q) < (1 - 6"*)n, the sub-hypergraptt(j = H - V(Q) has at least*/*n
vertices. Moreover, sinc® traverses the set, V,, V; In the cyclic order, the sizes of the
setsV(Hg)NVi, i = 1,2, 3, differ from each other by at most one. Hence (see [9], Fact 4.2),
the pair (Hg, P[V(Hy)]) is an (@, 4674, 1,1, €/6'%)-triad. Note thatV(HE)| = [V(HG)I + 4,
45Y% < 55 ande/oY4 = €(l). Therefore, by Theorem 3.4,

HV(W%’)I/312 s /4L|V(71Q’g)|/3J2.

Ro(HG)| < 27 Vas1/4 27V46? |



Joanna PoLcyn, Vostech RobL, ANDRZEJ RuciNski AND ENDRE SZEMEREDI 23

On the other hand, by the definition Iaf(ﬂé), we know that the edgé = {x_1, X} reaches
in four steps at least

4 | IV(HL)I/3)?

other edges oP[V(H,)] (the term 2 takes care of all edges with at least one endpoint in
X_ Or X_z; the first inequality follows from (19) for large). Therefore, there is at least
one edgef” = {xsx4} € P[V(H)] — Ro(H), reached byf in H(, by at least three (in fact,
many more) internally disjoint hyperpaths of length fouthod formx_;XoX; XoX3X4. Thus,

for at least one of therfxy, Xo, X3, X4} N {X_3, X_5} = 0, and we may exten® by adding the

V(HL)|/3]?
VEFQIT3F ( lQ)l/J +2n > |Ry(HE)| + 2n

verticesxy, Xo, X3, X4 — @ contradiction with the maximality @ (see Figure 6). O
Q
X2 Xo ?:2 ).(4
X3 X1 X.1 ).(3
Hy, Hy

Ficure 6. A hyperpathQ originating ate.

Similarly, one can prove that for most pairs of edged’dhere is a path of length at
least (1- 6Y*)n between them. This latter result has been used recentlyj ito [deter-
mine asymptotically the Ramsey numbers for hypercyclesdgvete to this application a
separate subsection.

7.2. Ramsey numbers for tight hypercycles.Given a 3-uniform hypergrapK, theRam-
sey number r(H) is defined as the smallest integdérsuch that every red-blue coloring of
the edges of the complete 3-uniform hypergrﬂﬁﬁﬁ) yields a monochromatic copy @f.
Given a suitably labeled set of verticgs, . . ., vi}, thetight cycle, denoted further bg®,
has the edge sét;V,Vs, VoVaVy, VaVaVs, . . ., Vi Vi Vo). The following result has been recently
proved in [4].

Theorem 7.2.Let > 0 be given. Then for all sufficiently largen,
dn-1< r(Cffr’])) < (4+n)n.

Sketch of proof of the upper bound: Let 7(,(“3) = Hr U Hg, whereN ~ 4n, be a red-blue
coloring of the edges of the complete 3-uniform hypergra@.

We apply simultaneously to botit{r and g, the Hypergraph Regularity Lemma (The-
orem 2.13) with suitably chosen parameters, and obtaintexpartitionV = V; U. ..UV,
Vil = N/t (assumd dividesN), such that for almost all triple§, j, k} one of the induced



24 SHort PatHs IN QuasI-RANDOM TRIPLE SySTEMS WITH SPARSE UNDERLYING GRAPHS

sub-hypergraphsHg[ Vi U V; U V,] or Hg[V; U V; U V], contains a “well-structured” sub-
sub-hypergraph, that is, a/@, 6,1, r(l), e(I))-triad.

A modification of Proposition 7.1 yields that a well-strugd hypergraph contains a
long path, in our case of length almosi &, connecting every pair of typical edges®f
and avoiding a small set of forbidden vertices. We will bualdnonochromatic copy of
CY mostly out of such paths, constructed within each of aliptivertex disjoint well-
structured sub-hypergraphs. Thus, it is crucial to find abeldisjoint “well-structured”
sub-hypergraphs in one color.

To this end, letkg and Ky be two auxiliary hypergraphs on the vertex g2, . . ., t},
whose edges are those triplesj, k} for which, respectivelyHg[V; U V; U V] or Hg[V; U
V; U V] contains a “well structured” sub-hypergraph. 3ét= Kz U Kg and note that
1K1~ (5)

A substantial number of pages in [4] is devoted to provingd ither Kr or Kz (say,
Kr) contains a connected matchirig of sizes ~ t/4. Here “connected” means that
between every two edgesf € M there is goseudo-path, that is, for somep, a sequence
of not necessarily distinct edges € e,,...,e, = f) such thatg N e,1| = 2 for each
i=1...,p-1

Next, we find a long path in each sub-hypergrakiVi, V;, Vi], wherefi, j,k} € M.
These paths are disjoint and have total lengthk &(1). To connect the long paths together
into a red cycle of lengthr8 we construct inHr short paths (lengtl®(1)) between the
endpairs of long paths, being guided by the pseudo-patkisijnn K the edges oM. In
the actual proof we build the short paths first, and this is Wi®iong paths have specified
endpairs and must avoid a certain small set of vertices (¢p ledl paths, short or long,
mutually disjoint, except for the endpairs where they meet)

7.3. Approximate decomposition into small diameter sub-hypergaphs. It is easy to
see that for everg-vertex graph and for every> 0 one can partitioe(G) = EqU- - - UEy,
wherek < 1/¢, so that|Eq| < en? and for each 1< i < k the diameter of the subgraph
Gi = G[E;] is at most Je (see [8]). Thus, in a sense, every dense graph can be decethpos
into a bounded number of “small worlds” provided a small fiat of edges can be ignored.
Here both bounds, on the diameter and on the number of sutg@pdepend linearly on
1/e. Using the Szemerédi Regularity Lemma [10] and CorollaB(l?), one may put the
cap of four on the diameter, at the cost of lettipthe number of subgraphs in the partition,
to be an enormous constant.

Proposition 7.3. [8] For all € > 0 there exist integers K and N such that for all n-vertex
graphs G, wheren > N, thereisa partition E(G) = EqU E; U - - - U Ey, where k < K, and
|Eo| < en?, and for each 1 < i < k, the diameter of the subgraph G; = G[E|] is at most four.

An analogous result for 3-uniform hypergraphs follows froor Theorem 2.16 and the
Hypergraph Regularity Lemma.

Theorem 7.4.For all ¢ > Othereexist integersK and N such that for all n-vertex 3-uniform
hypergraphs H, where n > N, thereis a partition H = Ho U - - - U Hy where k < K and
|Ho| < én® and for each 1 < i < k, every two pairs of vertices with positive degree in #;
are connected by a hyperpath in H; of length at most twelve.
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Sketch of proof: Givené > 0, setty = 8/£, a = £/8 and letsp, > 0 and functions(l), (1) be
as in Theorem 2.16 with abowe Further, letN; be the smallest natural number, for which

Theorem 2.16 holds. Set
—mi 3 )2
0= ||||n{5o,(16

and apply the Hypergraph Regularity Lemma (Theorem 2.18) thie above, (1) and
r(l,t) = r(l), to getTy, Lo, andN,. Set

K = (TBO)Lg and N = max{No, %TO NlTo}

and letH be an arbitrary 3-uniform hypergraph witt> N vertices and#| > ¢n? triplets.
Let (H,Ps), s=1,...,k < (;)I3 < K, be all & a,4,1,r(l), e(l))-triads (H’, P), where

H' = HnTr(P)andP = (PH,PY,PY), 1<i<j<h<t1<ahb.c<l resuling
from applying Theorem 2.13 t#{. For eachs = 1,...,k, let (Ps)o be the subgraph of
Ps guaranteed by Theorem 2.16, and &t = H. — (Ps)o. Then, each pair of edges of
Ps — (Ps)o, that is each pair of edges Bf with positive degree ifHs, is connected i

by a hyperpath of length at most twelve.

Letus setHy = H \ U‘;lﬂs. To complete the proof of Theorem 7.4, it remains to show

that|Ho| < £n°. The edges that belong , either intersect the s&t, or intersect a sét,,

i > 1, in more than one vertex, or belong @r()-irregular triads, or to triads with density
less tharw. We omit the details of tedious but straightforward caltiolzs. m|
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